用户名: 密码: 验证码:
松突圆蚧及其天敌花角蚜小蜂对极端温度的耐受性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温度是影响昆虫生长、发育、生殖和存活等生命活动的重要生态因子。对极端温度的耐受能力是决定昆虫在区域间分布和扩散的一个重要因素。近年来,随着全球气候变化,极端异常天气时有发生。松突圆蚧Hemiberlesia pitysophila Takagi作为一类重大外来入侵生物,及其引进天敌花角蚜小蜂Coccobius azumai Tachikawa对极端温度的耐受性既关系到松突圆蚧潜在的入侵区域,也关系到花角蚜小蜂的有效与持续利用。本文通过测定松突圆蚧、花角蚜小蜂的过冷却点和极端温度(包括极端高温和极端低温两个方面)暴露处理下的存活情况,以及寄主、纬度和海拔对松突圆蚧极端温度耐受性的影响等,综合评价了二者对极端温度的耐受性;结合区域气候特征,预测二者及其寄生关系的潜在分布区域。对阐明外来害虫—外来天敌系统对土著生境的适应及其协同进化关系具有重要的理论意义,对松突圆蚧的风险评估、有效控制和花角蚜小蜂的充分利用具有重要的实践指导意义。主要研究结论如下:
     1松突圆蚧种群耐寒性的季节变化
     松突圆蚧的过冷却点波动在-22.4~-3.3℃之间,以冬季雌成虫的平均过冷却点最低,为-14.83℃,冬季1龄若虫、2龄性分化前若虫、2龄性分化后雄若虫、雌成虫及种群总体在-20~0℃下的死亡率、冷识别温度和半致死低温累积均明显低于夏季;1龄若虫、2龄性分化后雄若虫和种群总体的半致死低温累积与季节性平均气温均呈显著正相关,但所有发育阶段的过冷却点与其半致死低温累积的相关性均未达显著水平。表明松突圆蚧的耐寒性具有明显的季节适应性,冬季种群的耐寒性最强,夏季种群最弱;松突圆蚧耐寒性的季节变化并不依赖于过冷却点,而与气温的季节性变化密切相关。预测松突圆蚧能够突破现有分布的北界(26°N左右),但在26.5~29°N区域内冬季低温将对其种群的存活产生显著影响;在29~37°N区域也能越冬,但冬季低温将极大地限制种群的发展。
     2寄主植物对松突圆蚧耐寒性的影响
     寄生于黑松和马尾松的松突圆蚧雌成虫的过冷却点比寄生于湿地松和火炬松的显著较高,两类过冷却点平均值的差异在0.9~2.3℃之间。寄生于马尾松的2龄性分化后雌若虫的过冷却点比寄生于湿地松的显著较高,前者比后者高出2.08℃。寄生于马尾松的初孵若虫、1龄若虫、2龄性分化前若虫、2龄性分化后雌若虫、2龄性分化后雄若虫、雌成虫,以及种群总体,对低温暴露致死的起始敏感温度和-20℃低温暴露的死亡率,均比寄生于湿地松的相应虫态和种群总体低;寄生于马尾松的松突圆蚧种群的半致死有效伤害低温累积比寄生于湿地松的种群低;两种寄主植物松突圆蚧各虫态及种群总体在低温暴露下死亡率的变化规律均符合改进后的双变量Logistic模型。由此说明:寄主植物能够影响松突圆蚧的过冷却点和低温暴露死亡率,寄生湿地松的松突圆蚧种群耐寒性比寄生马尾松的种群弱。
     3不同地区松突圆蚧的耐寒性差异
     通过测定广东信宜、福建漳州、泉州和长乐4个不同纬度地区冬季松突圆蚧的过冷却点和低温暴露试验,结果表明不同地区松突圆蚧雌成虫的过冷却点有显著差异,福建长乐的过冷却点最低,广东信宜的过冷却点最高,两地差值达2.03℃。半致死有效低温累积、低温暴露死亡率等指标则不具明显差异。在10~-20℃温度暴露下,广东信宜松突圆蚧种群的死亡率明显高于福建泉州和福建长乐种群,但各地各虫态低温暴露下死亡率的变化规律均服从双变量Logistic曲线模型;广东信宜种群的半致死有效伤害低温累积明显大于福建泉州和长乐种群。说明松突圆蚧对低温有较强的适应性,随着该虫分布纬度的上升,其耐寒性存在逐步增强的趋势。松突圆蚧耐寒性的地理适应性对其进一步向北扩散蔓延具有重要的进化意义。
     4海拔对松突圆蚧极端温度耐受性的影响
     采用过冷却点、极端温度暴露死亡率和半致死温度等指标,评价了不同海拔(80、251、391、510和725 m)松突圆蚧的耐寒性和耐热性。结果表明:不同海拔松突圆蚧雌成虫过冷却点存在显著差异,其过冷却点的平均值波动在-15.30~-13.09℃,以海拔391 m的过冷却点最低,510 m次之,251 m最高。不同海拔松突圆蚧1龄若虫、2龄若虫和雌成虫的死亡率均随低温暴露温度下降而增大,在-25℃下均不能存活。在0~-10℃范围内,海拔对松突圆蚧1龄若虫和雌成虫低温暴露的存活率具有显著影响。从半致死低温看,海拔391 m松突圆蚧各发育阶段的耐寒性都最强,海拔80 m最弱,而海拔251、510和725 m的耐寒性因不同发育阶段而不同。不同海拔松突圆蚧的死亡率随暴露温度升高而增大,在45℃下都不能存活;1龄若虫的半致死高温以海拔510 m最高,80 m次之,391 m最低;2龄若虫以海拔510 m最高,725 m次之,80 m最低;雌成虫以海拔391 m最高,251 m次之,80 m最低。松突圆蚧对极端温度耐受性与海拔高度呈非线性关系。
     5松突圆蚧种群耐热性的季节变化
     通过比较分析不同季节、不同虫态松突圆蚧在高温暴露下的死亡率和半致死高温累积,结果表明不同发育阶段松突圆蚧的耐热性季节变化不同,但夏季2龄性分化前若虫、2龄性分化后雌若虫和种群总体相对于其他季节,具有明显较强的耐热性,而春季种群耐热性最弱,表现出较强的季节适应性。根据其致死高温45℃,预测松突圆蚧的可以入侵我国南方所有松林分布的区域和毗邻国家与地区。松突圆蚧各发育阶段的半致死高温累积与季节性月平均气温、季节极端高温和平均降水量3个气象因子变化的关系均不密切。
     6花角蚜小蜂耐寒性的季节变化
     花角蚜小蜂雌成虫在春、夏、秋、冬4个季节的平均过冷却点分别为-13.7559、-11.9700、-12.7936和-13.6000℃,冬、春季显著低于夏季;雄成虫在春、夏、秋3个季节的平均过冷却点分别为-15.3917、-13.8400和-13.2143℃,春季显著低于夏、秋季;春、夏季雌虫的平均过冷却点显著高于雄虫。-15℃暴露下,各季节雌虫均不能存活;0℃暴露下,春季的死亡率显著低于夏季,-5℃和-10℃暴露下,春季的死亡率均显著低于夏、秋季。各季节雌成虫低温累积-死亡率的关系均服从改进的Logistic模型,但不同季节的半致死低温累积(LSCIT50)有显著差异,春季平均LSCIT50显著低于夏、秋季,秋季也低于夏季,但无显著差异;雌虫的过冷却点、LSCIT50随着季节极端低温下降和极端温差的增加表现出下降的趋势;其LSCIT50也随着过冷却点的降低表现出下降趋势,在一定程度上说明过冷却点与耐寒性具有密切关系,秋季可能是该虫耐寒性由弱变强的重要过渡季节。表明花角蚜小蜂成虫的耐寒性具有明显的季节适应性,降低过冷却点是增强其耐寒性的重要策略,这可能与其在秋季受到较低极端低温和较高极端温差的适应性锻炼有关。各季节花角蚜小蜂雌成虫在0℃暴露下的死亡率均较低,春季在-5℃下的死亡率也较低,在-10℃下的死亡率接近90%。花角蚜小蜂雌成虫的耐寒能力明显弱于松突圆蚧雌成虫(详见第2节),在不考虑海拔高度、气候类型和大气环流等对气温变化的影响及花角蚜小蜂其他虫态的耐寒性情况条件下,预测花角蚜小蜂的潜在利用区域在28°N以南,而在27~28°N之间,花角蚜小蜂的利用将受到海拔和气候异常年份等的限制;随着松突圆蚧进一步北移,花角蚜小蜂—松突圆蚧这一寄生系统的稳定性将被打破,花角蚜小蜂不能继续跟随控制松突圆蚧。
     7花角蚜小蜂耐热性的季节变化
     通过比较分析花角蚜小蜂雌成虫春、夏、秋季耐热性变化和夏季种群雌、雄成虫耐热性的差异。结果表明:随着暴露温度升高,花角蚜小蜂各季节的死亡率均逐渐增大,秋季、春季、夏季种群分别在39.5、40和41℃时死亡率均达到100%。暴露温度为39~40.5℃时,不同季节之间种群死亡率具有显著差异,表现为夏季种群的死亡率显著较低。比较对花角蚜小蜂雌成虫造成热伤害的高温累积下限(LLSEHIT)和半致死高温累积(LSHIT50)大小,不同季节雌成虫的耐热性呈现明显的季节变化,其耐热性大小序列为夏季>秋季>春季,但秋季种群死亡对高温累积增加最为敏感,夏季次之,春季最弱。花角蚜小蜂雌成虫半致死高温累积LSHIT50与月平均气温、季节极端高温的季节变化关系十分密切,随着平均气温、季节极端高温的升高,LSHIT50表现出明显的升高趋势。而半致死有效高温累积LSEHIT50与季节性气象因子无明显相关性。表明花角蚜小蜂雌成虫的耐热性具有明显的季节适应性,夏季的耐热性强于秋季和春季。41℃是花角蚜小蜂雌、雄成虫存活的极限温度。在39~40.5℃高温暴露时,雄成虫对高温更敏感,死亡率显著高于雌成虫。在不考虑亚致死高温对花角蚜小蜂的伤害和林间海拔、气候类型、植被、生境等重要的温度因子影响的情况下,在潜在的松突圆蚧极限高温41~45℃入侵区(详见第6节),花角蚜小蜂—松突圆蚧寄生系统在理论上将无法构建,必须寻找新的控制手段。
