用户名: 密码: 验证码:
光敏热显成像材料热显影过程中影响银离子迁移因素的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光敏热显成像材料(Photothermographic materials,简称PTG材料)是近年来国际感光界的研究热点之一。PTG材料具有成像质量优异,影像保存稳定性高,干式加工便捷无污染等优点,因此尽管传统的卤化银胶片市场正在逐步萎缩,而具有环境友好特点的PTG材料市场仍有着良好的发展前景。当前,国际感光界的学者正在大力开展对PTG材料成像机理方面的研究。其中美国学者Whitcomb和日本学者Maekawa对于PTG材料热显影过程中银离子的迁移及还原过程进行了深入的分析研究,并提出了不同的见解。
     本论文以邻苯二甲酸(PA)与酞嗪(PHZ)为起始原料,采用液相沉淀法合成了PTG材料热显成像过程中可能存在的含银中间体邻苯二甲酸二银(Ag2PA)与[Ag2PHZ2PA·H2O]配合物,通过元素分析、ICP-AES分析对Ag2PA与[Ag2PHZ2PA·H2O]配合物的元素组成进行了确定,采用XRD、FTIR、TG与DSC等方法对Ag2PA与[Ag2PHZ2PA·H2O]进行了表征,确定了其分子结构。通过对PTG材料热显影过程中银离子迁移过程的分析表明,调色剂PA与PHZ在PTG材料热显影过程中起着改变反应历程,降低反应活化能的作用,Maekawa等提出的银离子迁移路线具有一定的合理性。
     采用X射线衍射K值分析法,在100~123℃PTG材料热显影温度范围内,研究了山嵛酸银(AgBeh)与PA的固相反应过程。结果表明,AgBeh与PA的固相反应为固态扩散控制过程。在一定的反应时间内,Jander方程能够较好的描述AgBeh与PA的固相反应动力学,反应的表观活化能为84.5 kJ·mol-1,表观频率因子为7.06×107 min-1。AgBeh与PA样品以较小的颗粒度分散于PTG体系中,有利于提高PTG材料的成像速度。通过XRD及FTIR等方法对Ag2PA与PHZ之间的反应进行研究,结果表明Ag2PA与PHZ可以通过固液相反应发生作用,反应物的扩散过程为Ag2PA与PHZ之间反应的控制步骤。
     测定了调色剂PA、PHZ与6-异丙基酞嗪在粘合剂PVA中的扩散系数。实验表明,温度越高,调色剂的扩散系数越大。在相同的条件下,PHZ与6-异丙基酞嗪的扩散系数均远大于PA的扩散系数。随着粘合剂浓度的增大,PA、PHZ与6-异丙基酞嗪的扩散系数均有所降低,这种降低的趋势在不同的温度条件下均有体现。
     综合分析认为,对于PA—PHZ的调色剂组合体系,决定银离子迁移速率的主要因素为调色剂PA在粘合剂涂层中的扩散行为,适当增加PTG材料的热显影温度、调整涂层结构与配方以缩短调色剂PA在涂层中的有效扩散距离以及降低PTG材料涂层中粘合剂的浓度均有利于提高PTG材料的显影速度,即提高PTG材料的热显影效率;对于PA—6-异丙基酞嗪的调色剂组合体系,在实际的PTG材料热显成像条件下,调色剂6-异丙基酞嗪的扩散行为会对银离子的迁移速率起到一定的限制作用,而这种限制作用有利于获得色调更佳的银影像。
     测定了调色剂PA、6-异丙基酞嗪在苯丙乳液粘合剂中的扩散系数并确定了扩散活化能。实验数据显示,PA、6-异丙基酞嗪在苯丙乳液粘合剂中的扩散系数均略大于其在同浓度PVA粘合剂中的扩散系数。
As one of those frontier subjects in the field of photographic science, photothermographic materials (PTG materials) have attracted many attentions for their various advantages, such as excellent imaging quality, steady image preservation, convenient operation and pollution-free dry technology. Although traditional silver halide film market has been shrinking severely in recent years, PTG materials have showed its bright future. Since understandings about the detail of the relevant imaging process would be the key for deeper researches, scholars in this field have made great efforts in order to reveal the concerning mechanism; among them, Whitcomb and Maekawa have the very important silver ion transfer and reduction process thoroughly investigated and analyzed, but raised quite different proposals.
