用户名: 密码: 验证码:
廉价的高半纤维素含量的浆粕纺制Lyocell纤维的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文简要介绍了Lyocell纤维的发展近况,针对目前Lyocell纤维发展缓慢的主要原因,生产成本高,价格贵这一发展瓶颈提出了一种解决方法:即采用廉价的浆粕原料来纺制Lyocell纤维,从而适当地降低Lvocell工艺的生产成本。探讨使用这种低成本的浆粕原料来纺制Lyocell纤维的可行性。
     Lyocell纤维工艺一直沿袭传统粘胶纤维工艺,采用高alpha-纤维素含量的浆粕作为原料。高alpha-纤维素含量是为了保证得到高的粘胶纤维得率,但是高alpha-纤维素含量的浆粕,生产成本高。
     为此,本论文选择了一种低成本的浆粕原料(高半纤维素浆粕),这种浆粕,alpha-纤维素含量较低,半纤维素含量高达20%左右。在浆粕生产中,高半纤维素浆粕,一方面能够简化浆粕生产工艺,另一方面浆粕的得率高,因此能够降低浆粕生产成本约1/2。
     论文中,首先探讨了高半纤维素浆粕的溶解性、浆液的可纺性和稳定性、以及Lvocell纤维的得率。研究结果表明:高半纤维素浆粕比高alpha-纤维素浆粕更易溶解,所需溶解条件温和、溶解范围较宽、溶解效果良好,更有利于实验操作的控制;高半纤维素浆液,粘流活化能略低,表观粘度、结构粘度及弹性较小。因此浆液的流动性能好,可纺性好,能够在较高浆粕含量下纺制Lyocell纤维,既能提高Lyocell纤维的质量,又能提高Lyocell工艺的生产效率;采用高半纤维素浆粕纺制Lyocell纤维,纤维得率仍然很高,从而降低了Lyocell纤维的成本;高半纤维素浆液比高alpha-纤维素浆液的稳定性略低,在氧化法纯化回收溶液时,需要消耗较多的双氧水,但是双氧水价格便宜,因此仍然能够降低Lyocell纤维的成本。
     作为Lyocell纤维的低成本浆粕原料,高半纤维素浆粕的分子质量(MW)及其分布(MWD)信息对Lyocell纤维的加工生产是至关重要的。纤维素的MW和MWD,不仅会影响它在N-甲基吗琳-N-氧化物(NMMO)水溶剂中的溶解性能和纺丝浆液的可纺性能,而且会影响最终纤维的机械性能。因此,必须对浆粕原料进行MW和MWD的测定。
     凝胶渗透色谱法(GPC)测定高聚物的MW和MWD,被普遍接受,广泛使用,但是针对纤维素而言,应用受到限制,因为纤维素不能溶解在大多数的有机溶剂中。为此,本论文采用高聚物的动态流变性质测定纤维素的相对MW和MWD,并且讨论了用流变法测定纤维素的相对分子质量及其分布时,纤维素在NMMO·H_2O溶剂中不同浓度的影响。研究结果表明:用流变法测定纤维素的相对分子质量及其分布时,纤维素溶液的浓度对测定结果有影响。但当纤维素溶液浓度足够高时(超过某个临界值后),浓度对测定结果的影响可以忽略。而且,计算的结果与GPC法测得结果相比大小趋势相一致。此外,流变法测定纤维素的相对分子质量及其分布,经济、简单、快速且方便,所以在纤维工业生产中,用来快速分析纤维素的分子质量及其分布是可行的。
     高半纤维素浆粕原料纺制成的Lyocell纤维,在纤维质量上与常规浆粕原料(高alpha-纤维素浆粕)纺制成的Lyocell纤维有什么不同,论文进行了对比研究,结果如下:
     高半纤维素浆粕纺制的Lyocell纤维比高alpha-纤维素浆粕纺制的Lyocell纤维,湿摩擦值增大1/2倍。这是由于高半纤维素Lyocell纤维比高alpha-纤维素Lyocell纤维,原纤聚集束尺寸小,且原纤聚集束结构稳定,从而不易劈裂成细小的原纤,提高了Lyocell纤维的抗原纤化能力。
     高半纤维素浆粕纺制的Lyocell纤维比高alpha-纤维素浆粕纺制的Lyocell纤维,染料的吸色率和固色率增加了5-8%。因为前者的结晶度略低,以及原纤聚集束尺寸小,从而可达及原纤的表面增大,增加了纤维素伯醇羟基的可及度和反应性。另外,前者中低分子量的半纤维素含量较高,小分子比大分子易于染色,因而提高了Lyocell纤维的染色性能。
     高半纤维素浆粕纺制的Lyocell纤维比高alpha-纤维素浆粕纺制的Lyocell纤维,在同样的纺丝浆液浓度下,前者比后者的强度低。因为前者含有较多低分子量的半纤维素组分,使其力学性能有所下降。另一方面,高半纤维素浆粕的纺丝浆液,流动性能好,可以用较高浓度的纺丝浆液来纺丝,这既提高了Lyocell纤维的机械性能,又提高了Lyocell纤维的生产效率。
     高半纤维素浆粕纺制的Lyocell纤维比高alpha-纤维素浆粕纺制的Lyocell纤维,取向度较高,结晶度较低。高半纤维素浆粕的纺丝浆液,流动性能好,在喷头拉伸时易于取向,因而具有较高的取向度;半纤维素是纤维素三级结构的主要调节剂,从而使得纤维素原纤间结合的更加紧密,使得纤维素纤维的结晶度略低。
     以上研究结果可见:低成本的高半纤维素浆粕纺制的Lyocell纤维,在纤维质量上,能与高alpha-纤维素浆粕纺制的Lyocell纤维相比。而且某些纤维性能(抗原纤化和染色)有所提高。
     值得引起注意的是:Lyocell纤维工艺中,纤维素浆粕原料与溶剂NMMO·H_2O溶液形成纺丝浆液,在经过凝固浴时,大部分的纤维素都能沉淀出来,转化为再生纤维素纤维,但仍有微量的低聚糖(短链的纤维素和半纤维素)留在凝固浴中。工业化大生产中,是常年连续循环生产的,留在凝固浴中的微量低聚糖不断积累后,是否会对纺制Lyocell纤维,纤维质量以及凝固浴的回收工程带来困难,这个问题是Lyocell纤维实现工业化大生产的关键之一。为此,本论文对这一问题进行了探索性的研究。
     首先,采用高效液相色谱法(HPLC)分析了Lyocell纤维和浆粕原料中的单糖成分,得知它们的各种单糖组分含量基本一样。然后,根据这个单糖组分含量配比成为混合糖,测得在0~0C下,此混合糖在9%(w/w)的NMMO·H_2O溶液中的饱和值约为32%。从而建立了凝固浴中混和糖总含量的测定方法,为Lyocell纤维的工业化生产提供了技术支持。最后,模拟研究了不断积累在凝固浴中的低聚糖含量对纺制Lyocell纤维的影响。研究发现:低聚糖在凝固浴中不断积累,即使形成饱和溶液(32%),也不会对纺制Lyocell纤维过程和成品纤维的质量产生明显的影响。至于是否对溶剂NMMO的回收产生影响,这一问题我们将进一步研究。
Lyocell fiber has attracted great attention in the textile field since it was developed in the mid-1970s, because Lyocell fiber technology is a relatively simple and environmentally friendly way to produce regenerated cellulose fiber compared to the conventional viscose process. However, the development of Lyocell fiber is relatively slow due to its high price. Therefore, it is crucial to reduce the cost of Lyocell process for the further development.