Temperature is an important factor influencing insect physiological characteristics such as growth, development, reproduction and survival. Capacity of tolerance against temperature stress combined with other factors determine the potential distribution and spreading. The introduction of Coccobius azumai Tachikawa to control the typical exotic invasive species Hemiberlesia pitysophila Takagi is an economical, sustainable, effective and common-used measure. This paper makes a comprehensive evaluation on the tolerance capacity of H. pitysophila and C. azumai against extreme temperature, which was embodied by the supercooling point, discriminating temperature (DT), semi-lethal sum of temperature (LST50) and mortality. The effects of host, latitude and altitude on tolerance of H. pitysophila were also evaluated. In addition, we predicted the potential distribution areas of H. pitysophila, C. azumai and their parasitism relationship by combining with regional climate characteristics, which theoretically had an important value for revealing adaptability of the exotic species to local niches and effectively control of H. pitysophila using C. azumai as a biocontrol agent. The main results were as follows:
     1 Seasonal variation in cold tolerance of the population of H. pitysophila
     The parameters of supercooling point (SCP), mortality exposed to designated low temperature (ME), discriminating temperature (DT) and semi-lethal sum of chill injurious temperature(LSCIT50) of H. pitysophila collected from different seasons were measured and compared in Quanzhou, Fujian Province, China from 2007 to 2008. The individual SCPs of this pest fluctuating from -22.4℃to -3.3℃were measured. Among all the developmental stages of the pest in each season, the winter female adults had the lowest mean SCP (-14.83℃), which was significantly lower than those of the summer female adults, the winter newly hatched nymphae and 1st instar nymphae. However, the mean SCPs of other developmental stages between winter and summer all showed no markedly differences. Experiments exposed to low temperature indicated that the parameters of ME, DT and LSCIT50 of the 1st instar nymphae, 2nd instar nymphae before sex differentiation, 2nd instar male nymphae after sex differentiation, female adults and entire population were all obviously lower in winter than in summer. A linear correlative analysis showed that there were significant positive correlations between the mean air temperature and the LSCIT50s of the 1st instar nymphae, 2nd instar male nymphae after sex differentiation and the entire population, but no significant correlations between SCPs and LSCIT50s at each developmental stage. These results suggest that there is a clearly seasonal adaptability independent of SCP and nearly correlative with air temperature in cold tolerance of H. pitysophila. The cold tolerance of this pest population seems to peak in winter and touch bottom in summer. The SCP isn’t a reliable indicator for the cold tolerance of H. pitysophila.
     2 Effects of different host plants on the cold tolerance of H. pitysophila
     The supercooling point (SCP) and mortality of H. pitysophila exposed to a designated and regulated low temperature were measured, which feeded on the four different plants, Pinus massoniana, P. elliottii, P. taeda and P. thunbergii. Significant effects of plant on SCP of female adult were observed that the mean SCPs were 0.9~2.3℃higher on P. massoniana and P. thunbergii than on the other two plants. The mean SCP of the 2nd instar female nymphae after sex differentiation was 2.08℃higher on P. massoniana than on P. elliottii. However, a separate experiment showed no remarkable difference between the SCPs of the 2nd instar male nymphae after sex differentiation on the two plants. Another separate experiment of exposure to low temperature indicated that relations between low temperature and mortality of all the insect developing stages and the population on the two plants were all in accordance with a revised double-variable Logistic model. Nevertheless, the incipient sensitively low lethal temperature and mortality exposed at -20℃condition of these developing stages and the population were all lower on P. massoniana than on P. elliottii. The semi-lethal sum effective of chill injurious temperature (LSECIT50) of the population was lower on P. massoniana than on P. elliottii. These results suggest that the SCP and mortality of H. pitysophila exposed to low temperature can be significantly affected by host plants.