     In current study, using phthalic acid (PA) and phthalazine (PHZ) as the starting materials, di-silver phthalate (Ag2PA) and complex [Ag2PHZ2PA·H2O], which were supposed to be the silver-intermediates in the development process, were prepared using liquid deposition approach; their compositions and structures were carefully characterized through methods of ICP-AES, elemental analysis, XRD, FTIR, TG and DSC. The analysis of silver ion transfer in development process for PTG materials showed that the toners PA and PHZ could have the reaction course changed and the activation energy reduced, and the silver ion transfer course proposed by Maekawa seemed to be reliable in some extent.
     Using X-ray powder diffraction (K value) method, the solid state reaction between silver behenate (AgBeh) and PA was studied within the developing temperature of PTG materials ranged from 100℃to 123℃. The obtained data showed that this reaction was actually diffusion-controlled, and Jander equation could properly describe this reaction in a certain reaction time course. The apparent activation energy and apparent frequency factor of the solid state reaction were 84.5 kJ·mol-1 and 7.06×107 min-1, respectively. Diminishing the granularity of AgBeh and PA could speed up the progress of development. XRD and FTIR results proved that the reaction between Ag2PA and PHZ was controlled by the diffusion of the reactants.
     The diffusion behavior of PA, PHZ and 6-isopropyl phthalazine in binder PVA were measured, and the diffusion coefficients for PHZ and 6-isopropyl phthalazine were found to be larger than that of PA. It could be seen that the values of the above mentioned diffusion coefficients would be increased if raising the diffusion temperature. For each of the following systems, such as PA—PVA, PHZ—PVA and 6-isopropyl phthalazine—PVA, the values of the diffusion coefficients would become smaller with the increase of the binder concentration under different temperatures.
     For PA—PHZ co-toner system, the main factor of controlling the silver ion transfer velocity was the diffusion behavior of PA in the binder coat. Several technical improvements, such as increasing the development temperature, shortening the diffusion distance of PA in the binder coat by adjusting the coat structure and ingredients, decreasing the binder concentration, were all advantageous for enhancing the development velocity. For PA—6-isopropyl phthalazine co-toner system, the diffusion behavior of 6-isopropyl phthalazine in the binder coat would limit the silver ion transfer velocity, therefore be propitious to obtain a better silver image.
     The diffusion coefficients of toners PA and 6-isopropyl phthalazine in the binder styrene-butyl acrylate latex were also measured, and the diffusion activation energies of PA and 6-isopropyl phthalazine were determined. The experimental data showed that the diffusion coefficients of PA and 6-isopropyl phthalazine in styrene-butyl acrylate latex were greater than those of PA and 6-isopropyl phthalazine in PVA under the same binder concentration.
引文
[1] W. H. F. Talbot. Improvement in photographic pictures, US patent: 5171. 1847-06-26
    [2] D. Morgan. Sensitized sheet containing an organic silver salt, a reducing agent and a catalytic proportion of silver halide, BE patent: 663,112. 1965-10-27
    [3] M. R. V. Sahyun. An introduction to photothermography, http://www.imaging.org/resources/web_tutorials/photothermography.cfm
    [4] http://www.epa.gov/greenchemistry/ascra97.html
    [5] M. Ogawa, S. Nanami, K. Okada, et al. FM-DP L Dry Imager, Fujifilm Research and Development, 2000, 45: 59~70