     It is reported that the pulp material containing more than 90% alpha-cellulose is called high alpha-cellulose pulp and the pulp material containing around 20% hemicellulose is called high hemicellulose pulp. In the conventional viscose process, only high alpha-cellulose pulp can be used as raw material in order to obtain a high yield of viscose fiber. Up to now, Lyocell fiber process still follows the conventional viscose process using this high alpha-cellulose pulp material. However, the cost of high alpha-cellulose pulp is higher than that of high hemicellulose pulp. It is significant in industry if a cheap pulp containing high hemicellulose can be used to produce Lyocell fiber since using a cheap pulp can reduce the cost in certain degree. The aim of this paper is to investigate the feasibility of using the cheap pulp with high hemicellulose content to produce Lyocell fiber.
     Firstly, the yield of Lyocell fiber from high hemicellulose pulp and high alpha-cellulose pulp was measured. It was found that the yield of them was approximately equal. That means the yield of Lyocell fiber is not dependent on the alpha-cellulose content in pulp material.
     Secondly, the dissolvability, spinnablility and stablity of high hemicellulose pulp in N-methlymorpholine-N-oxide (NMMO) aqueous solution were studied. The results showed that the dissolvability and spinnablity of high hemicellulose dope were better than those of high alpha-cellulose dope. Although the stablity of high hemicellulose dope decreased slightly, it can be solved by using more hydrogen peroxide solution (H_2O_2) to purify and recycle NMMO.
     Thirdly, the molecular weight (MW) and molecular weight distribution (MWD) of high hemicellulose pulp was measured since it was important for Lyocell fiber process to choose appropriate pulp material. The gel permeation chromatograghy (GPC) method has been widely used and accepted for measuring the MW and MWD for polymers. However, the method has its limitations. The key of this method is to find the suitable solvents to dissolve the polymer well. But cellulose can not be dissolved in most of the organic solvents because of inter- and intro- hydrogen bonding of the cellulose chains. Lithium chloride / N, N-dimethlylacetamide (LiCl/DMAc) can dissolve cellulose, but the dissolution process is very complicated, which includes pre-activation, solvent exchange, swelling and dissolution. Furthermore, more attention must be paid to each step, and cellulose has to be dissolved for 5-10 days according to the type of cellulose pulp. Therefore, it is necessary to develop a new way to measure MW and MWD. In this work, rheology method was selected to measure MW and MWD of cellulose.
     Moreover, during the prediction of MW and MWD of cellulose using rheology method, the influence of cellulose concentration in NMMO·H_2O solution on the measured result was investigated. It is shown that the results of the rheology method and the GPC method are comparable. It is also found the concentration of cellulose in NMMO·H_2O solution affected the calculated results when rheology method was applied. But there is no significant influence of cellulose concentration on the calculated data when the cellulose concentration is high enough. That is to say, when rheology method was applied to prediction of MW and MWD of cellulose, high concentration of cellulose in NMMO·H_2O solution has to be used in order to get a reliable and stable data. In addition, the rheology method is simple and fast. Therefore it is a useful and easy way to analyze the MW and MWD of cellulose in the fiber industry.
     Fourthly, the structure and properties of Lyocell fibers from high hemicellulose pulp and high alpha-cellulose pulp were compared in order to investigate the influence of hemicellulose on the quality of Lyocell fiber.
     It was found that the mechanical properties of high hemicellulose Lyocell fiber would decrease slightly, but a higher hemicellulose concertration spinning solution could be processed, which would increase the mechanical properties and the efficiency of the fiber process. Meanwhile, the fibrillation resistance and dyeing properties of high hemicellulose Lyocell fiber could also be improved.
     In addition, compared to high alpha-cellulose Lyocell fiber, high hemicellulose Lyocell fiber has slightly higher orientation, lower crystallinity, smaller fibril aggregation size and more stable structure.
     Those findings showed that the properties of high hemicellulose Lyocell fiber could be comparable to those of high alpha-cellulose Lyocell fiber. Therefore, it is feasible that this cheap pulp containing high hemicellulose could be used to produce Lyocell fiber.
     Here, it is well known that Lyocell fiber technology is a close-cycled processing. Cellulose pulp is directly dissolved in NMMO·H_2O solution to form spinning solution. After that, filament (ejected spinning solution) is precipitated from coagulation bath and regenerated into Lyocell fiber. However, during industrial production, some oligosaccharides would be dissolved and accumulated in coagulation bath in this process. It is possible that this phenomenon would influence formation of fiber and affect the properties of obtained fiber and the process of solvent recovery. Therefore, these problems were also investigated in the paper.
     The research results showed the monosaccharide composition of Lyocell fibers and their raw material pulps was approximately equal. A sugar mixture was made according to the monosaccharide composition of Lyocell fiber and the method of measuring the total sugar mixture content in coagulation bath was established. It was found that the saturation point of sugar mixture dissolved in coagulation bath (9%, w/w, NMMO aqueous solution) at 0°C was about 32%. Besides, the influence of content of oligosaccharides in coagulation bath on the fiber formation and properties was investigated. Further work is being carried out to study on the influence of accumulated sugar in coagulation bath on solvent recovery.
引文
[1]B. Goossens; I. Ruckert, Tribological properties of spin finish components on Lyocell in comparison to viscose and PET fibers, Chemical Fibers International, 2005, 55(2): 116.
    [2]Lenzing, Zimmer sign Lyocell agreement, Textile World, 2006, 156(1): 42.
    [3]Lyocell research and technology conference, Melliand International, 2005, 11(4): 270.
    [4]Regenerated cellulose fiber-Lyocell, Indian Textile Journal, 2005, 115(7): 19.
    [5]Comfort thanks to Lyocell, Tut-Paris-, 2005, 55: 45.
    [6]R.B. Chayan; A. K. Patra, Development and processing of Lyocell, Indian Journal of Fibre and Textile Research, 2004, 29(4): 483.
    [7]T. Burrow, Recent advances in chemically treated Lyocell fibers, Chemical Fibers International, 2004, 54(5): 304.
    [8]Lenzing Lyocell capacity 40,000 tons/year, Melliand International, 2004, 1:8.
    [9]P. Gill; Pa. Gill; S.S. Singh, Lyocell: Properties and Applications, Man-made Textiles in India, 2002, 45(3): 93-97.
    [10]M. Dever; B. J. Collier; S. Petrovan; et al, Lyocell Solutions from Alternative Cellulose Sources, 2003, 21: 167-173.
    [11]D. U. Sayed; M. R. Pratap; A. S. Singh, Lyocell: Fiber of future, Colourage, 2002, 49: 33-36.
    [12]杨维骅,上海年产一千吨Lyocell纤维生产线奠基,中国纺织报,2004-11-23,3336.
    [13]M. K. Luo; V. A. Roscelli; A. N. Neogi, Process for making Lyocell fibers from pulp having low average degree of polymerization values, United States Patent: 6,491,788, 2002-12-10.
    [14]M. K. Luo, Lyocell fibers having high hemicellulose content, United States Patent: 6,692,827, 2004-2-17.
    [15]M. K. Luo; V.A. Roscelli; J. Sealey; et al, Lyocell fibers from kraft pulps, Paper to the 5th International Symposium, 2002-04-05.
    [16]Sealey, Alkaline pulp having low average degree of polymerization values and method of producing the same, United States Patent: 6,331,354, 2001-12-18.
    [17]高洁;汤烈贵,纤维素科学,北京:科学出版社,1999.
    [18]陈业高,植物化学成分,北京:化学工业出版社,2004.
    [19]杨淑蕙,植物纤维化学,北京:中国轻工业出版社,2002.
    [20]T. Eremeeva, Size exclusion chromatography of enzymatically treated cellulose and related polysaccharides: a review, Journal of Biochemical and Biophysical Methods, 2003, 56: 253-264.
    [21]唐爱民;梁文芷,纤维素的功能化,高分子通报,2000,4:1-9.
    [22]A. H. Conner, Size exclusion chromatography of cellulose and cellulose derivatives. In: Wu C, editor. Handbook of size exclusion chromatography. New York: Marcel Dekker, 1995, 331-352.
