用户名: 密码: 验证码:
哈尔滨和湛江地区雄性褐家鼠Stra8、Scp3和Dmc1基因的表达差异分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
褐家鼠(Rattus norvegicus)是广泛分布于世界各地的重要害鼠。目前,对该物种种群动态和繁殖特性的研究多集中于生理生态方面,而利用分子生物学方法对其野生种群繁殖特性的遗传机制研究则未见报道。本研究以哈尔滨(中温带,北纬44°-46°)和湛江(南亚热带,北纬20°-21°)自然条件下的成年雄性褐家鼠为研究对象,在两地全年逐月同步采集样本,运用荧光定量PCR方法分析雄鼠睾丸组织中减数分裂Stra8、Scp3、Dmc1基因各mRNA转录本的表达量,分析和比较两地雄鼠该3个基因年度内不同月份的表达量特征。此外,还分别对两地雄鼠进行室内反季节光周期处理,比较光照改变对高低纬度雄鼠减数分裂基因表达量的影响,初步探讨鼠类繁殖策略的进化与环境适应性的关系,具体结果如下:
     1.哈尔滨和湛江雄鼠的Stra8、Scp3和Dmc1基因在2008-2009年度内不同月份的表达特征呈现出一定的相似性:在夏季(6、7月)均为活跃期,在冬季(2月、11月)均为低谷期。此外,湛江雄鼠该3个基因的表达在春季(3月)又有一小活跃期,而哈尔滨雄鼠则没有。对同一月份里哈尔滨和湛江两个不同纬度地区雄鼠Stra8、Scp3、Dmc1基因表达量的比较结果发现,湛江雄鼠3个减数分裂基因表达水平总体高于哈尔滨雄鼠,两地雄鼠3个基因表达量主要在春季(3月)和冬季(11、12月)存在显著差异(P<0.05)。这些结果表明,高低纬度地区的雄性褐家鼠减数分裂基因的表达既有种内相似性,也表现出了对不同自然环境适应的差异性。
     2.哈尔滨和湛江野外雄鼠Stra8、Scp3和Dmc1基因表达量与繁殖器官指数之间相关性分析结果如下:(1)Stra8、Scp3和Dmc1基因两两之间均呈极显著的正相关(P<0.01),这表明该3个减数分裂基因之间的表达有密切联系;(2)哈尔滨雄鼠3个繁殖器官指数之间呈正相关(P<0.01),而湛江雄鼠的相关性不高;(3)3个减数分裂基因表达量与其繁殖器官指数之间总体上呈负相关,其具体原因有待进一步研究。
     3.反季节光照处理对哈尔滨和湛江雄鼠Stra8、Scp3和Dmc1基因表达影响的研究结果如下:(1)经过光照处理的两地雄鼠减数分裂基因表达与自然条件下(对照)的表达变化情况大体上一致,不过光照处理加重了趋势表现程度,而且哈尔滨雄鼠对光照反应敏感性强于湛江雄鼠;(2)不同光周期对哈尔滨雄鼠3个减数分裂基因的表达影响程度不一致,如短光照处理后基因表达呈上升的趋势,而长光照处理后呈下降的趋势;(3)同一光周期对不同纬度地区的雄性褐家鼠减数分裂基因表达的影响也不一致,如短光照处理后哈尔滨雄鼠基因表达呈上升的趋势,而湛江雄鼠则呈下降的趋势。这些结果表明,光周期对高低纬度地区雄鼠Stra8、Scp3和Dmc1基因的表达影响既有相同之处,又有不同的地方。
Norway rat (Rattus norvegicus) is a major pest in the world. The dynamics and reproductive characteristics of this species population were studied mainly in physiology and ecology, but these researches about molecular biological method have not been reported. In this study, R. norvegicus samples were collected simultaneously month by month in the filed of Harbin (in temperate regions, 44°-46°N) and Zhanjiang (in South Asian tropics, 20°-21°N). Tnen three meiotic genes, Stra8, Scp3, Dmc1 gene expressions of adult male rats were analyzed by Real-time fluorescent quantitative PCR (FQ-PCR), comparing with monthly changes and latitude differences between Harbin and Zhanjiang. In addition, wild male rats from Harbin and Zhanjiang were held in short-photoperiod and long-photoperiod, respectively, to analyze the influences of different photoperiods on the three meiotic gene expressions. The main results were as follows:
     1. Stra8, Scp3 and Dmc1 gene expressions of wild male rats from Harbin and Zhanjiang in 2008 and 2009 years were active and high in June or July, and low in February or November. Furthermore, theses gene expressions of the rats from Zhanjiang were also active in March, while these were not found in the rats from Harbin. The expression levels of the three genes of rats from Zhanjiang were higher than those from Harbin. The differences of the gene expressions of rats were mainly in spring and winter between Harbin and Zhanjiang. These relults indicated that R. norvegicus adopted different reproductive strategies, and adapted to different natural environment.