    [6] B. P. Tolochko, S. V. Chernov, S. G. Nikitenko, et al. EXAFS determination of the structure of silver stearate, [Ag(O2C(CH2)16CH3]2, and the effect of temperature on the silver coordination sphere, Nuclear Instruments and Methods in Physics Research A, 1998, 405: 428~434
    [7] D. R. Whitcomb, W. C. Frank, R. D. Rogers. Proceedings: IS&T’s 49th Annual Conference, IS&T, Springfield, VA, 1996
    [8] M. R. V. Sahyun. Thermally developable photographic materials (TDPM): a review of the state-of-art in mechanistic understanding, Journal of Imaging Science and Technology, 1998, 42(1): 23~30
    [9] D. R. Whitcomb. Advances in photothermographic imaging technology based on silver carboxylates, Photographic Science and Photochemistry, 2003, 21(1): 1~19
    [10] M. Ikeda. Thermodynamic and NMR studies on silver salts of fatty acids, Photographic Science and Engineering, 1980, 24(6): 277~280
    [11] M. Chadha, M. E. Dunnigan, M. R. V. Sahyun, et al. Electronic structure of layered silver carboxylates, Journal of Applied Physics, 1998, 84(2): 887~892
    [12] B. B. Bokhonov, A. A. Sidelnikov, M. R. Sharafutdinov, et al. Thermal and mechanochemical initiated phase transformations in silver carboxylates, Journal of Imaging Science and Technology, 2003, 47(2): 89~99
    [13] S. E. Hill, M. B. Mizen, M. R. V. Sahyun. Mechanisms of development of photothermographic media, Journal of Imaging Science and Technology, 1996, 40(6): 568~575
    [14] B. Lin, J. S. Dong, D. R. Whitcomb, et al. Crystallization of silver stearate from sodium stearate dispersions, Langmuir, 2004, 20(21): 9069~9074
    [15] B. Horsten, I. Geuens, Y. Gilliams, et al. Thermographic recording material with improved image tone and/or stability upon thermal development, EP patent: 848,286. 1997-12-06
    [16] I. Geuens, I. Vanwelkenhuysen. Physical characterization of silver behenate as a tool for the development of thermographic and photothermographic materials, Journal of Imaging Science and Technology, 1999, 43(6): 521~527
    [17] T. Ito, S. Nishiwaki, T. Mitsuhasi. Numerical model for characteristic curves of photothermographic materials using a semiempirical simulation method, Journal of Imaging Science and Technology, 2001, 45(4): 357~364
    [18] B. B. Bokhonov, L. P. Buleva. Variations in the morphology of image silver particles in thermally developed photographic materials, Journal of Imaging Science and Technology, 1999, 43(6): 505~508
    [19] H. L. Strijckers. Image formation mechanisms in photothermographic silver imaging media, Journal of Imaging Science and Technology, 2003, 47(2): 100~106
    [20] I. Toya. Thermographic material, US patent: 5,965,348. 1999-10-12
    [21]曹静,林海莉,姚林辉等. AgBr的尺寸及含量对PVA为粘合剂的光敏热成像材料的光敏性的影响,感光科学与光化学,2005, 23(1): 6~13
    [22] Y. Sakaguchi. Heat developable light-sensitive material, US patent: 4,639,414. 1987-01-27
    [23] S. Ikenoue, T. Masuda. Process for producing heat developable light-sensitive compositions and elements, US patent: 4,213,784. 1980-07-22
    [24] G. J. Burgmaier, A. H. Herz. Silver halide photosensitive materials containing thiourea and analogue compounds, US patent: 4,810,626. 1989-03-07
    [25] L. M. Eshelman, M. E. Irving, D. H. Levy. Photothermographic composition of enhanced photosensitivity and a process for its preparation, US patent: 5,843,632. 1998-12-01
    [26] J. M. Winslow, G. L. Featherstone, D. C. Lynch, et al. Chemical sensitization of photothermographic silver halide emulsions, US patent: 5,891,615. 1999-04-06