    [23]H. Jerosch; B. Lavédrine; J. C. Cherton, Study of the stability of cellulose-holocellulose solutions in N, N-dimethylacetamide-lithium chloride by size exclusion chromatography, Journal of Chromatography A, 2001, 927:31-38.
    [24]Y.T. Bao; A. Bose; M. R. Ladisch; et al, New approach to aqueous gel permeation chromatography of nondeviratized cellulose, Journal of Applied Polymer Science, 1980, 25: 263-275.
    [25] C. L. McCormick; D. K. Lichatowich, Homogeneous solution reactions of cellulose, chitin, and other polysaccharides to produce controlled-activity pesticide systems, Journal of Polymer Science,Polymer Letter, 1979, 17: 479-484.
    [26] C. L. McCormick; P. A. Callais; B. H. Hutchinson, Solution studies of cellulose in lithium chloride and N, N-dimethylacetamide.Macromolecules, 1985, 18: 2394-2401.
    [27] M. Terbojevich; A. Cosani; G. Conio; et al, Mesophase formation and chain rigidity in cellulose and derivatives. 3. Aggregation of cellulose in N, N-dimethylacetamide-lithium chloride, Macromolecules, 1985, 18: 640-646.
    [28] J. L. Ekmains, Gel permeation chromatographic analysis of cellulose,Am. Lab. News, 1987a. Jan/Feb: 10-11.
    
    [29] H. Fujita; K. Ninomiya, Dependence of mechanical relaxation spectra of linear amorphous polymers on the distribution of molecular weights, Journal of Polymer Science, 1957, 24: 233-260.
    [30] G. R. Zeichner; C. W. Macosko, On-line viscoelastic measurements for polymer melt processes, SPE ANTEC Tech Conf, San Francisco,May, 1982.
    [31] B. H. Bersted; J. D. Slee, A relationship between steady-state shear melt viscosity and molecular weight distribution in polystyrene,Journal of Applied Polymer Science, 1977, 21: 2631-2644.
    [32] W. H. Tuminello; N. C. Mauroux, Determing molecular weight distributions from viscosity versus shear rate flow curves, Polymer Engineering and Science, 1991, 31(20): 1496-1507.
    [33] M. T. Shaw; W. H. Tuminello, A closer look at the MWD-viscosity transform, Polymer Engineering and Science, 1994, 34: 159-165.
    [34]S. Wu, Polymer molecular weight distribution from dynamic melt viscoelasticity, Polymer Engineering and Science, 1985, 25: 122-128.
    [35]W.H. Tuminello, Molecular weight and molecular weight distribution from dynamic measurements of polymer melts, Polymer Engineering and Science, 1986, 26(19): 1339-1347.
    [36]W. T. Tuminello, Molecular weight distribution of tetrafluoroethylene-hexafluoropropylene copolymers, Polymer Engineering and Science, 1989, 29(10): 645-653.
    [37]W. J. McGrory; W. T. Tuminello, Determining the molecular weight distribution from the stress relaxation properties of a melt, Journal of Rheology, 1990, 34: 867-890.
    [38]W.H. Tuminello; T. A. Treat; A. D. English, Poly(tetrafluoroethylene): molecular weight distributions and chain stiffness. Macromolecules, 1988, 21: 2606-2610.
    [39]G. X. Gu; X. C. Hu; H. L. Shao; et al, Study on molecular weight distribution of cellulose by using rheological methods, Sen'Ⅰ Gakkaishi, 2001, 57(2): 34-38.
    [40]H. H. Zhang; H. L. Shao; X. C. Hu, Prediction of molecular weight distribution of cellulose by using rheological methods, Journal of Applied Polymer Science, 2004, 94(2): 598.
    [41]王静;王晴;向文胜,色谱法在糖类化合物分析中的应用,分析化学,2001,29(2):222—227.
    [42]徐瑾;张庆合;张维冰等,液相色谱荧光衍生法在糖类物质分析中的应用,2003,21:115—120.
    [43]黄方;刘晓崚;周广军等,糖类衍生化技术的研究进展,http://www.hxtb.org/col/2000/c00023.htm.
    [44]张惟杰,合成多糖生化研究技术,上海:上海科学技术出版社,1987.
    [45]张力田,碳水化合物化学,北京:轻工业出版社,1988.
    [46]E. K. William; G. C. Lawrence; M. M. Michael; et al, The complete analysis of wood polysaccharides using HPLC, Journal of Wood Chemistry and Technology, 1991 (11): 447-463.
    [47]R. C. Pettersen; V. H. Schwandt; M. J. Effland, An analysis of the wood sugar assay using HPLC: a comparison with paper chromatography, Journal of Chromatographic Science, 1984(22): 478-484.
    [48]TAPPI 249, Carbohydrate composition of extractive-free wood and wood pulp by gas-liquid chromatography.
    [49]Ennelin, Method for the recovery of sugars, United States Patent: 6,773,512, 2004-8-10.
    [50]Heikkila, Preparation of chemical pulp and xylose, utilizing a direct acid hydrolysis on the pulp, United States Patent: 6,752,902, 2004-6-22.
    [51]Saska, Process for the separation of sugars, United States Patent: 6,451,123, 2002-9-17.
    [52]A. Jacobs; M. Palm; G. Zacchi; et al, Isolation and characterization of water-soluble hemicelluloses from flax shive, Carbohydrates Research, 2003, 338: 1869-1876.
    [53]Hydrolyzing Hemicellulose but not cellulose, Industrial Bioprocessing, 2004, 26(3): 2-3.
    [54]G. Ucar; M. Balaban, Hydrolysis of polysaccharides with 77% sulfuric acid for quantitative saccharification, Journal of Agricultural Food Chemistry, 2003, 27: 361-365.
    [55]L. P. Ramos, The chemistry involved in the steam treatment of ligno-cellulose materials, Quimica Nova, 2003, 26(6): 863-871.
    [56]张玉奎;王杰;张维冰译,实用高效液相色谱法的建立,北京:华文出版社,2001.
    [57]糖类的分离法,http://www.shimadzu.net.cn/kefu/lctalk/Ictalk4.pdf.
    [58]糖类的检测法,http://www.shimadzu.net.cn/kefu/Ictalk/lctalk5.pdf.
    [59]杨晓彤;李绪全;糜可等,一种同时测定9个PMP衍生化单糖的改良HPLC方法及其在灵芝菌丝体多糖组分分析中的应用,第七届海峡两岸真菌学学术研讨会论文集,2005,55-62.
    [60]冯慧琴;糜可;杨晓彤等,PSP和PSK多糖的单糖组分分析,菌物学报,2005,308-310.
    [61]徐瑾;张凌怡;张庆合等,单糖的柱前衍生化高效液相色谱及胶束电动毛细管色谱分析的对比研究,色谱,2003,21:363-366.
    [62]蔡国华;赖伟玲;林艳等,高效液相色谱法测定松片回潮前后不同单料烟中水溶性糖,http://www.tobacco.org.cn/news/dspNews.jsp?id=49009.
    [63]杨俊;刘江生;蔡继宝等,高效液相色谱-蒸发光散射检测法测定烟草中的水溶性糖,http://www.tobacco.org.cn/news/zt/2004nh/nhlw/boshi/3.htm.
    [64]梁振;徐瑾:张维冰等,啤酒中单糖的衍生化HPLC—ESI—MS测定方法研究,分析试验室,2004,23:27-30.
    [65]杜予民;王晓燕;柳卫莉,高效液相色谱法分析生漆多糖中的单糖组成,色谱,1998,36:73-75.
    [66]S. Honda; E. Akao; S. Suzuki; et al, High-performance liquid chromatography of reducing carbohydrates as strongly ultraviolet-absorbing and electrochemically sensitive 1-phenyl-3-methyl5-pyrazolone derivatives, Analytical Biochemistry, 1989, 180: 351-357.