     2. The correspondence analyses of three meiotic genes expressions and gonad indexes of male R. norvegicus from Harbin and Zhanjiang were performed, respectively. A significant positive correlation was found between each other meiotic gene expressions (P<0.01), which showed these genes were closely associated with each other. And a significant positive correlation (P<0.01) was among testis index, epididymis index and seminal vesicle index of R. norvegicus form Harbin, but it was not of those from Zhanjiang. At the same time, it was a negative correlation between gene expressions and gonad indexes, and further studies were necessary.
     3. The results of three meiotic genes expressions of adult male rats from Harbin and Zhanjiang held in short-photoperiod and long-photoperiod, showed the trends of genes expression were similar with the rats in the natural environment (control), and male rats from Harbin were more evident than those from Zhanjiang in the response to photoperiod changes. Three meiotic gene expressions of male rats from Harbin held in different photoperiods were not identical, which was an upward trend in short-photoperiod and a downward trend in long-photoperiod. In addition, three meiotic gene expressions of male rats from Harbin and Zhanjiang were also different in the same short-photoperiod. It showed an upward trend for rats from Harbin, however a downward trend for rats from Zhanjiang in short-photoperiod. All of these indicated that Stra8, Scp3 and Dmc1 gene expressions of male R. norvegicus from Harbin and Zhanjiang were both the same and different in different photoperiods.
引文
1.鲍伟东,周延林.内蒙古库布齐沙地和呼和浩特平原黑线仓鼠种群繁殖特征的比较.动物学杂志,2001,36:15~18.
    2.蔡理全,李庆芬.啮齿类动物的昼夜节律器及光周期对其影响机制.生态学杂志,1998,17:40~43.
    3.陈灵芝,钱迎倩.生物多样性保护现状及其对策,北京:中国科学技术出版社. 1994
    4.杜维军.浅谈环境及食物因素对动物繁殖力的影响.四川畜牧兽医,2006,33:35~35
    5.樊继忠,张建光.褐家鼠种群繁殖规律的研究.中国媒介生物学及控制杂志,1994,5(4):260~262.
    6.郭睿,崔慧林,赵虹,张悦红,牛勃.SCP3在小鼠精母细胞核内的表达及定位.中国组织化学与细胞化学杂志,2008,17:84~88.
    7.洪朝长,陈小彬.莆田地区褐家鼠种群动态和繁殖生态研究.中国媒介生物学及控制杂志,1991,2:177~182.
    8.雷帮海,松会武,黄乃锦.黄胸鼠种群繁殖研究初报.贵州农业科学,1987,83:6~8.
    9.李克伟,贺金方.洛阳市家栖鼠繁殖力的调查.中国媒介生物学及控制杂志,1991,2:
    48~50.
    10.李世斌,王勇.洞庭平原褐家鼠种群动态和繁殖特性.长江流域资源与环境,1994,3(3): 277~285.
    11.李顺德,普文林.滇中农田褐家鼠种群繁殖规律研究.植保技术与推广,1998,18(5): 24~26.
    12.李文友,李奎安.沽源县家鼠数量消长及繁殖规律调查.医学动物防制,1992,8(003):170~171.
    13.刘伟,房继明.光周期对布氏田鼠幼仔生长发育的影响.动物学报, 2001,47:150~157.
    14.吕国强.褐家鼠生物学特性的研究.植保技术与推广,1994,(3):23~24.
    15.潘会明,史良才.长江三峡宜昌地带鼠类种群数量变动及生态学研究.中国媒介生物学及控制杂志, 1991,2:104~107.