    [27] S. M. Simpson, D. R. Whitcomb, S. M. Shor. High speed photothermographic materials with combined chemical sensitizers and methods of using same, US patent: 6,423,481. 2002-07-23
    [28] L. M. Eshelman, M. E. Irving, D. H. Levy. Process of preparing a photothermographic composition of enhanced photosensitivity, US patent: 5,858,637. 1999-01-12
    [29] D. C. Lynch, A. L. Opatz, H. J. Gysling et al. High speed photothermographic materials containing selenium compounds and methods of using same, US patent: 6,620,577. 2003-09-16
    [30] K. J. Lushington, H. J. Gysling. Tellurium complexes as chemical sensitizers for silver halides, US patent: 5,677,120. 1997-10-14
    [31] M. Asami, N. Ooshima. Silver halide color photographic light-sensitive material and method for forming color images by using the same, US patent: 5,422,232. 1995-06-06
    [32] K. Yamane, S. Yamashita. The role of silver halides in photothermographic materials with a water dispersible binder, Proceedings of international conference on imaging science, Tokyo: 2002, 29~30
    [33] S. Yamashita. Photothermographic element, US patent: 6,432,627. 2002-08-13
    [34] T. Oikawa. Photothermographic material, US patent: 6,824,962. 2001-11-30
    [35] K. Fukusaka, K. Nakamura, R. Iwamoto, et al. Photothermographic imaging material, EP patent: 1,462,854. 2004-09-29
    [36]曹静,林海莉,姚林辉等.传统化学增感对PVA为粘合剂的光敏热成像材料的光敏性的影响,感光科学与光化学,2005, 23(2): 108~113
    [37]曹静,林海莉,姚林辉等.苯亚磺酸钠在聚乙烯醇为粘合剂的光敏热成像材料中的化学增感,感光科学与光化学,2005, 23(4): 247~252
    [38]曹静,林海莉,姚林辉等.苯并三氮唑在聚乙烯醇为粘合剂的光敏热成像材料中的化学增感,感光科学与光化学,2005, 23(5): 351~356
    [39] Y. E. Usanov, T. B. Kolesova. Investigations of the reactions involved in formation of the light-sensitive phases in thermally developed photomaterials, Journal of Imaging Science and Technology, 1996, 40(2): 104~110
    [40] C. G. Jones. Sensitive photothermographic material, GB patent: 1,480,653. 1977-07-20
    [41] B. B. Bokhonov, L. P. Burleva, W. C. Frank, et al. The Influence of the Photosensitive Silver Halide/Silver Carboxylate Preparation Conditions on the Morphology of Thermally Developed Silver Particles, Journal of Imaging Science and Technology, 1996, 40(5): 417~422
    [42] S. Chen, B. J. Stwertka, P. J. Cowdery-Corvan. On the mechanism of phthalazine toner chemistry in controlling silver nanoparticle growth in photothermographic imaging films, International Congress of Imaging Science, Beijing: 2006, 211~214
    [43] D. R. Whitcomb, R. D. Rogers. Chemistry of photothermographic imaging materials II, Journal of Imaging Science and Technology, 1999, 43(6): 517~520
    [44] D. R. Whitcomb, R. D. Rogers. The properties,crystal, and molecular structure of catena-[(μ-acetato-)-(μ-phthalazine)silver(I)di-hydrate]:{[Ag(μ-O2CCH3)(μ-PHZ)(H2O)2]2}n, Journal of Chemical Crystallography, 1995, 25(3): 137~142
    [45] D. R. Whitcomb, R. D. Rogers. The molecular structure of catena-[(μ-phthalato)-di-(μ-phthalazine)-di-silver(I)hydrate]:[Ag2(μ-(O2C)2C6H4)(μ-PHZ)2(H2O)]n: Carboxylate control of side-on versus tacked coordination polymerization, Inorganica Chimica Acta, 1997, 256(2): 263~267
    [46] C. Zou, J. B. Phillip, S. M. Shor, et al. Photothermographic element with pre-formed iridium-doped silver halide grains, US patent: 5,434,043. 1994-05-09
    [47] M. Lelental, P. J. Ghyzel, J. W. Boettcher, et al. Silver-(carboxylate-azine toner) particles for photothermographic and thermographic imaging, US patent: 2004,0157177. 2004-08-12
    [48] K. Fukui. Photothermographic material, and image forming method using same, US patent: 2004, 053174. 2004-03-18
    [49] F. H. Sansbury, D. B. Oliff, D. M. A. Grieve. Photothermographic elements comprising hydroxamic acid developers. CA patent: 2,185,845. 1997-03-20