    [67]F. Daotian; D. Zopf, Analysis of Sialyllactoses in Blood and Urine by High-Performance Liquid Chromatography, Analytical Biochemistry, 1999, 269: 113-123.
    [68]S. Honda; S. Suzuki; A. Taga, Analysis of carbohydrates as 1-phenyl-3-methyl-5-pyrazolone derivatives by capillary/micro chip electrophoresis and capillaryelectro chromatography, Journal of Pharmaceutical and Biomedical Analysis, 2003, 30: 1689-1714.
    [69] S. Suzuki; Y. Kuwahara; K. Makiura; et al, Preparation of various silica-based columns for capillaryelectro chromatography by in-column derivatization, Journal of Chromatography A, 2000, 873:247-256.
    [70] S. Xiadong; H. Perreault, Characterization of carbohydrates using a combination of derivatization, high-performance liquid chromatography and massspectrometry, Journal of Chromatography A,1998,811:47-59.
    [71] F. Daotian; A. Roger, Monosaccharide composition analysis of oligosaccharides and glycoprotains by high-performance liquid chromatography, Analytical Biochemistry, 1995, 227: 377-384.
    [72] J. Henning; J. P. Kutter; L. Olssona, Separation and quantification of cellulases and hemicellulases by capillary electrophoresis, Analytical Biochemistry, 2003, 317: 85-93.
    [73] R. H. Atalla; J. M. Hackney; I. Uhlin; N.S.Thompson, Hemicelluloses as structure regulators in the aggregation of native cellulose,International Journal of Biological Macromolecules, 1993, 15:109-112.
    [74] E.-L. Hult; P. T. Larsson; T. Iversen, Cellulose fibril aggregation-an inherent property of kraft pulps, Polymer, 2001, 42: 3309-3314.
    [75] E.-L. Hult; P. T. Larsson; T. Iversen, A comparative CP/MAS~(13)C-NMR study of cellulose structure in spruce wood and kraft pulp, Cellulose, 2000, 7: 35-55.
    [76] O. Dahlman; A. Jacobs; J. Sjoberg, Molecular properties of hemicelluloses located in the surface and inner layers of hardwood and softwood pulps, Cellulose, 2003, 10: 325-334.
    [77] I. Duchesne; E.-L. Hult; U. Molin; et al, The influence of hemicellulose on fibril aggregation of kraft pulp fibres as revealed by FE-SEM and CP/MAS~(13)C-NMR, Cellulose, 2001, 8: 103-111.
    [78] E.-L. Hult; P. T. Larsson; T. Iversen; A CP/MAS~(13)C-NMR study of supermolecular changes in the cellulose and hemicellulose structure during kraft pulping, Nordic Pulp and Paper Research Journal, 2001,16(1): 33-39.
    [79] R. N. Ibbett; D. A. S. Phillips; S. Kaenthong, Evaluation of a dye isotherm method for characterization of the wet-state structure and properties of Lyocell fiber, Dyes and Pigments, 2006, 71(3): 168.
    [80] J. M. Taylor, Lyocell using innovative dyeing / finishing processes, Chemical Fibers International, 2004, 54(6): 372.
    [81] T. Wang; G. X. Sun, Application of chitosan in Lyocell fabric dyeing,Hebei Journal of Industrial Science and Technology, 2004, 21(5): 52.
    [82] K. Kasahara; H. Sasaki; N. Donkai; T. Takagishi, Effect of processing and reactive dyeing on the swelling and pore structure of Lyocell fibers, 2004, 74(6): 509.
    
    [83] Continuous dyeing of cellulose, International Dyer, 2005, 190(10): 4.
    [84] N. I. Zhokhova; I. I. Baskin; V. A. Palyulin; et al, A study of the affinity of dyes for cellulose fiber within the framework of a fragment approach in PSPR, Russian Journal of Applied Chemistry C, 2005,78(6): 1013.
    [85] N. E. Chalava; V. V. Safonov, Affinity of direct dyes for cellulose film,Fibre Chemistry C, 2005, 37(2): 89.
    [86] J. Paluszkiewicz; W. Czajkowski; M. Kazmierska, Reactive dyes for cellulose fibres including UV absorbers, Fibers and Textiles in Eastern Europe, 2005, 13(Part 2): 76.
    [87] K. Wojciechowski; A. Wolska, Substantivity and spatial structure of soluble polycylic dyes for dyeing cellulose fibres, Dyes and Pigments,2005,65(2): 111.
    [88] W. Zhang; S. Okubayashi; W. Badura; T. Bechtold, Fibrillation tendency of cellulosic fibers. VΠ combined effects of treatments with an alkali, crosslinking agent, and reactive dye, Journal of Applied Polymer Science, 2006, 100(2): 1176.
    [89] L. F. Tops; M. J. Schalij, Endoscopic fiberoptic balloon catheter: a new step in imaging-guided an atomically based catheter ablation for atrial fibrillation, Heart Rhythm, 2006, 3(1): 50.
    [90] Y. Su; A. H. M. Renfrew; D. A. S. Phillips, Cross-linking agents for the protection of Lyocell against fibrillation: stability of benzeneacrylamido compounds to high temperature acidic environments, Coloration technology, 2005, 121(4): 203.
    [91] J. Xu; Y. T. Jiang, Feasibility study on Lyocell fabrication from sinocalamus affinis, Journal of Zhejiang Forestry Science and Technology, 2005, 25(4): 18.
    [92] Z. Wangsun; O. Satoko; B. Thomas, Fibrillation tendency of cellulosic fibers-Part 4, effects of alkali pretreatment of various cellulosic fibers, Carbohydrate Polymers, 2005, 61(4): 427.
    [93] W. Zhang; S. Okubayashi, Fibrillation tendency of cellulosic fibers-Part 2, effects of temperature, Cellulose-Andover-, 2005, 12(3):275.
    [94] W. Zhang; S. Okubayashi, Fibrillation tendency of cellulosic fibers-Part 1, effects of swelling, 2005, 12(3): 267.
    [95] Z. W. Sun; O. Satoko; B. Thomas, Fibrillation tendency of cellulosic fibers - part 3 effects of alkali pretreatment of Lyocell fiber,Carbohydrate Polymers, 2005, 59(2): 173.
    [96] I. Bates; E. Maudru; D. A. S. Phillips; A. H. M. Renfrew; et al, Cross-linking agents for the protection of Lyocell against fibrillation:synthesis, application and technical assessment of 2,4-diacrylamidobenzenesulphonic acid, Coloration Technology, 2004,120(6): 293.
    [97]Tomljenovic, Reducing fibrillation tendency of man-made cellulose fibres employing ultrasound treatment, Journal-Textile Institute, 2004, 95(1/6): 327.
    [98]K. Kasahara; H. Sasaki; N. Donkai, The effect of reactive dyeing and a variety of processing on the fibrillation of Lyocell fiber, Journal-Japan Research Association for Textile End Uses, 2003, 44(part 8): 60.
    [99]K.Y. Lim; Y. J. Seong, Reduction of fibrillation of Lyocell fiber with cellulose-g-poly(vinyl alcohol) copolymer, Polymer Journal-Tokyo-, 2003, 35(part 9): 691.
    [100]M. Ali, Protection of Lyocell fibers against fibrillation: mode of action of the cross-linking agent 2, 4-dichloro-6-(beta-sulphataoethylsulphonyl), Coloration Technology, 2003, 119(2): 116.
    [101]K. Przybysz, Fibrillation of cellulose fibers, Przemysl Chemiczny, 2003, 82(Part 1): 1149.
    [102]B. R. Choi; T. Liu, M, Lavasani, Fiber Orientation and cell-cell coupling influence ventricular fibrillation dynamica, Journal of Cardiovascular Electrophysiology, 2003, 14(Part 8): 851.
    [103]K. J. Fang; L. Y. Hao; X. C. Hu; H. L. Shao, Fibrillation property of the Lyocell fibers treated by N-hydroxymethyl cross-linking agents, Journal-Dong Hua University-English Edition-, 2002, 19(part 4): 24.