    16.石琼,张崇理.褪黑素与绵羊的季节性生殖.生态学报,2000,20:863~868.
    17.孙濡泳.动物生态学原理.北京:北京师范大学出版社,2001.
    18.王洪权,王砚英,罗泽珣.北京郊区褐家鼠繁殖及迁徙规律研究.中国公共卫生学报,1996,13(2):113.
    19.王廷正,许文贤.陕西啮齿动物志.西安:陕西师范大学出版社,1993.
    20.吴锡进.福建中部地区黄胸鼠与褐家鼠繁殖力的初步调查.中国鼠类防制杂志,1986,2:38~40.
    21.武晓东.布氏田鼠种群生态研究.兽类学报,1990,10:54~59.
    22.阎慎飞.动物繁殖学.重庆大学出版社,2007.
    23.杨跃敏,曾宗永.川西平原农田啮齿动物比较种群生态学.兽类学报,1999,19(4):267~275.
    24.杨再学,郑元利,潘世昌等.褐家鼠的年龄鉴定及种群年龄组成.中国农学通报,2009,218~223.
    25.杨再学,郭世平.褐家鼠种群动态初步研究.植物保护学报,1996,23(1):61~65.
    26.于永梅,王生存.季节性繁殖动物生殖的影响研究.上海畜牧兽医通讯,2002:16~17.
    27.苑德才,初造强.大连港褐家鼠、小家鼠种群繁殖力分析.医学动物防制,1991,7:272~274.
    28.詹绍琛.福建家鼠繁殖强度调查.中国媒介生物学及控制杂志,1990,1:236~238.
    29.张洁,钟文勤.布氏田鼠种群繁殖的研究.动物学报,1979,25:250~259.
    30.张美文,郭聪,王勇,胡忠军,陈安国.我国黄胸鼠的研究现状.动物学研究,2000,
    21:487~497.
    31.张炜,张思仲,阿周存.联会复合体——原发无精症发病中的重要角色.遗传,2006,28:231~235.
    32.张玉杰,杜维军.浅谈环境及食物因素对动物繁殖力的影响.中国畜牧兽医,2007.
    33.张知彬,王祖望.农业重要害鼠的生态学及控制对策.北京:海洋出版社,1998.
    34.郑亦辉.动物激素及其应用.江苏科学技术出版社,1996.
    35.郑智民,姜志宽,陈安国.啮齿动物学.上海:上海交通大学出版社,2008.
    36. Aapola U, Lyle R, Krohn K, Antonarakis S.E..Peterson P. Isolation and initial characterization of the mouse Dnmt3. Cytogenetics and Cell Genetics 2001, 92:122~126.
    37. Almon RR, Yang E, Lai W, et al..Relationships between circadian rhythms and modulation of gene expression by glucocorticoids in skeletal muscle. AJP-Regulatory, Integrative and Compareative Physiology 2008, 295: 1031~1047.
    38. Anderson E, Baltus A, Roepers-Gajadien H, et al..Stra8 and its inducer, retinoic acid, regulate meiotic initiation in both spermatogenesis and oogenesis in mice. Proceedings of the National Academy of Sciences 2008, 105:14976~14980.
    39. Aravin AA, Sachidanandam R, Girard A, Fejes-Toth K, Hannon G.J..Developmentally regulated piRNA clusters implicate MILI in transposon control 6. Science 2007, 316:744~747.
    40. Baltus AE, Menke DB, Hu YC, et al..In germ cells of mouse embryonic ovaries, the decision to enter meiosis precedes premeiotic DNA replication. Nature Genetics 2006, 38:1430~1434.
    41. Borchert A, Savaskan N, Kuhn H. . Regulation of expression of the phospholipid hydroperoxide/sperm nucleus glutathione peroxidase gene. Journal of Biological Chemistry 2003, 278:2571~2580.
    42. Bouillet P, Oulad-Abdelghani M, Vicaire S, et al..Efficient cloning of cDNAs of retinoic acid-responsive genes in P19 embryonal carcinoma cells and characterization of a novel mouse gene, Stra1 (mouse LERK-2/Eplg2). Developmental Biology 1995, 170:420~433.