    [50] R. D. Rogers, C. V. K. Sharma, D. R. Whitcomb. Molecular tweezers and pentameric aggregates: convergent hydrogen-bonded self-assembly of 2:1 and 2:3 cocrystals of phthalazine: phthalic acid, Crystal Engineering, 1998, 1(3): 255~262
    [51] Y. Yasuhiro, S. Makoto. Photothermographic material, US patent: 6,413,712. 2002-07-02
    [52] D. C. Lynch, P.G. Skoug. Co-developers for black-and-white photothermographic elements, US patent: 6,387,605. 2002-05-14
    [53] T. J. Murray. 3-heteroaramatic-substituted acrylonitrile compounds as co-developers for black-and-white photothermographic and thermographic elements, US patent: 5,635,339. 1997-06-03
    [54] T. J. Murray, S. M. Simpson. Acrylonitrile compounds as co-developers for black-and-white photothermographic and thermographic elements, US patent: 5,545,515. 1996-08-13
    [55] T. J. Murray. 4-Substituted isoxazole compounds as co-developers for black-and-white photothermographic and thermographic elements, US patent: 5,705,324. 1998-01-06
    [56] H. Akahori, K. Morita, A. Nishijima, et al. Electron transfer properties of bisphenol derivatives in relation to their developing properties in silver salt photothermographic systems, Journal of Imaging Science and Technology, 2003, 47(2): 124~132
    [57] H. Akahori, K. Morita, A. Nishijima, et al. Intramolecular hydrogen bonding in bisphenol developing agent for photothermographic application, Journal of Imaging Science and Technology, 2005, 49(4): 381~388
    [58] T. Maekawa, M. Yoshikane, H. Fujimura, et al. Reaction mechanisms in thermally developed photographic systems based on silver carboxylate, Journal of Imaging Science and Technology, 2001, 45(4): 365~372
    [59] P. M. Zavlin, A. N. Batrakov, P. Z. Velinzon, et al. Thermally developed photographic materials based on silver organic salts, Journal of Imaging Science and Technology, 1999, 43(6): 540~544
    [60] K. Sakizadeh. Antifoggants and print stabilizers for photothermographic systems based on AgX/Ag carboxylates—a review, Journal of Imaging Science and Technology, 2003, 47(3): 263~277
    [61] S. P. Birkeland. Silver halide, heat-developable image sheet containing mercuric ion, US patent: 3,589,903. 1971-06-29
    [62] T. Masuda, K. Adachi. Thermodevelopable photographic material with N-haloacetamide, US patent: 3,957,493. 1976-05-18
    [63] Van P. Oanh. Photothermographic elements, US patent: 4,784,939. 1988-11-15
    [64] P. G. Skoug. Photothermographic elements, US patent: 5,028,523. 1991-07-02
    [65] N. Miura, K. Ishida. Thermally processable photosensitive material, image forming method and antifoggant, US patent: 6,248,512. 2001-06-19
    [66] K. Fukui, M. Takasaki, K. Watanabe. Photothermographic material, US patent: 6,368,782. 2002-04-09
    [67] K. Fukui. Photothermographic material, US patent: 6,558,894. 2003-05-06
    [68] Y. Yoshioka, M. Suzuki. Photothermographic material, EP patent: 1,096,310. 2001-05-02
    [69] M. Suzuki, Y. Yoshioka. Bisphenol-phosphorus compound complex and thermally processed image recording material utilizing the same, US patent: 6,573,407. 2003-03-06
    [70] K. A. Penfound, S. Walden. Spectrally sensitized photothermographic materials and preparation thereof, US patent: 4,476,220. 1984-10-09
    [71] B. A. Lea. Use of merocyanine compounds in photothermosensitive systems, US patent: 3,719,495. 1973-03-06
    [72] B. A. Lea. Sensitizers for photothermographic media, US patent: 4,835,096. 1989-05-30
    [73] J. R. Miller, S. Kalousdian, B. C. Willett, et al. Sensitizers for photothermographic elements, US patent: 5,441,866. 1995-08-15