    [104]W. Udomkichdecha; S. Chiarakorn; P. Potivaraj, Relationships between fibrillation behavior of Lyocell fibers and their physical properties, Textile Research Journal, 2002, 72: 939-943.
    [105]D. Isabelle; D. Geoffrey, Changes in surface ultrastructure of Norway Spruce fibres during kraft pulping-visualization by field emission-SEM, Nordic Pulp and Paper Research Journal, 2000, 15(1): 54-61.
    [106]吴其哗:巫静安,高分子材料流变学导论,北京:化学工业出版社 1994.
    [107]G.Schramm著;李晓晖译,实用流变测量学,北京:石油工业出版社,1998.
    [108]S. Petrovan; J. R. Collier; I. I. Negulescu, Rheology of cellulosic N-methylmorpholine oxide monohydrate solutions of different degrees of polymerization, Journal of Polymer Science and Engineer, 2001, 79: 396-405.
    [109]B. J. Collier; M. Dever; S. Petrovan, Rheology of Lyocell solutions from different cellulose sources, Journal of Polymers and the Environment, 2000, 8(3): 151-154.
    [110]L. E. Nielsen, Polymer Rheology, N. Y.: Marcel Dekker, Inc., 1997.
    [111]D. W. Chae; B. C.l Kim; W. S. Lee, Rheological characterization of cellulose solutions in N-methyl morpholine N-oxide monohydrate, Journal of Applied Polymer Science, 2002, 86: 216-222.
    [112]S. Petrovan; I. I. Negulescu; J. R. Collier, Elongational and shear theology of cellulose and lignocellulosic solutions in N-methyl morpholine oxide monohydrate, Cellulose Chemistry and Technology, 2001, 35(1-2): 89-102.
    [113]Z. Lewandowski, Rheological aspects of fiber spinning from cellulose solutions in N-methylmorhpoline-N-oxide, Journal of Applied Polymer Science, 2001, 79: 1860-1868.
    [114]W.-K. Wee; M. R. Mackley, The rheology and processing of a concentrated cellulose acetate solution, Chemical Engineering Science, 1998, 53(6): 1131-1144.
    [115]R. G. Liu; H. L. Shao; X. H. Hu, The online measurement of Lyocell fibers and investigation of elongational viscosity of cellulose N-methylmorpholine-N-oxide monohydrate solutions, Macromolecular Materials Engineering, 2001, 286(3): 170-186.
    [116]S. A. Mortimer; A. A. Peguy; R. C. Ball, Influence of the physical process parameters on the structure formation of Lyocell fibers, Cellulose Chemistry and Technology, 1996, 30: 251-266.
    [117] P. Weigel; H.-P. Fink; E. Walenta; et al, Structure formation of cellulose man-made fibres from amine oxide solution, Cellulose Chemistry and Technology, 1997, 31: 321-333.
    [118]Z. Lewandowski, Application of a linear synthetic polymer to improve the properties of cellulose fibers made by the NMMO Process, Journal of Applied Polymer Science, 2002, 83: 2762-2773.
    [119] H.-P. Fink, Structure aspect of new cellulose fibers and films from NMMO-solution, Recent Research Development In Polymer Science, 1998, 3: 287-243.
    [120] H.-P. Fink; P. Weigel; H. J. Purz, Structure formation of regenerated cellulose materials from NMMO-solutions, Progress Polymer Science, 2001,26: 1473-1524.
    [121] H. H. Zhang; L. Guo; H. L. Shao, Nano-carbon black filled Lyocell fiber as a precursor for carbon fiber, Journal of Applied Polymer Science, 2006, 99(1): 65.
    [122] D. B. Kim; J. J. Park; S. M. Jo; W. S. Lee, Dry jet-wet spinning of cellulose / N-methylmorpholine N-oxide hydrate solutions and physical properties of Lyocell fibers, Textile Research Journal, 2005, 75(4): 331.
    [123] C. Ahn; H. J. Yoo; H. J. Lee; et al, Effect of enzyme treatment and wood pulp variation on physical characteristics and fabric hand of Lyocell fabrics, Fibers and Polymers, 2005, 6(part 1): 28.
    [124] S. Kaenthong; D. A. S. Phillips; A. H. M. Renfrew; et al, Accessibility of man-made cellulosic fibres. Part 2: examination of the exhaustion profiles of a series of reactive dyes on never-dried and dried Lyocell, viscose and modal fibers in the presence of varying electrolyte concentrations, Coloration Technology, 2005, 121(Part 1): 49.
    [125] S. Kaenthong; D. A. S. Phillips; A. H. M. Renfrew; et al, Accessibility of man-made cellulosic fibres. Part 1: exhaust application of reactive dyes to never-dried Lyocell, viscose and modal fibers, Coloration Technology, 2005, 121(Part 1): 45.
    [126] A. Cheunsoon; J. Y. Hye; Y. S. Oh; S. S. Han; et al, Evaluating the physical and fabric hand characteristics of Lyocell fabrics made with different wood pulps, Textile Research Journal, 2005, 75(2): 139.
    [127] M. Shibata; S. Oyamada; S. I. Kobayashi, Mechanical properties and biodegradability of green composites based on biodegradable polyesters and Lyocell fabric, Journal of Applied Polymer Science,2004, 92(Part 6): 3857.
    [128] M. Park, C. Hong, and K. You, Method for the purification of reclaimed aqueous N-Methyl morpholine N-oxide solution, Lee, Whasseoul Republic of Korea, 5619311.
    [129] Analytical Method M 97/0081/01e Dr. Euler Trrifricmetric Determination.
    [130] D. Korger, A. Steinbach, Process for purifying an aqueous solution of N-methylmorpholine-N-oxide, Unite States Patent, 11/10/1990.
    [131] Handbook Chemical Laboratory, Shanghai Lyocell Development Ltd.Pilot Plant.
    [132] K. P. Mieck; M. Nicolai, Contribution to the judgement of fibrillation of cellulose fibers. Chemical Fiber International, 1995, 45(1): 44-46.
    [133] S. A. Mortimer, Methods for reducing the tendency of Lyocell fibers to fibrillate, Journal of Applied Polymer Science, 1996, 60: 305-316.
    [1]Lenzing, Zimmer sign Lyocell agreement, Textile World, 2006, 156(1): 42.
    [2]Lyocell research and technology conference, Melliand International, 2005, 11(4): 270.
    [3]Regenerated cellulose fiber-Lyocell, Indian Textile Journal, 2005, 115(7): 19.
    [4]Comfort thanks to Lyocell, Tut-Paris-, 2005, 55: 45.
    [5]P. Gill; Pa. Gill; S.S. Singh, Lyocell: Properties and Applications, Man-made Textiles in India, 2002, 45(3): 93-97.
    [6]M. Dever; B. J. Collier; S. Petrovan; et al, Lyocell Solutions from Alternative Cellulose Sources, 2003, 21:167-173.
    [7]D.U. Sayed; M. R. Pratap; A. S. Singh. Lyocell: Fiber of future, Colourage, 2002, 49: 33-36.
    [8]杨维骅,上海年产一千吨Lyocell纤维生产线奠基,中国纺织报,2004—11—23:3336.
    [9]M.K. Luo; V. A. Roscelli; A. N. Neogi. Process for making Lyocell fibers from pulp having low average degree of polymerization values, United States Patent: 6,491,788, 2002-12-10.
    [10]M. K. Luo, Lyocell fibers having high hemicellulose content, United States Patent: 6,692,827, 2004-2-17.
    [11]M. K. Luo; V.A. Roscelli; J. Sealey; et al, Lyocell fibers from kraft pulps, Paper to the 5th International Symposium, 2002-04-05.
    [12]Sealey, Alkaline pulp having low average degree of polymerization values and method of producing the same, United States Patent: 6,331,354, 2001-12-18.