    43. Bourc'his D, Bestor TH..Meiotic catastrophe and retrotransposon reactivation in male germcells lacking Dnmt3L. Nature 2004, 431:96~99.
    44. Bowles J, Knight D, Smith C, et al..Retinoid signaling determines germ cell fate in mice. Science 2006, 312:596~600.
    45. Bronson F, Perrigo G..Seasonal regulation of reproduction in muroid rodents. Integrative and Comparative Biology 1987, 27:929~940.
    46. Clark M, Galef B..Prenatal influences on reproductive life history strategies. Trends in Ecology and Evolution 1995, 10:151~153.
    47. Das P, Bagijn M, Goldstein L, et al..Piwi and piRNAs act upstream of an endogenous siRNA pathway to suppress Tc3 transposon mobility in the Caenorhabditis elegans germline. Molecular Cell 2008, 31:79~90.
    48. Dunlap J, Loros J, Merrow M, et al..The genetic and molecular dissection of a prototypic circadian system. Progress in Brain Research 1996, 111:11~27.
    49. Dupressoir A, Heidmann T..Germ line-specific expression of intracisternal A-particle retrotransposons in transgenic mice. Molecular Cell Biology 1996, 16:4495~4503.
    50. Eskes G, Zucker I..Photoperiodic regulation of the hamster testis: dependence on circadian rhythms. Proceedings of the National Academy of Sciences of the United States of America 1978, 75:1034~1038.
    51. Fawcett D..The fine structure of chromosomes in the meiotic prophase of vertebrate spermatocytes. Journal of Cell Biology 1956, 2:403~406.
    52. Fleming A, Phillips A, Rydall A, Levesque L..Effects of photoperiod, the pineal gland and the gonads on agonistic behavior in female golden hamsters (Mesocricetus auratus). Physiology & Behavior 1988, 44:227~234.
    53. Ginsburg M, Snow MH, McLaren A..Primordial germ cells in the mouse embryo during gastrulation 7. Development 1990, 110:521~528.
    54. Grewal SI, Rice J.C..Regulation of heterochromatin by histone methylation and small RNAs. Current Opinion in Genetics & Development 2004, 16:230~238.
    55. Handel MA, Park C, Kot M. .Genetic control of sex-chromosome inactivation during male meiosis. Cytogenetics and Cell Genetics 1994, 66:83~88.
    56. Hayashi K, Yoshida K, Matsui Y..A histone H3 methyltransferase controls epigenetic events required for meiotic prophase. Nature 2005, 438:374~378.
    57. Heideman P, Bierl C, Galvez M..Inhibition of reproductive maturation and somatic growth of Fischer 344 rats by photoperiods shorter than L14: D10 and by gradually decreasing photoperiod. Biology of Reproduction 2000, 63:1525~1530.
    58. Jaroszynski L..Expression and functional analysis of Tex18 and Stra8 genes in male germ cells. In: Nieders chsische Staats und Universit tsbibliothek ttingen; 2005.
    59. Jasnow A, Huhman K, Bartness T, Demas G..Short-day increases in aggression are inversely related to circulating testosterone concentrations in male Siberian hamsters (Phodopus sungorus). Hormones and Behavior 2000, 38:102~110.
    60. Jirtle RL, Skinner M.K..Environmental epigenomics and disease susceptibility. Nature Reviews Genetics 2007;8:253~262.
    61. Josse T, Teysset L, Todeschini AL, et al..Telomeric trans-silencing: an epigenetic repression combining RNA silencing and heterochromatin formation 1. PLoS Genetics 2007, 3:1633~1643.
    62. Klein D..Photoneural regulation of the mammalian pineal gland. Ciba Foundation Symposium 1985, 117:38~56.
    63. Klenov MS, Gvozdev VA..Heterochromatin formation: role of short RNAs and DNA methylation. Biochemistry (Moscow) 2005, 70:1187~1198.
    64. Koubova J, Menke D, Zhou Q, et al..Retinoic acid regulates sex-specific timing of meiotic initiation in mice. Proceedings of the National Academy of Sciences of the United States of America 2006, 103:2474~2479.