    [74] W. M. Przezdziecki, J. Z. Deruyter. Method for the manufacture of a thermally processable imaging element, EP patent: 0,613,045. 1994-08-31
    [75] C. Uyttendaele, H. V. Aert, F. Louwet, et al. Binders for thermographic materials, EP patent: 0,903,624. 1999-03-24
    [76] C. Uyttendaele, H. V. Aert, F. Louwet, et al. Binders for thermographic materials, US patent: 6,306,572. 2001-10-23
    [77] M. Fujita, T. Ishizaka, A. Hatakeyama, et al. Photothermographic material, USpatent: 6,132,949. 2000-10-17
    [78] K. Katon, A. Hatakeyama. Photothermographic material and method for making, US patent: 6,140,037. 2000-10-31
    [79] S. Nanami, K. Okada, T. Satoh, et al. DRYPIX 7000/DI-HL Dry Imaging System, Fujifilm Research and Development, 2003, 48: 39~46
    [80] C. F. Zou, M. R. V. Sahyun, B. Levy. Mechanisms of latent imaging formation in photothermographic silver imaging media, Journal of Imaging Science and Technology, 1996, 40(2): 94~103
    [81] B. B. Bokhonov, L. P. Burleva, W. C. Frank, et al. Morphological Regularities in the Formation of Silver Halides During In Situ Halidization of Silver Stearate, Journal of Imaging Science and Technology, 1996, 40(2): 85~93
    [82] P. L. Potapov, D. Schryvers, H. Strijckers, et al. Microstructural mechanism of development in photothermographic materials, Journal of Imaging Science and Technology, 2003, 47(2): 115~123
    [83] D. H. Klosterboer, Neblette’s Eighth Edition: Imaging processes and materials, J. M. Sturge, V. Walworth, A. Shepp, Eds., Van Nostrand-Reinhold, New York, 1989, chapter 9, 279~291
    [84] S. H. Kong. A generalized Klosterboer-Rutledge model for photothermographic silver-carboxylate media, Journal of Imaging Science and Technology, 1999, 43(6): 509~516
    [85] H. Tsuzuki, A. Hatakeyama, K. Nakajima. The aqueous-coated Phototheromographic material, Proceedings of international conference on imaging science, Tokyo: 2002, 27~28
    [86] S. Chen, T. N. Blanton, D. R. Whitcomb, et al. Probing the nature of developed Ag in photothermographic media, 2004 international symposium on silver halide technology, IS&T, Springfield, VA, 2004, 11~15
    [87] S. Chen, T. N. Blanton, D. R. Whitcomb, et al. Probing the nature of developed Ag in photothermographic media, Journal of Imaging Science and Technology, 2005, 49(4): 365~369
    [88] M. B. Mizen. Silver formation, particle size distribution, and morphology in photothermographic systems, Journal of Imaging Science and Technology, 1999, 43(6): 528~534
    [89] T. Ohzeki, Y. Yoshioka, K. Nagao. Features of Ag image tone in water-coated photothermographic materials, 2004 international symposium on silver halide technology, IS&T, Springfield, VA, 2004, 7~10
    [90] J. T. Maeyer, T. J. Johnson, Amy K. Smith, et al. Pyrimidine, pyridazine, quinazoline, phthalazine, and triazine coordination polymers of copper(I) halides, Polyhedron, 2003(3), 22: 419~431
    [91] A. Yatani, M. Fujii, Y. Nakao, et al. Synthesis, structures and properties of the dinuclear copper(II) complexes triply bridged by two oximato and one pyrazolato or one phthalazine, Inorganica Chimica Acta, 2001, 316(1-2): 127~131
    [92] C. ?mer, I. Semra, K. Mustafa, et al. Dibromobis(phthalazine-kN2)zinc(II), Acta Crystallographica Section E, 2004, E60: 424~425
    [93] C. ?mer, I. Semra, K. Mustafa, et al. Dichlorobis(phthalazine)zinc(II), Acta Crystallographica Section E, 2004, E60: 1134~1136
    [94] D. R. Whitcomb, M. Rajeswaran. Coordination chemistry of photothermographic imaging materials: III, Journal of Imaging Science and Technology, 2003, 47(2): 107~114