    [13]高洁;汤烈贵,纤维素科学,北京:科学出版社,1999.
    [14]陈业高,植物化学成分,北京:化学工业出版社,2004.
    [15]杨淑蕙,植物纤维化学,北京:中国轻工业出版社,2002.
    [16]顾广新,Lyocell工艺中纤维素溶液的制备及其表征,东华大学博士学位论文,2001,85—88.
    [17]刘瑞刚,纤维素/NMMO/H_2O溶液的制备、溶液性能的研究和Lyocell纤维的试制,硕士学位论文,1998,23—25.
    [18]H.A.巴勒斯:J.H.赫顿;K.瓦尔特斯著:吴大诚,古大治译校,流变学引导,北京:中国石化出版社,1992,1-194.
    [19]吴其晔;巫静安,高分子材料流变学,北京:化学工业出版社1994.
    [20]G.Schramm著;李晓晖译,实用流变测量学,北京:石油工业出版社,1998.
    [21]沈弋弋,化纤浆粕在NMMO溶液中的纤维素得率的表征剖析,产业用纺织品,2000:26—28.
    [22]S. Chanzy; S. Nawrot; Perez; et al, Proceeding of the TAPPI International Dissolving and Speciality Pulps Conference, Boston, 1983, 127-132.
    [23]B. J. Collier; M. Dever; S. Petrovan, Rheology of lyocell Solutions from Different Cellulose Sources, Journal of Polymers and the Environment, 2000, 8(3): 151-154.
    [24]董纪震;罗鸿烈;王庆瑞,合成纤维工艺学(第二版,上),北京:纺织工业出版社,1993,93-160.
    [25]马德柱;徐种德;何平笙等,高聚物的结构与性能,北京:科学出版社,2000.
    [26]S. Petrovan; J. R. Collier; I. I. Negulescu, Rheology of Cellulosic N-Methylmorpholine Oxide Monohydrate Solutions of Different Degrees of Polymerization, Journal of Polymer Science and Engineer, 2001, 79: 396-405.
    [27]张松洁;邵惠丽;胡学超,纤维素/NMMO/水溶液流变性能的研究,合成纤维,2003,32(6):13—18.
    [28]顾广新;沈弋弋;胡学超,纤维素/NMMO·H_2O纺丝液组成的表征,合成纤维,2001,30(1):32-34.
    [29]刘瑞刚;沈弋弋;胡学超,纤维素/NMMO·H_2O溶液的流变性能,中国纺织大学学报,2000,26(5):1-7.
    [30]T. Rosenau; A. Hofinger; A. Potthast; et al, On the conformation of cellulose solvent N-methylmorpholine-N-oxide (NMMO) in solution, Polymer, 2003, 44(20): 6153.
    [31]K. Y. Lim; K. J. Yoon; B. C. Kim, Highly absorbable Lyocell fiber spun from celluloses/hydrolyzed starch-g-PAN solution in NMMO monohydrate, European Polymer Journal, 2003, 39(11): 2115.
    [32]D. W. Chae; B. C. Kim; W. S. Lee, Rheological characterization of cellulose solutions in N-Methyl Morpholine N-Oxide monohydrate, Journal of Applied Polymer Science, 2002, 86: 216-222.
    [33]C. W. Nam; S. W. Ko; J. W. Choi, Preparation of cellulose/N-(2-hydroxy)propyl-3-trimethylammonium chitosan chloride blend fibers in NMMO/water solvent system, Journal-Koreanfiber Society, 2003, 40(Part 6): 473.
    [34]B. Niekraszewicz; P. Czamecki, Modifed cellulose fibers prepared by the N-methylmorpholine-N-oxide (NMMO) process, Journal of Applied Polymer Science, 2002, 86: 907-916.
    [35]S. Yiyi, Rheological behavior of cotton-cellulose/N-methylmorpholine-N-oxide·H_2O monohydrate solutions, Journal-China Textile University-Chinese Edition, 2000, 26(5): 1-7.
    [36]顾广新;胡赛珠;邵惠丽,纤维素溶液的动态流变性质,东华大学学报(自然科学版),2001,27(4):12-16.
    [37]L. E. Nielsen, Polymer Rheology, N.Y.: Marcel Dekker, Inc.1997: chapter 6.
    [38]李庆春;黄知清;杨春波等,Lyocell纤维适用浆粕初探,广西化纤通讯,2001,29(1):6.
    [39]莫冬次,Lyocell纤维纺丝工艺概述,广西化纤通讯,2002,1:25—29.
    [40]M. Park, C. Hong, and K. You, Method for the purification of reclaimed aqueous N-Methyl morpholine N-oxide solution, Lee, Whasseoul Republic of Korea, 5619311.
    [41]Analytical Method M 97/0081/01e Dr. Euler Trrifricmetric Determination.
    [42]D. Korger, A. Steinbach, Process for purifying an aqueous solution of N-methylmorpholine-N-oxide, Unite States Patent, 11/10/1990.
    [43]Handbook Chemical Laboratory, Shanghai Lyocell Development Ltd. Pilot Plant.
    [1]T. Bikova; A.Treimanis, Problems of the MWD analysis of cellulose by SEC using DMAc/LiCI: A review, Carbohydrate Polymer, 2002, 48: 23-28.
    [2]J. M. Evans, Gel permeation chromatography: a guide to data interpretation, Polymer Engineering and Science, 1973, 13(6): 401-408.
    [3]M. Strlic; J. Kolar, Size exclusion chromatography of cellulose in LiCl/N, N-dimethylacetamide, Biochemical Biophysical Methods, 2003, 56: 265-279.
    [4] Z. D. Xu; M. S. Song, Method for gel permeation chromatography calibration and the evaluation of Mardk-Houwink-Sakurada constants,Macromolecules, 1981, 14: 1591-1594.
    [5] T. Roder; B. Morgenstern; N. Schelosky, Solutions of cellulose in N,N-dimethylacetamide/lithium chloride studied by light scattering methods, Polymer, 2001, 42: 6765-6773.
    [6] J. D. Timpa; H. H. Ramey, Molecular characterization of three cotton varieties, Textile Research Journal, 1989, 9: 661-664.
    [7] J. F. Kennedy; Z. S. Rivera; C. A. White; et al, Molecular weight characterization of underivatized cellulose by GPC using lighium chloride-dimethylacetamide solvent system, Cellulose Chemistry and Technology, 1990, 24: 319-325.
    [8] H. Jerosch; B. Lavedrine; J. C. Cherton, Study of the stability of cellulose-holocellulose solutions in N, N-dimethylacetamide-lithium chloride by size exclusion chromatography, Journal of Chromatography A, 2001, 927: 31-38.
    [9] A. Grubisic; P. Rempp; H. A. Benoit, Universal calibration for gel permeation chromatography, Polymer Letter, 1967, 5: 753-759.
    [10] A. M. Emley; M. Ali; R. J. Heywood, A size exclusion chromatography study of cellulose degradation, Polymer, 2000, 41:8513-8521.
    [11] S. Wu, Polymer molecular weight distribution from dynamic melt viscoelasticity, Polymer Engineering and Science, 1985, 25: 122-128.
    [12] W. H. Tuminello, Molecular weight and molecular weight distribution from dynamic measurements of polymer melts, Polymer Engineering and Science, 1986,26(19): 1339-1347.
    [13] W. H. Tuminello; N. C. Mauroux, Determining molecular weight distribution from viscosity versus shear rate flow curves, Polymer Engineering and Science, 1991,31(10): 1496-1507.
    [14] W. H. Tuminello; T. A. Treat; A. D. English, Poly (tetrafluoroethylene): molecular weight distributions and chain stiffness, Macromolecules, 1988, 21: 2606-2610.
    [15] J. Llorens; E. Rude; R. M. Marcos, Unimodal molecular weight distribution of commercial polymers from viscoelastic data, Journal of Polymer Science Part B: Polymer Physics, 2000, 38: 1539-1546.