     3 Cold tolerance of H. pitysophila in different regions
     The supercooling points (Scps) and mortality of H. pitysophila exposed to designated low temperature were measured in different regions in China, including Xinyi, Guandong Province, Zhangzhou, Quanzhou and Changle, Fujian Province in the winter of 2007. The results showed that Scps of the female adults had significant differences among the four regions that the lowest mean Scps appeared in Changle, while the highest in Xinyi, whose difference reached 2.03℃. As exposed to low temperature of 10 to -20℃, the mortality of H. pitysophila was remarkably higher in Xinyi than in Changle and Quanzhou. However, the relationship between exposed low temperature and mortality of the population in Xinyi, Quanzhou and Chanle were all in accordance with double variable Logistic model, so were the five insect developing stages such as the 1st instar nymphae, 2nd instar nymphae before sex differentiation, 2nd instar females, 2nd male nymphae after sex differentiation and female adults. The semi-lethal sum effective of chill injurious temperature (LSECIT50) was also higher in Xinyi than in Quanzhou and Changle. This paper indicates that H. pitysophila can adapt to low temperature, and the cold tolerance might become stronger with the latitude rising.
     4 Extreme temperature tolerance of H. pitysophila at different altitudes
     Cold tolerance and heat tolerance of at altitudes of 80, 251, 391, 510 and 725 m were measured and compared by the indices of supercooling point (Scp), mortality and semi-lethal temperature (LT50). The results showed that there were remarkable differences among Scps of female adults at different altitudes that the lowest Scp appeared at the altitude of 391 m, while the highest at 251 m. It was an increasing trend in mortality as the exposed low temperature declining, and no survivals existed at -25℃. When exposed to the low temperature of 0~-10℃, mortalities of H. pitysophila were significantly affected by altitudes.. Its lowest LT50 of low temperature appeared at the altitude of 391 m. It was an increasing trend in mortality as the exposed high temperature rising, and no survivals existed at 45℃. The altitude also significantly affected the pest’s mortality exposed at high temperature conditions, and its highest LT50 of high temperature appeared at the altitude of 391~510 m.. This study suggests that the extreme temperature tolerance of this pest had no linear relationship with altitudes.
     5 Seasonal variation in heat tolerance of H. pitysophila
     By means of the heat exposure methods, the mortality and semi-lethal sum of high injurious temperature (LSHIT50) of H. pitysophila among different seasons and developmental stages were analyzed and compared, and its the heat tolerance and seasonal adaptability were also synthetically evaluated. The results showed that the 2nd instar nymph before sex differentiation, the 2nd instar female nymph after sex differentiation and the entire population had significantly higher heat tolerance in summer than in other seasons, and appeared to a clearly seasonal adaptability characteristics. The lethal high temperature might be fluctuated around 45℃, thus it had the potential to spread southward and to make more bad damages. However, this seasonal adaptability to heat had no remarkable relationship with the three climate factors of mean air temperature, extreme high temperature and rainfall.
     6 Seasonal variation in cold tolerance of C. azumai
     The parameters of supercooling point (SCP), mortality exposed to designated low temperature and semi-lethal sum of chill injurious temperature (LSCIT50) of the chalcid adults collected from different seasons were measured and compared in Quanzhou, Fujian Province, China during 2007 to 2008. Mean SCP values of female adults from spring, summer, autumn and winter were -13.7559,-11.9700,-12.7936 and -13.6000℃, respectively, and spring and winter female adults had all a significantly lower value than summer female adults. Mean SCP values of male adults from spring, summer and autumn were -15.3917,-13.8400 and -13.2143℃, respectively, and the value was significantly lower from spring than from summer and autumn. Additionally, mean SCP values of female adults were all markedly lower than those of male adults in spring and summer, while was equivalent in autumn. Experiment of exposure to low temperature suggested that none of female adults from any seasons survived at -15℃. However, mortality of female adults was clearly lower in spring than in summer at 0℃, and than in summer and autumn at -5℃and -10℃. The relationships between sum of exposed to low temperature and mortality of female adults from each season were all highly fitted to revised Logistic model. Significant differences were observed between LSCIT50s of female adults estimated by this model from different seasons. Mean LSCIT50 of spring female adults was significantly lower than those of summer and autumn female adults. Its SCP and LSCIT50 seemed to decease with decrease in seasonal extreme low air temperature and increase in seasonal extreme difference in air temperature, and its LSCIT50 also seemed to decease with SCP decreasing. These results suggested that there is an obvious adaptability to seasonal variation of air temperature in cold tolerance of C. azumai adults; in the wild, autumn may be an important duration for increasing its cold tolerance by acclimation of seasonal low extreme air temperature and high extreme difference in air temperature.
     7 Seasonal variation in heat tolerance of C. azumai
     The heat tolerance of C. azumai was analyzed and compared in different seasons through exposure to high temperature method. The results showed that there was an increasing trend of mortality in the parasitoid of female adults from each season with the rising of exposed temperature. However, significant death differences were observed among different seasons when the parasitoids exposed to 39~40.5℃, and the mortality of summer female adults seemed to be the lowest. The results for the indices of the lower limited sum of effective heat injurious temperature (LLSEHIT) and the semi-lethal sum of heat injurious temperature (LSHIT50) showed that the sequence of heat tolerance in female adults in various seasons was summer >autumn>spring, and a clearly seasonal adaptability to heat was proved. The monthly mean air temperature and seasonal extreme high temperature might be the main causes of this adaptability. A separate experiment showed that the extreme high temperature was 41℃either in female or male adults. Whereas, mortality in male adults displayed higher mortality than that in female adults when exposed to 39~40.5℃, which indicated that the female adults had higher heat tolerance than male adults.
引文
[1] Elton C.S. The ecology of invasions by animals and plants[M]. London: Methuen. 1958.
    [2]陈兵,康乐.生物入侵及其与全球变化的关系[J].生态学杂志, 2003, 22(1): 31-34.
    [3]孙秀艳,王珩,奚宁宇.外来生物入侵中国应该怎么办?——访农业部外来入侵生物预防与控制研究中心副主任万方浩[N].人民网http: //scitech.people.com.cn/GB/4959709.html.2006.10.26.
    [4]丁建清,解焱.中国外来种入侵机制及对策[A].见:《保护中国的生物多样性(二)》(汪松、谢彼德、解焱编辑)[M].北京:中国环境科学出版社. 1996: 107-128.
    [5]赵永新.中国外来入侵物种283种一年“吃掉”1200亿元[N].人民日报, 2004. 06. 03.
    [6]徐海根,丁晖,李明阳.生物入侵:现状及其造成的经济损失[A].科技、工程与经济社会协调发展——中国科协第五届青年学术年会论文集[C], 2004.
    [7]黄锡生.论我国防治外来物种入侵的法律对策[J].兰州大学学报(社会科学版), 2005, 33(1): 109-113.
    [8]丁建清,王韧.恶性水生杂草水葫芦在我国的发生危害及防治[J].杂草学报, 1995, 9(1): 49-52.
    [9]吴克强.初谈滇池流域的生态平衡[J].国内湖泊(水库)协作网通讯, 1993, (1): 47-49.
    [10]黄忠良,曹洪麟,梁晓东,等.不同生境和森林内薇甘菊的生存与危害状况[J].热带亚热带植物学报, 2000, 8(2): 131-138.
