用户名: 密码: 验证码:
纬度地区混凝土箱梁桥温度分布分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
哈尔滨位于北纬44°04’-46°40’之间的高纬度地带,受西伯利亚强大冷空气影响是同纬度各地区中最为寒冷地区。频繁的寒潮使该地区年温差、月温差及日温差均较大。混凝土桥梁浇筑过程中会受到混凝土水化热影响,且暴露于自然环境中而受到日照、季节温度变化、寒潮等气候因素影响,但混凝土本身导热性能较差,因此往往导致混凝土箱梁在横向与竖向均产生较大温差。由温差引起的温度应力有时甚至可以超过活载、恒载产生的应力。由于混凝土的抗拉性能较差,且箱梁壁板的厚度相对较小,因此较易产生混凝土桥梁温度裂缝,影响混凝土的耐久性和安全性。
     本文以哈尔滨松浦大桥北引桥的单箱双室混凝土箱梁与南引桥的单箱四室混凝土箱梁为对象进行了试验。统计了哈尔滨从试验开始月份算起的一年内的基本气候特征,并分析了气温、风向、风速、寒潮对混凝土箱梁温度场的影响。以混凝土箱梁的实测温度数据为依据,分别分析了在水化热温度、季节温度及日照作用下的单箱双室混凝土箱梁与单箱四室混凝土箱梁的竖向温度分布与横向温度分布的基本规律。总结出了影响混凝土箱梁的水化热过程的一些因素—混凝土箱梁的截面形式、混凝土的入模温度、高纬度地区的低气温及寒潮等。以传热学理论为依据,采用朱伯芳的大体积混凝土水化放热量的复合指数计算公式,应用ABAQUS有限元软件,模拟分析了单箱双室混凝土箱梁在水化热阶段的热传递过程,并对比分析了计算所得温度场与实测温度场,最后得到了组适用于计算混凝土箱梁水化放热量的复合指数表达式系数,提出了一种合理可行的混凝土箱梁水化热温度场的计算方法。
The influence by the cold air from Siberia is very powerful to Harbin due to the location of Harbin between 44°04'~46°40'north latitude. So Harbin is the coldest region among the whole area with the same latitude. The frequently cold wave through Harbin leads to a larger annual and month temperature difference, and a larger temperature difference in a day. The large temperature difference in concrete box girder is resulted by the combination of solar radiation, the seasonal temperature difference, the cold wave, the heat of concrete hydration and the concrete's relatively low thermal conductivity. This large temperature difference creates significant stresses that can be larger than the stresses due to other applied loads and dead loads. For concrete box girders, because of their thin sections and concrete's low tensile strength, cracking can occurs and the durability of concrete can be reduced.
     Two concrete box girders consisting of a single box with two cells and a single box with four cells used on Harbin Songpu Bridge were measured in the field. The climate characteristics of a year in Harbin were collected to analyze the influence by them to concrete temperature. The vertical and lateral temperature distributions and thermal stresses in concrete box girders were analyzed using the measured data. Compared to the concrete box girders consisting of a single box with a single cell from other papers, it can be droved that the heat of concrete hydration are influenced by some factors such as the type of the cross section, the setting temperature of concrete, the lower air temperature and the code wave. By consulting the formula for the heat of hydration of mass concrete, the complex exponential function was used to calculate the heat of concrete hydration of concrete box girder. Based on heat transfer theory, ABAQUS program was used to model the heat transfer and determine the temperature distributions in the concrete box girders during concrete setting. The two coefficients in the complex exponential function were determined based on the experimental results, and a feasible method for calculating temperature field was obtained.
引文
[1]范立础.桥梁工程.北京:人民交通出版社,2001:1-14
    [2]龚晖.折板理论在箱梁分析中的应用.西南交通大学学报,1989,(2):103
    [3]V.Smilauer, T.Drejci. Multiscale Model for Temperature Distribution in Hydrating Concrete. International journal of multiscale computation engineering.2009,7(2):61-63
    [4]Narnoka, Yamaguti. The Measurement of the Reinforced Concrete Slab of the Shigita Bridge and Presumption of Thermal Stress. Japanese Society for Promotion of Science.