    [16] C. Lavallee; A. Berker, More on the prediction of molecular weight distributions of linear polymers from their rheology, Journal of Rheology, 1997, 41(4): 851-871.
    [17] C. Carrot; J. Guillet, From dynamic moduli to molecular weight distribution: a study of various polydisperse linear polymers, Journal of Rheology, 1997,41(5): 1203-1220.
    [18] W. Thimm; C. Friedrich; M. Marth; et al, On the rouse spectrum and the determination of the molecular weight distribution from rheological data, Journal of Rheology, 2000, 44: 429-438.
    [19] C. Pattamaprom; R. G. Larson; and T. J. V. Dyke, Quantitative predictions of linear viscoelastic rheological properties of entangled polymers, Rheological Acta, 2000, 39: 517-531.
    [20] J. Llorens; E. Rude; R. M. Marcos, Polydispersity index from linear viscoelastic data: unimodal and bimodal linear polymer melts.Polymer, 2003, 44: 1741-1750.
    [21] E. V. Ruymbeke; R. Keunings; C. Bailly, Determination of the molecular weight distribution of entangled linear polymers from linear viscoelasticity data, Journal of Non-Newtonian Fluid Mechanics, 2002, 105: 153-175.
    [22] G. X. Gu; X. C. Hu; H. L. Shao, Study on molecular weight distribution of cellulose by using rheological methods, Sen'i Gakkaishi, 2001,57:22-26.
    [23] H. H. Zhang; H. L. Shao; X. C. Hu, Prediction of molecular weight distribution of cellulose by using rheological methods, Journal of Applied Polymer Science, 2004, 94(2): 598.
    [24]H.A.巴勒斯;J.H.赫顿;K.瓦尔特斯著;吴大诚,古大治译校,流变学引导,北京:中国石化出版社,1992,1-194.
    [25]吴其晔;巫静安,高分子材料流变学导论,北京:化学工业出版社,1994.
    [26]G.Schramm著;李晓晖译,实用流变测量学,北京:石油工业出版社,1998:105-116,119.
    [27]郑昌仁,高聚物分子量及其分布,北京:化学工业出版社,1986:60.
    [28]马德柱:徐种德;何平笙等,高聚物的结构与性能,北京:科学出版社,2000:636—637.
    [29]K. Martin; V. Harald, On a quantity describing the degree of entanglement in linear polymer systems, Macromolecular Theory and Simulations, 1994, 3: 639.
    [30]B. J. Collier; M. Dever; S. Petrovan, Rheology of Lyocell solutions from different cellulose sources, Journal of Polymer Environment, 2000, 8(3): 151-154.
    [31]J. Llorens; E. Rude, Marcos R M. Polydispersity index from linear viscoelastic data: unimodal and bimodal linear polymer melts, Polymer, 2003, 44: 1741-1750.
    [32]J.A. Ressia; M. A. Villar; E. M. Valles, Influence of polydispersity on the viscoelastic properties of linear polydimethylsiloxanes and their binary blends, Polymer, 2000, 41: 6885-6894.
    [1]M. K. Luo; V. A. Roscelli; A. N. Neogi. Process for making Lyocell fibers from pulp having low average degree of polymerization values, United States Patent: 6,491,788, 2002-12-10.
    [2]M. K. Luo. Lyocell fibers having high hemicetlulose content, United States Patent: 6,692,827, 2004-2-17.
    [3]M. K. Luo; V.A. Roscelli; J. Sealey; et al. Lyocell fibers from kraft pulps, Paper to the 5th International Symposium, 2002-04-05.
    [4]S. J. Peng; H. L. Shao; X. C. Hu, Lyocell fibers as the precursor of carbon fibers, Journal of Applied Polymer Science, 2003, 90: 1941-1947.
    [5]E.L. Hult; P. T. Larsson; T. Iversen, A comparative CP/MAS~(13)C-NMR study of cellulose structure in spruce wood and kraft pulp, Cellulose, 2000, 7, 35-55.
    [6]I. Duchesne; E. L. Hult; U. Molin; et al, The influence of hemicellulose on fibril aggregation of kraft pulp fibres as revealed by FE-SEM and CP/MAS~(13)C-NMR, Cellulose, 2001, 8: 103-111.
    [7] E. L. Hult; P. T. Larsson; T. Iversen, Cellulose fibril aggregation-an inherent property of kraft pulps, Polymer, 2001, 42: 3309-3314.
    [8] J. Lenz; J. Schurz; E. Wrentschur, The fibrillate structure of cellulose Man-made fibers spun from different solvent systems, Journal of Applied Polymer Science, 1988, 35(8): 1987-2000.
    [9] A.Teleman; P. T. Larsson; T. Iversen, On the accessibility and structure of xylan in birch kraft pulp, Cellulose, 2001, 8: 209-215.
    [10] K. Wickholm; P. T. Larsson; T. Iversen, Assignment of non-crystalline forms in cellulose I by CP/MAS~(13)C-NMR spectroscopy, Carbohydrate Research, 1998,312: 123-129.
    [11] R. H. Newman, Estimation of the lateral dimensions of cellulose crystallites using ~(13)C-NMR signal strengths, Solid State Nuclear Magnetic Resonance, 1999, 15: 21-29.
    [12] R. H. Atalla; J. M. Hackney; I. Uhlin; et al, Hemicelluloses as structure regulators in the aggregation of native cellulose, International Journal of Biology Macromolecular, 1993, 15: 109-112.
    [13] K. P. Mieck; M. Nicolai, Contribution to the judgement of fibrillation of cellulose fibers. Chemical Fiber International, 1995, 45(1): 44-46.
    [14] S. A. Mortimer, Methods for reducing the tendency of Lyocell fibers to fibrillate, Journal of Applied Polymer Science, 1996, 60: 305-316.
    [15] W. Zhang; S. Okubayashi; W. Badura; et al, Fibrillation tendency of cellulosic fibers. VII combined effects of treatments with an alkali,crosslinking agent, and reactive dye, Journal of Applied Polymer Science, 2006, 100(2): 1176.
    [16] J. Xu; Y. T. Jiang, Feasibility study on Lyocell fabrication from sinocalamus affinis, Journal of Zhejiang Forestry Science and Technology, 2005, 25(4): 18.
    [17]W. Zhang; S. Okubayashi, Fibrillation tendency of cellulosic fibers-Part 1, effects of swelling, 2005, 12(3): 267.
    [18]W. Zhang; S. Okubayashi, Fibrillation tendency of cellulosic fibers-Part 2, effects of temperature, Cellulose-Andover-, 2005, 12(3): 275.
    [19]W. Zhang; S. Okubayashi; B. Thomas, Fibrillation tendency of cellulosic fibers-part 3. effects of alkali pretreatment of Lyocell fiber, Carbohydrate Polymers, 2005, 59(2): 173.
    [20]Z. Wangsun; O. Satoko; B. Thomas, Fibrillation tendency of cellulosic fibers-Part 4, effects of alkali pretreatment of various cellulosic fibers, Carbohydrate Polymers, 2005, 61(4): 427.
    [21]Tomljenovic, Reducing fibrillation tendency of man-made cellulose fibres employing ultrasound treatment, Journal-Textile Institute, 2004, 95(1/6): 327.
    [22]K. Przybysz, Fibrillation of cellulose fibers, Przemysl Chemiczny, 2003, 82(Part 1): 1149.
    [23]候毓汾;朱振华,染料化学,北京:化学工业出版社,1994:25.
    [24]中华人民共和国国家标准,GB 2391—80,活性染料吸色率和固色率的测定方法.
    [25]R. N. Ibbett, D. A. S. Phillips, S. Kaenthong, Evaluation of a dye isotherm method for characterization of the wet-state structure and properties of Lyocell fiber, Dyes and Pigments, 2006, 71(3): 168.