    [11]车晋滇,郭喜红.北美一枝黄花[J],杂草科学, 1999, (1): 17.
    [12]万方浩,关广清,王韧.豚草及豚草综合治理[M].北京:中国科学技术出版社. 1993.
    [13]夏风云.豚草花粉过敏病[J].植物检疫, 1983, (6): 16-19.
    [14] Miracle.外来生物入侵再拉生物警报[N].生物报. http: //www.swb.com.cn/ShowArticle. sp?ArticleID=205.
    [15] Mack RN, Simberloff D, Lonsdale WM, et al. Biotic invasions: cause, epidemiology, global consequences, and control[J]. Ecological Application, 2000, 10(3): 689-710 .
    [16]康乐.外来种入侵的生态学效应[A].见:中国科学院科学发展报告[M].北京:科学出版社. 1999: 106-110.
    [17] Pimentel D., Lorilach, Zuniga R., et al. Environmental and economic costs of non-indigenous species in the United States[J]. Bioscience, 2000, 50(1): 53-65 .
    [18] Office of Technology Assessment. Harmful non-indigenous species in the United States[M]. Washington DC: OTA, US Congress. 1993.
    [19] White P.S..Biodiversity and the exotic species threat[A]. In: Exotic Pests of Eastern Forests[C]. Tennessee Exotic Pest Plant Council, USDA Forest Service, Nashville, TN, 1997: 1-8.
    [20] Castello J. D., Leopold D.J., Smallidge P.J., et al. Pathogens, patterns, and processes in forest ecosystems. Bioscience, 1995, (45): 16-24.
    [21] Vitousek P. M. ,D’Antoniao C.M.,Loope L.,et al. Introduceds pecies: A significant component of human caused global change[J]. New Zealand Journal of Ecology , 1997, (21): 1-16.
    [22]张润志,刘宁,任立.世界著名入侵害虫概括及中国面临的入侵威胁[A].中国昆虫学会2005年学术年会论文摘要集[C]. 74.
    [23]中国履行《生物多样性公约》办公室.中国履行《生物多样性公约》十年进展[A].生物多样性履约简报(2003)第2-3期合刊:纪念5月22日国际生物多样性日专刊. 2003.
    [24]万方浩,郑小波,郭建英主编.重要农林外来入侵物种的生物学与控制[M].北京:科学出版社, 2005: 3-68.
    [25]齐艳红,赵映慧,殷秀琴.中国生物入侵的生态分布[J],生态环境, 2004, 13(3): 414-416.
    [26]范建.我国将启动外来入侵生物国家发展策略框架[N].人民网, http: //www.people.com. cn/GB/keji/1056/2980624. html. 2004.11.11, 09: 48.
    [27]闰生荣,周青.生物入侵对农业生态系统稳定性的影响及防治对策[J].农业现代化研究, 2004, 25(6): 464-467.
    [28]王伟平.美国白蛾防治模式推广与应用[J].森林病虫通讯, 1996, 15(3): 45-46.
    [29]燕长安,陈玉文,邢景光.锦州市扑灭了美国白蛾[J].植物检疫, 1992, (1): 37-38.
    [30]陈永革,古德祥.松突圆蚧与松突圆蚧花角蚜小蜂种间关系研究[J].昆虫天敌, 1998, 20(3): 136-142.
    [31]陈旭东,何大愚.利用泽兰实蝇控制紫茎泽兰的生防策略研究[J].应用生态学报, 1990, 1(4): 315-321.
    [32]万方浩,丁建清.豚草卷蛾的寄主专一性测定[J].中国生物防治, 1993, 9(2): 69-74.
    [33]丁建清,王韧,付卫东等.利用水葫芦象甲和农达综合控制水葫芦[J].植物保护, 1999, 25(4): 4-7.
    [34]杨晓燕.我国生物入侵防控策略探讨[N].浙江在线, http: //www.zjol.com.cn/05zjnews/system/2007/05/22/008450536.shtml.
    [35]郝中实.全面应对外来入侵生物[N].北京日报, 2006. 03. 14.
    [36]李浩,郑安明. WTO国际贸易可持续发展[J]. WTO经济导刊, 2008, (8).
    [37]雨轩.中国怎样抵制外来物种入侵问题.中国食品产业网, http: //www.foodqs.com/news/gnspzs01/2007619141738905.htm .
    [38]安志兰,郭笃发,褚栋等.生物入侵对我国生态环境的影响及其控制策略[J].山东农业科学, 2007, (1): 78-82.
    [39]吴坚.我国林业外来有害生物入侵现状及防控对策[J].科技导报, 2004, (4): 41-44.
    [40]张润志,康乐.外来物种入侵的预警与立法管理[J].中国科学院院刊, 2003, (6): 413-415.
    [41]刘晓春,白婕.中国生物入侵现状与对策[J].环境科学与管理, 2006, 31(2): 80-82.
    [42]国家林业局植树造林司,国家林业局森林病虫害防治总站.中国林业检疫性有害生物及检疫技术操作办法[M].北京:中国林业出版社, 2005: 4-2-4-11.
    [43]张星耀,骆有庆.中国森林重大生物灾害[M].北京:中国林业出版社, 2003. 256-275.
    [44]何雪香,刘清浪.受松突圆蚧为害的马尾松松针内含物的分析[J].广东林业科技, 1992, 8(1): 10-12.
    [45]戴沿海.松突圆蚧为害对马尾松针叶主要次生物质的影响[J].华东昆虫学报, 2006, 15(2): 103-106.
    [46]胡炽海.松突圆蚧为害与马尾松松脂损失量关系的研究[J].广东林业科技, 1992, 8(4): 25-28.
    [47]黄茂俊,陈芝卿.松突圆蚧大发生对马尾松生长影响调查[J].广东林业科技, 1988, 4(3): 5-7.
    [48]钱明惠.我国松突圆蚧研究进展[J].广东林业科技, 2003, 19(4): 51-55.
    [49]钟景辉,黄衍庆,傅辉松,等.松突圆蚧危害的风险性分析[J].广西林业科学, 2004, 33(4): 182-185 .
    [50]陈芝卿,陈佩珍,连俊和.修枝间伐对松突圆蚧的抑制作用研究[J].林业科学研究, 1989, 2(4): 388-394.
    [51]黄衍庆.间伐修枝措施对松突圆蚧的控制效果[J].华东昆虫学报, 2005, 15(4): 379-382.
    [52]钟景辉.松突圆蚧虫口数量与危害程度的关系[J].华东昆虫学报, 2005, 15(2): 155-158.
    [53]张飞萍,钟景辉,陈顺立.松突圆蚧在松树春梢不同部位的分布与动态[J].江西农业大学学报, 2006, 28(6): 819-832 .
    [54]唐子颖,卢洁辉,林进添.松突圆蚧林间种群动态的研究[J].仲恺农业技术学院学报. 1993, 6(2): 48-52.
    [55]柯玉铸.纵带间伐套种相思树控制松突圆蚧的研究[J].中国森林病虫, 2008, 27(2): 19-21.
    [56]徐世多,谢伟忠,陈纪文.松突圆蚧传播及控制的研究[J].林业科技通讯, 1992, (1): 5-8.