    65. Kuramochi-Miyagawa S, Kimura T, Yomogida K, et al. .Two mouse piwi-related genes: miwi and mili 10. Mechanisms of Development 2001, 108:121~133.
    66. Kuramochi-Miyagawa S, Watanabe T, Gotoh K, et al..DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes 4. Genes & Development 2008, 22:908~917.
    67. Lammers J, Offenberg H, Van Aalderen M, et al..The gene encoding a major component of the lateral elements of synaptonemal complexes of the rat is related to X-linked lymphocyte-regulated genes. Molecular and Cellular Biology 1994, 14:1137~1146.
    68. Lincoln G, Peet M, Cunningham R..Seasonal and circadian changes in the episodic release of follicle-stimulating hormone, luteinizing hormone and testosterone in rams exposed to artificial photoperiods. Journal of Endocrinology 1977, 72:337~379.
    69. Mark M, Jacobs H, Oulad-Abdelghani M, et al..STRA8-deficient spermatocytes initiate, but fail to complete, meiosis and undergo premature chromosome condensation. Journal of Cell Science 2008, 121:3233~3242.
    70. Martin SL, Hopkins CL, Naumer A, Dolle ME, Vijg J..Mutation frequency and type during ageing in mouse seminiferous tubules. Mechanisms of Ageing and Development 2001, 122:1321~1331.
    71. Matsui Y, Hayashi K..Epigenetic regulation for the induction of meiosis. Cellular and Molecular Life Sciences 2007, 64:257~262.
    72. McLaren A..Germ cells and germ cell sex 27. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 1995, 350:229~233.
    73. McLaren A..Somatic and germ-cell sex in mammals 37. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 1988, 322:3~9.
    74. Menke D, Koubova J, Page D..Sexual differentiation of germ cells in XX mouse gonads occurs in an anterior-to-posterior wave. Developmental Biology 2003, 262:303~312.
    75. Miyamoto T, Hasuike S, Yogev L, et al..Azoospermia in patients heterozygous for a mutationin SYCP3. The Lancet 2003, 362:1714~1719.
    76. Morse D, Cermakian N, Brancorsini S, Parvinen M, Sassone-Corsi P..No circadian rhythms in testis: Period1 expression is clock independent and developmentally regulated in the mouse. Molecular Endocrinology 2003, 17:141~151.
    77. Mund C, Musch T, Strodicke M, et al..Comparative analysis of DNA methylation patterns in transgenic Drosophila overexpressing mouse DNA methyltransferases 29. Biochemical Jouenal 2004, 378:763~768.
    78. Nelson R, Badura L, Goldman B..Mechanisms of seasonal cycles of behavior. Annual Review of Psychology 1990, 41:81~108.
    79. Nishioka K, Chuikov S, Sarma K, et al..Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation. Genes & Development 2002, 16:479~489.
    80. O'Carroll D, Scherthan H, Peters AH, et al.. Isolation and characterization of Suv39h2, a second histone H3 methyltransferase gene that displays testis-specific expression. Molecular Cell Biology 2000, 20:9423~9433.
    81. Oulad-Abdelghani M, Bouillet P, Decimo D, et al..Characterization of a premeiotic germ cell-specific cytoplasmic protein encoded by Stra8, a novel retinoic acid-responsive gene. Journal of Cell Biology 1996, 135:469~477.
    82. Pandolfi PP..Histone deacetylases and transcriptional therapy with their inhibitors 6. Cancer Chemother Pharmacol 2001, 48 Suppl 1:S17~S19.
    83. Payne C, Braun RE..Histone lysine trimethylation exhibits a distinct perinuclear distribution in Plzf-expressing spermatogonia 2. Development Biology 2006, 293:461~472.
    84. Pelttari J, Hoja M, Yuan L, et al..A meiotic chromosomal core consisting of cohesin complex proteins recruits DNA recombination proteins and promotes synapsis in the absence of an axial element in mammalian meiotic cells. Molecular and Cellular Biology 2001, 21:5667~5677.
    85. Peters AH, Kubicek S, Mechtler K, et al..Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Molecular Cell. 2003, 12:1577~1589.
    86. Peters AH, Mermoud JE, O'Carroll D, et al..Histone H3 lysine 9 methylation is an epigenetic imprint of facultative heterochromatin 13. Nature Genetics 2002, 30:77~80.