    [26]J. M. Taylor, Lyocell using innovative dyeing/finishing processes, Chemical Fibers International, 2004, 54(6): 372.
    [27]H. P. Fink. Structure Aspect of New Cellulose Fibers and Films from NMMO-solution, Recent Research Development in Polymer Science, 1998, (3): 287-243.
    [28]H P. Fink; P. Weigel; H J. Purz. Structure Formation of Regenerated Cellulose Materials from NMMO-solutions, Progress Polymer Science, 2001,(26): 1473-1524.
    [29] S. A. Mortimer; A. A. Peguy; R. C. Ball, Influence of the physical process parameters on the structure formation of Lyocell fibers,Cellulose Chemical Technology, 1996, (30): 251-266.
    [30] P. Weigel; H. P. Fink; E. Walenta; et al. Structure formation of cellulose man-made fibres from amine oxide solution, Cellulose Chemical Technology, 1997, 31: 321-333.
    [31] D. B. Kim, J. J. Park, S. M. ]o, W. S. Lee, Dry jet-wet spinning of cellulose / N-methylmorpholine N-oxide hydrate solutions and physical properties of Lyocell fibers, Textile Research Journal, 2005,75(4): 331.
    [32] C. Michels; R. Maron; E.Teager, Characteristics of the amine oxide process developed at the turing institute of textiles and plastics, Fibre Chemistry, 1996,28(1): 17-21.
    [33] A. Cheunsoon, J. Y. Hye, Y. S. Oh, S. S. Han, et al, Evaluating the physical and fabric hand characteristics of Lyocell fabrics made with different wood pulps, Textile Research Journal, 2005, 75(2): 139.
    [34] M. Shibata, S. Oyamada, S. I. Kobayashi, Mechanical properties and biodegradability of green composites based on biodegradable polyesters and Lyocell fabric, Journal of Applied Polymer Science,2004, 92(Part 6): 3857.
    [1]张玉奎;王杰;张维冰译,实用高效液相色谱法的建立,北京:华文出版社,2001.
    [2]杨晓彤;李绪全;糜可等,一种同时测定9个PMP衍生化单糖的改良HPLC方法及其在灵芝菌丝体多糖组分分析中的应用,第七届海峡两岸真菌学学术研讨会论文集,2005,55-62.
    [3]冯慧琴;糜可;杨晓彤等,PSP和PSK多糖的单糖组分分析,菌物学报,2005,308—310.
    [4]徐瑾;张凌怡;张庆合等,单糖的柱前衍生化高效液相色谱及胶束电动毛细管色谱分析的对比研究,色谱,2003,21:363-366.
    [5]蔡国华;赖伟玲;林艳等,高效液相色谱法测定松片回潮前后不同单料烟中水溶 性糖,http://www.tobacco.org.cn/news/dspNews.jsp?id=49009.
    [6]杨俊;刘江生;蔡继宝等,高效液相色谱-蒸发光散射检测法测定烟草中的水溶性糖,http://www.tobacco.org.cn/news/zt/2004nh/nhlw/boshi/3.htm.
    [7]梁振;徐瑾:张维冰等,啤酒中单糖的衍生化HPLC—ESI—MS测定方法研究,分析试验室,2004,23:27-30.
    [8]杜予民;王晓燕:柳卫莉,高效液相色谱法分析生漆多糖中的单糖组成,色谱,1998,36:73—75.
    [9]S. Honda; E. Akao; S. Suzuki; et al, High-performance liquid chromatography of reducing carbohydrates as strongly ultraviolet-absorbing and electrochemically sensitive 1-phenyl-3-methyl5-pyrazolone derivatives, Analytical Biochemistry, 1989, 180: 351-357.
    [10]F. Daotian; D. Zopf; Analysis of Sialyllactoses in Blood and Urine by High-Performance Liquid Chromatography, Analytical Biochemistry, 1999, 269: 113-123.
    [11]S. Honda; S. Suzuki; A. Taga, Analysis of carbohydrates as 1-phenyl-3-methyl-5-pyrazolone derivatives by capillary/micro chip electrophoresis and capillaryelectro chromatography, Journal of Pharmaceutical and Biomedical Analysis, 2003, 30, 1689-1714.
    [12]J. Henning; J. P. Kutter; L. Olssona, Separation and quantification of cellulases and hemicellulases by capillary electrophoresis, Analytical Biochemistry, 2003, 317: 85-93.
    [13]王静;王晴;向文胜,色谱法在糖类化合物分析中的应用,分析化学,2001,29:222—227.
    [14]徐瑾;张庆合;张维冰等,液相色谱荧光衍生法在糖类物质分析中的应用,2003,21:115-120.
    [15]黄方;刘晓崚;周广军等,糖类衍生化技术的研究进展,http://www.hxtb.org/col/2000/c00023.htm.
    [16]E. K. William; G. C. Lawrence; M. M. Michael; et al, The complete analysis of wood polysaccharides using HPLC, Journal of Wood Chemistry and Technology, 1991, 11: 447-463.
    [17]R. C. Pettersen; V. H. Schwandt; M. J. Effland, An analysis of the wood sugar assay using HPLC: a comparison with paper chromatography, Journal of Chromatographic Science, 1984, 22: 478-484.
    [18]TAPPI 249, Carbohydrate composition of extractive-free wood and wood pulp by gas-liquid chromatography.
    [19]S. Suzuki; Y. Kuwahara; K. Makiura; et al, Preparation of various silica-based columns for capillaryelectro chromatography by in-column derivatization, Journal of Chromatography A, 2000, 873, 247-256.
    [20]S. Xiadong; H. Perreault, Characterization of carbohydrates using a combination of derivatization, high-performance liquid chromatography and massspectrometry, Journal of Chromatography A, 1998, 811: 47-59.
    [21]F. Daotian; A. Roger, Monosaccharide composition analysis of oligosaccharides and glycoprotains by high-performance liquid chromatography, Analytical Biochemistry, 1995, 227: 377-384.
    [22]糖类的分离法,http://www.shimadzu.net.cn/kefu/lctalk/lctalk4.pdf.
    [23]糖类的检测法,http://www.shimadzu.net.cn/kefu/lctalk/lctalk5.pdf.
    [24]张成孝,化学定量分析,北京:科学出版社,2001,23—30.
    [25]刘晓薇,实验化学基础,北京:国防工业出版社,2005,200—203.
    [26]刘茹;屠新武;白淑娟等,微波密封消解法快速测定COD技术应用研究,http://www.cws.net.cn/Journal/cwr/200419/16.htm.
    [27]耗氧量的测定(COD),http://cec.ustc.edu.cn/base/fx/8.4.4.htm.
    [28]Y. Tao. Modification of redox titration of iron in pyrite cinder with K_2Cr_2O_7 as titrant, Physical Testing and Chemical Analysis Part B: Chemical Analysis, 2004, 40, 9: 546.
    [29]S.-H. Cao; X.-P. Xing; J.-W. Chen, Redox titration of arsenic and antimony in glass-clearing agent, Physical Testing and Chemical Analysis Part B: Chemical Analysis, 2004, 40, 12: 738.
    [30]L. Shuzhong, Determination of ferrous ammonium sulfate etc reference reagents by the constant current coulometric analysis method, Chemical Analysis and Meterage, 2005, 14(Part 5): 24.
    [31]http://www.lamotte.com/pages/common/pdf/instruct/3176.pdf.
    [32]http://fc.nykat-gym.dk/~LA/kemi/ethanolindhold.doc.
    [33]N. Jochen; V. D. Berg; M. G. Constant, Determination of metal speciation by reverse titrations, Analytical Chemistry, 2005, 77(1): 11.
    [34]Reagent Chemical, Washington, American Chemical Society, 1981.
    [35]段菊兰,东华大学硕士学位论文,凝固浴条件对Lyocell纤维结构与性能影响的研究,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700