    [57]杨笑如,钟景辉,吴一鹏等.松突圆蚧若虫空间格局的研究[J].江西植保, 2005, 28(1): 5-7.
    [58]林业部森林植物检疫防治所综防测报室.松突圆蚧自然扩散距离研究初报[J].森林病虫通讯, 1989, 8(3): 24-25.
    [59]赵春亮.广东省松突圆蚧为害及防治概况[J].江西林业科技, 1991, (1): 33-35.
    [60]黄振裕,陈顺立,林庆源.混合杀虫剂对松突圆蚧的药效试验[J].福建林学院学报, 2005, 25(1): 43-46.
    [61]吴一鹏. 4种杀虫剂防治松突圆蚧的野外试验[J].华东昆虫学报, 2005, 15(1): 72-75.
    [62]潘务耀,唐子颖,连俊和,等.松脂柴油乳剂防治松突圆蚧的研究[J].森林病虫害通讯, 1987, 6(1): 14-17.
    [63]黄振裕.松突圆蚧化学防治技术研究[J].南京林业大学学报(自然科学版), 2006, 30(5): 119-122.
    [64]陈顺立,吴辉,洪贞,等.马尾松家系受松突圆蚧危害后生长状况研究[J].福建林学院学报, 2008, 28(2): 97-100.
    [65]梁承丰.松突圆蚧天敌研究初报[J].林业科技通讯, 1988, (6): 19-24.
    [66]王竹红.松突圆蚧寄生性天敌及其控制作用的研究[D].福建农林大学, 2006.
    [67]梁光红.福建松突圆蚧本地寄生蜂种类及形态比较[J].湖北民族学院学报(自然科学版), 2008, 26 (4): 440-443.
    [68]潘务耀,陈世兰.枝孢霉防治松突圆蚧试验初报[J].森林病虫通讯, 1989, 8(3): 22-25.
    [69]李兰珍,李永城,郭志红.寄生曲霉菌对松突圆蚧致病力试验[J].林业科技通讯, 1989, (12): 23-25.
    [70]詹萍,莫昭展,王缉健,等.防治松突圆蚧的微生物菌种的分离与筛选研究[J].安徽农业科学, 2008, 36(5): 1937-1938 .
    [71]黄宝灵,黄大安.“松突圆蚧生防菌的筛选和应用研究项目”通过成果鉴定[N].广西创新计划网, http: //gxige.gxu.edu.cn/html/news/20090227/215.html.
    [72]方丽英,王缉健,黄宝灵.松突圆蚧防治历程与启示[J].中国林业, 2007, (18): 41.
    [73] Kaiser J.. Stemming the tide of invading species[J]. Science, 1999, 285(17): 1836-1841.
    [74] Tachikawa T.. A new and economically important species of Coccobius (Hymenoptera: Aphelinidae) parasitic on Hemiberlesia pitysophila Takagi (Homoptera: Diaspidiae) in Okinawa, Japan[J]. Trans Skikoku Ent Soc, 1988, 19(1-2): 67-71.
    [75]卢爱平.松突圆蚧花角蚜小蜂雌蜂头部扫描电镜研究[J].昆虫天敌, 1996, 18(2): 60-63.
    [76]王竹红,黄建.松突圆蚧寄生性天敌的种间竞争关系[J].福建林学院学报, 2007, 27(4) : 304-307.
    [77]王竹红,黄建,张林生,等.利用生命表评价天敌对松突圆蚧的控制作用[J].福建林学院学报, 2007, 27(3): 248-252.
    [78]王竹红,黄建,康文通,等.松突圆蚧及其3种寄生性天敌的林间生态位[J].福建农林大学学报(自然科学版), 2007, 27(01): 16-19.
    [79]潘务耀,唐子颖,谢国林,等.引进花角蚜小蜂防治松突圆蚧的研究报告[J].林业科学研究, 1993, 6(6): 1-8.
    [80]丁德诚,潘务耀,唐子颖,等.松突圆蚧花角蚜小蜂的生物学[J].昆虫学报, 1995, 38(1): 46-52.
    [81]丁德诚,潘务耀,唐子颖,等.松突圆蚧花角蚜小蜂对寄主的选择[J].昆虫学研究集刊,第11集, 1992-1993: 35-42.
    [82]古德详,张古忍,陈永革,等.马尾松、松突圆蚧与松突圆蚧花角蚜小蜂的相互关系[J].中国生物防治, 2002, 18(增刊): 5-8.
    [83]陈永革,古德详.松突圆蚧与松突圆蚧花角蚜小蜂种间关系研究[J].昆虫天敌, 1998, 20(3): 136-142.
    [84]古德详,陈永革.松突圆蚧种群生命表与花角蚜小蜂的寄生作用的研究[J].昆虫天敌, 1998, 20(1): 156-163.
    [85]潘务耀,唐子颖,谢国林,等.松突圆蚧花角蚜小蜂引进和利用的研究[J].森林病虫通讯, 1993, 12(3): 15-18.
    [86]童国建,黄茂俊,徐世多.花角蚜小蜂防治松突圆蚧技术的应用[J].森林病虫通讯, 1998, 17(2): 23-24
    [87]唐子颖,翁锦泅,丘鸿峥,等.飞机撒放花角蚜小蜂防治松突圆蚧试验[J].林业科技通讯, 1993, (7): 21-23.
    [88]蔡赣强.引进花角蚜小蜂防治松突圆蚧研究成果通过鉴定[J].森林病虫通讯, 1993, 12(2): 45.
    [89]叶燕华,陈沐荣.松突圆蚧花角蚜小蜂种群下降原因初析[J].林业科技通讯, 2001, (12): 19-21.
    [90] Hoffmann K.H..Metabolic and enzyme adaptation to temperature. In: Hoffmann K.H. ed. Environmental Physiology and Biochemistry of Insects Berlin, Heidelberg[M]. New York and Tokyo: Springer Verlag, 1985, 1-2.
    [91] Hendry A.P. .Evolutionary biology: The power of natural selection[J]. Nature, 2005, 433: 694-695.
    [92] Hoffmann A.A., Hallas R., Sinclair C., et al. Levels of variation in stress resistance in Drosophila among strains, local populations, and geographic regions: patterns for desiccation, starvation, cold resistance, and associated traits. Evolution, 2001, 55: 1621-1630.
    [93]刘国华,傅伯杰.全球气候变化对森林生态系统的影响[J].自然资源学报, 2001, 16(1): 71-78.
    [94]梁光红,陈家骅,黄居昌,等.温度对切割潜蝇茧蜂发育、生殖和存活的影响[J].江西农业大学学报,2007, 29(2): 190-193.
    [95]崔旭红,谢明,万方浩.短时高温暴露对B型烟粉虱存活以及生殖适应性的影响[J].中国农业科学, 2008, 41(2): 424-430.
    [96]郭慧芳,陈长琨,李国清.高温胁迫对雄性棉铃虫生殖力的影响[J].南京农业大学学报, 2000, 23(1): 30-33.
    [97]陈兵,康乐.昆虫对环境温度胁迫的适应与种群分化[J].自然科学进展, 2005, 15(3): 265-271.