    87. Rowan W..Light and seasonal reproduction in animals. Biological Reviews 2008, 13:374~401.
    88. Schalk J, Dietrich A, Vink A, et al..Localization of SCP2 and SCP3 protein molecules within synaptonemal complexes of the rat. Chromosoma 1998, 107:540~548.
    89. Schotta G, Lachner M, Sarma K, et al. A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin 7. Genes & Development 2004, 18:1251~1262.
    90. Sinha Hikim A, Rajavashisth T, Sinha Hikim I, et al..Significance of apoptosis in the temporal and stage-specific loss of germ cells in the adult rat after gonadotropin deprivation. Biology ofReproduction 1997, 57:1193~1201.
    91. Song L, Tuan R..Micro-RNAs and cell differentiation in mammalian development. Birth Defects Research Part C Embryo Today 2006, 78:140~149.
    92. Suzuki A, Saga Y..Nanos2 suppresses meiosis and promotes male germ cell differentiation. Genes & Development 2008, 22:430~435.
    93. Sweeney T, Donovan A, Karsch F, Roche J, O'Callaghan D..Influence of previous photoperiodic exposure on the reproductive response to a specific photoperiod signal in ewes. Biology of Reproduction 1997, 56:916~920.
    94. Tang F, Hayashi K, Kaneda M, Lao K, Surani MA..A sensitive multiplex assay for piRNA expression 5. Biochemical and biophysical research communications 2008, 369:1190~1194
    95. Trainor B, Martin I, Lynn B, et al..Social and photoperiod effects on reproduction in five species of Peromyscus. General and Comparative Endocrinology 2006, 148:252~259.
    96. Unhavaithaya Y, Hao Y, Beyret E, et al..MILI, a PIWI-interacting RNA-binding protein, is required for germ line stem cell self-renewal and appears to positively regulate translation. The Journal of Biological Chemistry 2009, 284:6507~6519.
    97. Wang H, Cao R, Xia L, et al..Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase. Molecular Cell 2001, 8:1207~1217.
    98. Webster KE, O'Bryan MK, Fletcher S, et al. . Meiotic and epigenetic defects in Dnmt3L-knockout mouse spermatogenesis. Proceedings of the National Academy of Sciences of the United States of America 2005, 102:4068~4073.
    99. Wurtman R, Axelrod J, Fischer J..Melatonin Synthesis in the Pineal Gland: Effect of Light Mediated by the Sympathetic Nervous System. Science (New York, NY) 1964, 143:1328~1329.
    100.Xu M, You Y, Hunsicker P, et al..Mice deficient for a small cluster of Piwi-interacting RNAs implicate Piwi-interacting RNAs in transposon control 3. Biology of Reproduction 2008, 79:51~57.
    101.Yoshida K, Kondoh G, Matsuda Y, et al..The mouse RecA-like gene Dmc1 is required for homologous chromosome synapsis during meiosis. Molecular Cell 1998;1:707~718.
    102.Young K, Nelson R..Mediation of seasonal testicular regression by apoptosis. Reproduction 2001, 122:677~685.
    103.Yuan L, Liu J, Hoja M, et al..Female germ cell aneuploidy and embryo death in mice lacking the meiosis-specific protein SCP3. Science 2002, 296:1115~1118.
    104.Yuan L, Liu J, Zhao J, et al..The murine SCP3 gene is required for synaptonemal complex assembly, chromosome synapsis, and male fertility. Molecular Cell 2000, 5:73~83.
    105.Zhou Q, Nie R, Li Y, et al. .Expression of stimulated by retinoic acid gene 8 (Stra8) in spermatogenic cells induced by retinoic acid: An in vivo study in vitamin A-sufficient postnatal murine testes. Biology of Reproduction 2008, 79:35~42.
    106.Zilberman D, Cao X, Jacobsen S.E..ARGONAUTE4 control of locus-specific siRNAaccumulation and DNA and histone methylation. Science 2003, 299:716~719.
    107.Zilberman D, Henikoff S..Epigenetic inheritance in Arabidopsis: selective silence 13. Current Opinion in Genetics & Development 2005, 15:557~562.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700