    [5]韩聪.气候影响下的东北满族民居研究.哈尔滨工业大学硕士论文.2007:9-12
    [6]Zhang Lijuan, Liu Dong. Analyzing and Forecasting Climate Change in Harbin City, Northeast China. Chinese Geographical Science.2011,21(1):65-67
    [7]曹明明.移动模架施工的混凝土箱梁桥温度场及效应研究.浙江大学硕士学位论文.2009:2-5
    [8]黄毅.混凝土连续箱梁日照温度场及温度效应研究.武汉理工大学硕士学位论文.2009:1-7
    [9]Nur Yazdani. Influence of Temperature on Precast Bridge Girders. FAMU/FSU College of Engineering,1992
    [10]Zuk.W. Thermal and Shrinkage Stresses in Composite Bridges. Journal of the American Concrete Institute.1961,58(3):327-340
    [11]徐丰.混凝土箱梁桥温度效应关键因素研究.华中科技大学博士论文,2009:1-5
    [12]Priestley M.J. Design Thermal Gradients for Concrete Bridges. New Zealand Engineering. 1976,31(9):213-219
    [13]Priestley M.J. Design of Concrete Bridges for Temperature Gradients. Journal of the American Concrete Institute.1978,75(5):209-217
    [14]凯尔别克.太阳辐射对桥梁结构的影响.刘兴法.北京:中国铁道出版社,1981
    [15]Emerson M. Temperatures in Bridges during the Cold Winter of 1978/1978. Transport & Road Research Laboratory.1980, (926):34-39
    [16]Emerson M. Temperature Differences in Bridges:Basis of Design Requirements. ASCE Journal of the Structure Division, Proceedings of the ASCE.1977, (765):35-60
    [17]张智晖.预应力混凝土箱梁时变温度场及其效应研究.长安大学硕士论文.2010
    [18]赵毅强,林才奎.太平大桥混凝土箱体的温度场.中南汽车运输.1999,(1):34-36
    [19]贾琳.太阳辐射作用下混凝土箱梁的温度分布及温度应力研究.东南大学硕士论文.2001
    [20]赵剑锋.大跨度混凝土箱梁桥温度场及其效应研究.西南交通大学硕士论文.2007
    [21]叶见曙,雷笑,王毅.基于统计分析的混凝土箱梁温差标准值研究.公路交通科技. 2009,26(11):50-54
    [22]朱伯芳.大体积混凝土温度应力与温度控制.北京:中国电力出版社,1999:1-100
    [23]王铁梦.工程结构裂缝控制.版次.出版地:中国建筑工业出版社,2000:起止页
    [24]凌道盛,许德胜.混凝土中水泥水化反应放热模型及其应用.浙江大学学报.2005,39(11):1695-1698
    [25]谭东莲,肖汝诚.桥梁检测系统中复杂结构的经历应变传感器优化配置方法.公路.2006,(06):105-108
    [26]王毅.预应力混凝土连续箱梁温度作用的观测与分析研究.东南大学博士论文.2006:18-22
    [27]崔飞,袁万城.传感器优化布置在桥梁健康监测中的应用.同济大学学报.1999,27(2):166-169
    [28]秦煜.混凝土连续箱梁桥温度效应分析.长安大学硕士论文,2009:30-37
    [29]项海帆.高等桥梁结构理论.版次.北京:人民交通出版社,2001
    [30]李国强,黄宏伟.工程结构荷载与可靠度设计原理.版次.北京:中国建筑工业出版社,出版年
    [31]谢尚英.广州猎德大桥索塔日照温度效应分析.桥梁建设.2007,(2):72-75
    [32]张谢东,蔡素军,石明强.钢筋混凝土箱形梁桥悬臂施工阶段温度效应研究.桥梁建设.2007,(6):21-22
    [33]张光辉,张晗,高纯.大体积混凝土水化热温度场仿真分析.武汉理工大学学报.2009,31(19):85-87
    [34]高向鹏,田丹丹.桥梁大体积混凝土的温度场与温度应力研究.交通科技.2008,(2):16-18
    [35]王鹏,刘吉元.海工:耐久混凝土水化热温度场的试验监测研究.铁道建筑.2008,(1):15-19
    [36]冯德飞,卢文良.混凝土箱梁水化热温度试验研究.铁道工程学报.2006,(8):62-67
    [37]赵镇南.传热学.北京:高等教育出版社,2002
    [38]张元海,李乔.桥梁结构日照温差二次力及温度应力计算方法研究.中国公路学报.2004,17(1):49-52
    [39]Mei Zhu, Jia Yanmin. Temperature Distributions in Concrete Box Girders due to Heat of Concrete Hydration. Journal of Harbin Institute of Technology.2011,18 (1):47-51
    [40]Kyle. AUSTIN. Early age concrete thermal stress measurement and modeling. The University of Texas at Austin.2007,1-20
    [41]石亦平,周玉蓉ABAQUS有限元实力详解.北京:机械工业出版社,2006
    [42]曹金凤,石亦平ABAQUS有限元分析常见问题解答.北京:机械工业出版社,2009
    [43]ABAQUS, Inc. Getting Started with ABAQUS. USA:ABAQUS, Inc,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700