    [98] Bale J.S., Master G.J., Hodkinson I.D., et al. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores[J]. Global Change Biology, 2002, 8: 1-16.
    [99] Kukal O., Ayres M.P., Scriber J.M. Cold tolerance of the puae in relation to the distribution of swallowtail butterflies[J]. Canadian Journal of Zoology, 1991, (9): 328-337.
    [100] Mcdonald J., Head J., Bale J.S., et al. Cold tolerance, overwintering and establishment potential of Thrips palmi[J]. Physiological Entomology, 2000, (5): 159-66.
    [101]孙绪艮,王兴华,李恕廷.昆虫耐寒性机制及其研究进展[J].山东农业大学学报(自然科学版), 2001, 32(3): 393-396.
    [102] Régnièrea J, Bentz B. Modeling cold tolerance in the mountain pine beetle, Dendroctonus ponderosae[J]. Journal of Insect Physiology, 2007, 53: 559-572.
    [103] Zhao Y.X., Kang L.. Cold tolerance of the leafminer Liriomyza sativae (Diptera: Agromyzidae)[J]. Journal of Applied Entomology, 2000, (124): 185-189.
    [104] Nedved O. Snow white and the seven dwarfs: A multivariate approach to classification of cold tolerance[J]. Cryo-Letters , 2000, (21): 339-348.
    [105] Bale J.S.. Insect cold hardiness: a matter of life and death[J]. European Journal of Entomology , 1996, (93): 369-382.
    [106] Baust J.G.., Rojas R.R... Review-insect cold hardiness: Facts and fancy[J]. Journal of Insect Physiology, 1985, 31: 755-759.
    [107]景晓红,康乐.昆虫耐寒性研究[J].生态学报, 2002, 22(12): 2202-2207.
    [108] Salt R.W.. Time as a factor in the freezing of undercooled insects(D). Canadian Journal of Research, 1950, (28): 285-291.
    [109] Kelty J.D., Lee R.E.. Induction of rapid cold-hardening by cooling at ecologically relevant rates in Drosophila melanogaster[J]. Journal of Insect Physiology, 1999, (45): 719-726.
    [110]杨燕涛,谢宝瑜,高增祥,等.寄主植物对棉铃虫越冬蛹抗寒能力的影响[J].昆虫知识, 2003, 40(6): 509-512.
    [111] Bale J.S.. Insect cold hardiness: Freezing and supercooling-an ecophysiological perspective[J]. Journal of Insect Physiology, 1987, (33): 899-908.
    [112] Olsen T.M., Duman J.G.. Maintenance of the super-cooled state in overwintering pyrochroid beetle larvae, Dendroides Canadensis: role of hemolymph ice nucleators and antifreeze proteins[J]. Journal of Comparative Physiology (B), 1997, (167): 105-l13
    [113] Olsen T.M., Duman J.G.. Maintenance of the super-cooled state in the gut fluid of overwintering pyrochroid beetle larvae, Dendroides canadensis: role of ice nucleators and antifreeze proteins[J]. Journal of Comparative Physiology(B), 1997, (167): 114-122.
    [114] Strong-Guanderson J.M., Lee R.E., Lee M.R.. Ingestion of ice nucleating active bacteria increases the supercooling point of the lady beetle Hippodamia convergens[J]. Journal of Insect Physiology , 1990, (33): 153-157.
    [115]韩召军,王荫长,尤子平.陆生昆虫的抗寒机制[J].昆虫知识, 1989, 26(1): 39-42.
    [116] Zachariassen K.E.. Physiology of cold tolerance in insect[J]. Physiological Reviews, 1985, (65): 977-832.
    [117] Lee R.E., Denlinger D.L.. Insects at low temperature[M]. Chapman and Hall, New York, 1991.
    [118] Barrett J., ber.ac.uk. Thermal hysteresis proteins[J]. The international journal of biochemistry & cell biology, 2001, 33(2):2001-2004
    [119] Zachariassen K.E., Husby J.A.. Antifreeze effect of thermal hysteresis agents protects highly supercooled insects[J]. Nature, 1982, (298): 285-287.
    [120] Kristiansen E., Pedersen S., Ramlov H.. Antifreeze activity in the cerambycid beetle Rhagium inquisitor[J]. Journal of Comparative Physiology (B), 1999, (169): 55-60.
    [121] Horwath K.L., Easton C.M., Poggioli T.J.. Tracking the profile of a specific antifreeze protein and its contribution to the thermal hysteresis activity in cold hardy insect[J]. European Journal of Entomology, 1996, (93): 419-433
    [122] Duman J.G., Xu L., Neven L.G., et al. Hemolymph proteins involved in insect subzero-temperature tolerance ice nucleators and antifreeze proteins[A]. In: Lee R.E. and Denlinger D.L. ed. Insects at Low Temperature[M]. Newyork: Chapman and Hall, 1991: 94-127.
    [123] Andorfer C.A., Duman J.G.. Isolation and characterization of cDNA clones encoding antifreeze proteins of the pyrochroid Dendroides canadensis[J]. Journal of Insect Physiology , 2000, (46): 365-372.
    [124] Intergovenmental panel on climate change (IPPC). Climate Change 2001: The Scientific Basis WGI Third Assessment Report. Cambridge[R]: Cambridge University Press, 2001.
    [125] Thomas C.D., Cameron A., Green R. E, et al. Extinction risk from climate change[J]. Nature, 2004, (427): 145-148.
    [126] Domingo I. , Heong K. L. Evaluating high temperature tolerance in the brown planthopper[J]. International Rice Research Notes, 1992, 17(3): 22.
    [127]陈兵.外来斑潜蝇对热胁迫的适应:温度、生态生理调节与生物地理分布[D],中国科学院动物研究所博士学位论文, 2003.
    [128] Huey R. B. , Crill W. D. , Kingsolver J. G. et al. A method for rapid measurement of heat or cold resistance of small insects[J]. Functional Ecology, 1992, (6): 489-494.
    [129] Sorensen J.G. , Dahlgaard J., Loeschcke V.. Genetic variation in thermal tolerance among natural populations of Drosophila buzzatii: down regulation of Hsp 70 expression and variation in heat stress resistance traits[J]. Functional Ecology, 2001, (15): 289-296.
    [130] Gilchrist G.W. , Huey R.B.. The direct response of Drosophila melanogaster to selection on knockdown tempreature[J]. Hetedity. 1999, (83): 15-29.
    [131] Cossins A. R., Bowler K. Temperature biology of animals[M]. Chapman and Hall, New York, 1987.
    [132] Dean G.J.. Effect of temperature on the cereal aphids Metopolophium dirhodum (Wlk), Rhopalosiphum padi(L. ) and Macrosiphum avenue (F. ) (Hem, Aphididae)[J]. Bulletin of Entomological Reasearch, 1974, (63): 401-409.
    [133]程树兰,张帆,庞虹.龟纹瓢虫广东种群和北京种群的耐热性比较研究[J].昆虫学报, 2007, 50(4): 376-382.
    [134]王小姣.不同地理纬度蝇类耐寒耐热性研究[D].浙江大学硕士学位论文, 2008.
    [135] Vollmer J.H., Sarup P., Kaersgaard C.W., et al. Heat and cold induced male sterility in Drosophila buzzatii: genetic variation among populations for the duration of sterility[J]. Heredity, 2004, (92): 257-262.
    [136]马骏,万方浩,郭建英,等.豚草卷蛾对温湿度的适应性[J].中国生物防治, 2003, 19(4): 158-161.
    [137]曲鹏.温度对B型烟粉虱和温室白粉虱和影响[D].山东农业大学硕士学位论文, 2005.
    [138]周福才,陈丽芳,李祥,等.美洲斑潜蝇的抗逆性[J].扬州大学学报(自然科学版), 2000, 3(1): 45-47.
    [139] Wang S., Yin X., Tang J., et al. Themal resistance of different life stages of codling moth (Lepidoptera: Torticidae)[J]. Journal of Stored Products Research, 2004, 40(5): 565-574.
    [140]杜尧,马春森,赵清华,等.高温对昆虫影响的生理生化作用机理研究进展[J].生态学报, 2007, 27(4): 1565-1571.
    [141]马春森,马罡,常向前.农业害虫高温调控的研究进展[J].环境昆虫学报, 2008, 30(3): 257-264.
    [142] Barthell J.F., Hranitz J.M., Thorp R.W., et al. High temperature responses ih two exotic leafcutting bee species: Megachile apicalis and M. rotundata (Hymenoptera: Megachilidae)[J], The Pan-Pacific Entomologist, 2002, (78): 235-246.
    [143]王宪辉.飞蝗(Locusta migratoria L. )对极端温度胁迫的适应:快速冷驯化、遗传特征和生理机制[D].中国科学院动物研究所博士学位论文, 2004.
    [144] Kimura M. T, Ohtsu T. , Yoshida T. et al. Climatic adaptations and distributions in the Drosophila takahashii species subgroup (Diptera: drosophilidae)[J]. Journal of Natural History, 1994, (28): 401-409.
    [145] Huey R. B. , Kingsolver J. G., Evolution of thermal sensitivity of ectotherm performance[J]. TREE, 1989, (4): 131-135.
    [146] Goto S. G.. ,Kimura M. T. Heat and cold shock responses and temperature adaptations in subtropical and temperature species of Drosophila[J]. Journal of Insect Physiology 1998, (44): 1233-1239.
    [147] Delinger D, L. Relationship between cold hardiness and diapause[A]. In: Lee R. E. and Denlinger D. L. (Eds). Insects at Low Temperature[M]. New York: Chapman and Hall, 1991: 174-198.
    [148] Addo-Bediako A. , Chown S. L. , Gaston K. J.. Thermal tolerance a climatic variability and latitude[J]. Proceedings of the Royal Society of London Series B: Biological Sciences, 2000, (267): 735-745.
    [149] Chown S.. Physiological variation in insects: hierarchical levels and implications[J]. Journal of Insect Physiology, 2001, (47): 649-660.
    [150] Stanley S.M., Parsons P.A., Spence G.E., et al. Resistance of species of the Drosophila melanogaster subgroup to environmental extremes[J]. Australian Journal of Zoology, 1980, (28): 413-421.
    [151] Stratman R. , Markow I. A., Resistance to thelmal stress in desert Drosophila[J]. Functional Ecology, 1998, (12): 965-970.
    [152] Hoffmann A. A., Sφrensen J.G. , Loeschcke V..Adaptation of Drosophila to temperature extremes: Bringing together quantitative and molecular approaches[J]. Journal of Thermal Biology, 2003, 28: 175-195.
    [153] Hoffmann A.A. ,Parsons P.A., Evolutionary genetics and environmental stress[M]. Oxford University Press, New York, 1991.
    [154]刘清浪,何雪香,张欣泉,等.松突圆蚧发育起点温和有效积温的测定及应用.中南林学院学报[J], 1990, 10(2): 149-154.
    [155]胡艳红,陈顺立,杨爱民.松突圆蚧的发育起点温度与有效积温的测定[J].福建林业科技, 2004, 31(2): 9-11.
    [156]陈顺立,武福华,侯沁文.松突圆蚧生物学特性研究[J].福建林业科技, 2004, 31(2): 1-4.
    [157]王竹红,黄建,陈倩倩,等.花角蚜小蜂对松突圆蚧的寄生功能反应[J].应用生态学报, 2007, 18(10): 2326-2330.
    [158]吴太平,周昌清.松突圆蚧冷冻试验及其潜在地理分布范围北界的推测[J].生态科学, 1992, (1): 62-66.
    [159] Shintani Y., Ishikawa Y.. Geographic variation in cold hardiness of eggs and neonate larvae of the yellow spotted longicorn beetle Psacothea hilaris[J]. Physiological Entomology 1999, 24: 158-164.
    [160] Jing X .H., Kang L.. Geographical variation in egg cold hardiness: a study on the adaptation strategies of the migratory locust Locusta migratoria L[J]. Ecological Entomology, 2003, 28: 151-158.
    [161] Jing X.H., Kang L.. Geographical variation in egg cold hardiness of the migratory locust[J]. Environmental Entomology, 2004, 33: 113-118.
    [162] Zvereva E.L.. Effects of host plant quality on overwintering success of the leaf beetle Chrysomela lapponica (Coleoptera: Chrysomelidae)[J]. European Journal of Entomology, 2002, 99: 189-195.
    [163] Liu Z. D., Gong P.Y., Wu K. J., et al. Effects of larval host plants on over-wintering preparedness and survival of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae)[J]. Journal of Insect Physiology, 2007, 53: 1016-1026.
    [164] Hunter M.D., McNeil J.N.. Host-plant quality influences diapause and voltinism in a polyphagous insect herbivore[J]. Ecology, 1997, 78: 977-986.
    [165]景晓红,康乐.光照与飞蝗卵耐寒性的关系[J].动物学研究, 2003, 24: 196-200.
    [166] Danks H.V.. Insect adaptations to cold and changing environments[J]. Canadian Entomology, 2006, 138: 1-23.
    [167] Powell S.J., Bale J.S.. Cold shock injury and ecological costs of rapid cold hardening in the grain aphid Sitobion avenae (Hemiptera: Aphididae)[J]. Journal of Insect Physiology, 2004, 50: 277-284.
    [168] Colinet H. , Renault D., Hance T., et al. The impact of fluctuating thermal regimes on the survival of a cold-exposed parasitic wasp, Aphidius colemai[J]. Physiological Entomology, 2006, 31: 234-240.
    [169]景晓红,康乐.飞蝗越冬卵过冷却点的季节性变化及生态学意义[J].昆虫知识, 2003, 40 (4): 326-328.
    [170] Ma R.Y., Hao S.G., Tian J., et al. Seasonal variation in cold-hardiness of the japanese pine sawyer Monochamus alternatus (Coleoptera: Cerambycidae)[J]. Environmental Entomology, 2006, 35(4): 881-886.
    [171] Phillips S.W., Bale J. S., Tatchell G. M.. Overwintering adaptations in the lettuce root aphid Pemphigus bursarium (L. )[J]. Journal of Insect Physiology, 2000, 46: 353-363.
    [172] Sinclair B. J.. Seasonal variation in freezing tolerance of the New Zealand alpine cockroach Celatoblatta quinquemaculata[J]. Ecological Entomology, 1997, 22: 462-467.
    [173] Sjursen H., S?mme L.. Seasonal changes in tolerance to cold and desiccation in Phauloppia sp. (Acari, Oribatida) from Finse, Norway[J]. Journal of Insect Physiology, 2000, 46: 1387-1396.
    [174]郭海波,许永玉,鞠珍,等.中华通草蛉成虫抗寒能力季节性变化[J].生态学报, 2006, 26 (10): 3238-3244.
    [175]陈择藩.十五种松树对松突圆蚧抗性的初步研究[J].森林病虫通讯, 1988, (2): 1-2.
    [176]童应华,陈顺立,张飞萍.松突圆蚧种群动态及与气象因子的关系[J].福建林学院学报, 2006, 26(2): 107-110.
    [177] Nedvěd O., Lavy D., Verhoef H.A.. Modeling time-temperature relationship in cold injury and effect of high temperature interruptions on survival in a chill sensitive Collembolan[J]. Functional Ecology, 1998, 12: 816-824.
    [178] Chen B., Kang L.. Cold hardiness and supercooling capacity in the pea leafminer Liriomyza huidobrensis[J]. Cryo-Letters, 2002, 23: 173-182.
    [179]景晓红,康乐.昆虫耐寒性的测定与评价方法[J].昆虫知识, 2004, 41 (1): 7-10.
    [180] Cole W. E. .Some risks and causes of mortality in mountain pine beetle populations: a long-term analysis[J]. Researches on Population Ecology, 1981, 23: 116-144.
    [181] Amman G. D.. Population changes of the mountain pine beetle in relation to elevation[J]. Environmental Entomology, 1973, 2: 541-546.
    [182] Andrewartha H.G., Asahina E., Bale J.S., et al. Temperature regulation of supercooling and gut nucleation in relation to diapause of Pyrrhocoris apterus (L. ) (Heteroptera)[J]. Cryobiology, 1997, 34: 70-79.
    [183]李庆,王思忠,封传红,等.西藏飞蝗(Locusta migratoria tibetensis Chen)耐寒性理化指标[J].生态学报, 2008, 28(3): 1314-1320.
    [184] Baust J.G.. Environmental triggers to cold hardening[J]. Comparative Biochemistry and Physiology A, 1982, 73: 563-570.
    [185] Sakurai H., Kawai T., Takeda S.. Physiological changes related to diapause of the lady beetle, Harmonia axyridis (Coleoptera: Coccinellidae)[J]. Applied Entomology and Zoology, 1992, 27, 479-487.
    [186] Storey K.B., Storey J.M.. Biochemistry of cryopretectants[A]. In: Lee R.E., Delinger D.L. (eds. ), Insect at Low Temperature[M]. Chapman & Hall, New York, 1991: 64-93.
    [187]任璐,陆永跃,曾玲,等.寄主对桔小实蝇耐寒性的影响[J].昆虫学报, 2006, 49(3): 447-453.
    [188] Tauber M.J., Tauber C.A., Masaki S.. Seasonal Adaptations of Insects[M]. Oxford University Press, New York, 1986.
    [189] Bale J. S.. Cold hardiness and overwintering of insect[J]. Agricultural Zoology Reviews, 1989, 3: 157-192.
    [190] S?mme L.. The history of cold hardiness research in terrestrial arthropods[J]. Cryo-letters, 2000, 21: 289-296
    [191]陈兵,康乐.南美斑潜蝇地理种群蛹过冷却点随纬度递变及其对种群扩散的意义[J].动物学研究, 2003, 24(3): 168-172.
    [192]李冰祥,陈永林,蔡惠罗.飞蝗不同地理种群抗寒性研究[J].生态学报, 2001, 21(12): 2022-2030.
    [193]韩瑞东,孙绪艮.赤松毛虫越冬幼虫抗寒性研究[J].山东农业大学学报, 2003, 34: 315-320.
    [194]张珺,吴孔明,林克剑,等.二化螟温带和亚热带地理种群的滞育特征与抗寒性差异[J].中国农业科学, 2005, 38(12): 2451-2456.
    [195]潘务耀.松突圆蚧生物学特性及防治的研究[J].森林病虫通讯, 1989, (1): 1-6.
    [196]张承祚,姚利忠,李强,等.云南不同海拔花椒园昆虫群落结构及动态[J].应用生态学, 2006, (5): 915-919.
    [197]陈顺立,戴沿海.福建主要树种害虫及防治[M].厦门:厦门大学出版社. 1997.
    [198]何雪香,刘清浪.不同海拔高度松突圆蚧生长发育的研究[J].广东林业科技, 1991, (2): 11-16.
    [199] Ma C.S., Hau B., Poehling H. M.. The effects of solar heat stress on the survival of the rose grain aphid, Metopolphium dirhodum (Hemiptera: Aphididae)[J]. European Joumal of Entomology, 2004, 101: 327-331.
    [200] Ma C.S., Hau B., Poehling H.M.. Effects of pattem and timing of high temperature exposure on reproduction of the rose grain aphid, Metopolophium dirhodum[J]. Entomologia Experimentalis et Applicata, 2004, 110: 65-71.
    [201]南京农学院.昆虫生态及预测预报[M].北京:中国农业出版社. 1985, 47.
    [202]松突圆蚧综合防治试验组.松突圆蚧生物学特性及发生规律的研究[J].林业科技通讯, 1989, (5): 3-7 .
    [203] Lee R. E.. Insect cold hardiness to freeze or not to freeze[J]. Bioscience, 1989, 39: 308-313.
    [204]潘务耀,唐子颖.花角蚜小蜂输引程序概要[J].昆虫天敌, 1994, 16(3): 123-126.
    [205]谢国林,潘务耀,唐子颖,等.花角蚜小蜂对松突圆蚧的控制效能及其稳定作用的评估[J].昆虫学报, 1997, 40 (2): 135-144 .
    [206] S?rensen J.G., Kristensen T. N., Loescheke V.. The evolutionary and ecological role of heat shock proteins[J]. Ecological Lettres, 2003, 6: 1025-1037.
    [207] Johnston I.A.,Bennett A.F.. Animals and Temperature: Phenotypic and Evolutionary Adaptation[M]. Cambridge: Cambridge University Press, 1996.
    [208] Krebs R.A., Loeschcke V.. Resistance to thermal stress in preadult Drosophila buzzatn: acclimation andvariation among populations and changes in relative resistance across life stages[J]. Biological Journal of the Linnean Society, 1995, 56: 517-531.
    [209]王幽兰.分析高温对蓖麻蚕蛹内生殖器发育的影响[J],实验生物学报, 1957, 5(3): 417-437.
    [210] Henneberry T.J., Butler G.D.. Effect of high temperature on tobacco budworm(Lepidoptera: Noctuidae) reproduction, diapause and spermatocyst development[J]. Journal of Economic Entomology, 1986, 79(2): 410-413.
    [211]广东省气候应用研究所,广东省农业气象中心.广东省气候影响评价[M]. 1998. 8.
    [212]北京农业大学主编.昆虫学通论[M]. 1981 (第1版): 680-698.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700