    [95] D. R. Whitcomb, M. Rajeswaran, S. Chen. Silver coordination chemistry of photothermographic imaging systems: IV, 2004 international symposium on silver halide technology, IS&T, Springfield, VA, 2004, 22~24
    [96] D. R. Whitcomb, L. P. Burleva, M. Rajeswaran et al. Silver coordination chemistry of photothermographic imaging systems: IV, Journal of Imaging Science and Technology, 2005, 49(4): 394~397
    [97] M. Rajeswaran, T. N. Blanton, D. J. Giesen, et al. Azine bridged silver coordination polymers: Powder X-ray diffraction route to crystal structure determination of silver benzotriazole, Journal of Solid State Chemistry, 2006, 179(4): 1053~1059
    [98] D. R. Whitcomb, M. Rajeswaran. Designing silver carboxylate polymers: Crystal structures of silver-acetyl-benzoate and silver-1, 2-benzenedicarboxylate monomethyl ester, Polyhedron, 2006, 25(8): 1747~1752
    [99] D. R. Whitcomb, M. Rajeswaran. The first silver catechol complexes: Crystal structures of triphenylphosphine stabilized silver tetra-bromo and tetra-chloro-catechols, Polyhedron, 2006, 25(9): 2033~2038
    [100] D. R. Whitcomb, M. Rajeswaran. Asymmetric versus symmetric silver-sulfur-nitrogen bonding in the solid-state structure of silver-1-phenyl-1H-tetrazole-5-thiol: Single crystal structure of {[(AgPMT)4·0.5THF]}n, Journal of Coordination Chemistry, 2006, 59(11): 1253~1260
    [101] D. R. Whitcomb, M. Rajeswaran. A new silver-silver-bonded dimer complex: Solid-state structure of bis[μ-2H-1,3-benzoxazine-2,4(3H)-dionato]disilver(I), Acta Crystallographica Section E: structure reports online, 2006, 62(2): 272~274
    [102] D. R. Whitcomb, M. Rajeswaran. Poly [aqua-μ-1H-1, 2, 3-benzotriazole-μ- nitrato-nitrato disilver(I)], Acta Crystallographica Section E: structure reports online, 2006, 62(9): 2133~2135
    [103]孙瑞卿,张汉辉,杨齐瑜.掺杂钐离子的邻苯二甲酸锌的光谱研究,光谱学与光谱分析,2004, 24(5): 592~595
    [104]洪伟良,赵凤起,刘剑洪等.邻苯二甲酸Pb(II)配合物纳米颗粒的合成及其燃烧催化性能研究,无机化学学报,2004, 20(8): 996~1000
    [105]林斌,孙瑞卿,杨齐瑜.掺杂Ce4+,Nb5+离子的邻苯二甲酸锌的光谱研究,福州大学学报(自然科学版),2003, 31(4): 488~502
    [106] M. Kurt, S. Yurdakul. Vibrational spectra of phthalazine by density functional theory calculations and assignment of its metal complexes, Journal of Molecular Structure: theochem, 2005, 717 (1-3): 171~178
    [107]罗世永,张家芸,周土平.固/固相反应动力学模型及其应用,材料导报,2000, 14(4): 6~7, 40
    [108] D. R. Lide, G. W. A. Milne. Handbook of Data on Common Organic Compounds, Boca Raton: CRC Press, 1995: 271
    [109]周益明,叶向荣,李道华等. XRD谱研究扩散控制的固-固相反应,高等学校化学学报,1999, 20(3): 361~363
    [110]魏坤,李番,陈达.纳米晶稀土复合氧化物Dy1-xSrxCoO3-y III.固相反应动力学的研究,化学学报,2000, 58(1): 71~74
    [111] S. O. Chen, H. F. Braun, T. P. Papageorgiou. Kinetics of formation of RuSr2GdCu2O8 by solid-state reaction of Sr2GdRuO6 and CuO, Journal of Alloys and Compounds, 2003, 351: 7~13
    [112]孙世清.用热分析方法研究WO3和MeCO3固相反应的化学行为,高等学校化学学报,1985, 6(2): 151~155
    [113]张卫华,刘金玲,刘赛珠.醋酸铜与H2DMG等温固相反应动力学研究,湖北师范学院学报(自然科学版),1999, 19(3): 27~29
    [114]杨南如.无机非金属材料测试方法,武汉:武汉工业大学出版社,1989. 74~81
    [115]罗世永.固相反应合成SrTiO<,3>的动力学及固/固反应动力学预测系统的开发,博士学位论文,北京:北京科技大学,2001
    [116]丛秋滋.多晶二维X射线衍射,北京:科学出版社,1997. 97~117
    [117]赵长伟,马沛生,宋小溪.脂肪族氨基酸在水溶液中扩散系数的测定与关联,化工学报,2003, 54(12): 1690~1695
    [118]赵长伟,马沛生,朱春英等.葡萄糖水溶液扩散系数的测定与关联,化工学报,2005, 56(1): 1~5
    [119]赵长伟,李继定,马沛生. L-抗换血酸水溶液扩散系数的测定,高校化学工程学报,2006, 20(1): 1~6
    [120]张建候,袁继堂,周骏.对改进液相扩散膜池法的初步考察,化学工业与工程,1986, 3(4): 1~4
    [121] L. J. Gosting. A study of the diffusion of potassium chloride in water at 25℃with the Gouy interference method, Journal of the American Chemical Society, 1950, 72(10): 4418~4422
    [122]赵晨阳,李效玉.高固含量的苯乙烯/丙烯酸丁酯/丙烯酸共聚物乳液的制备,现代化工,2004, 7: 44~46
    [123]张文兴,张龙,李彦均.高固含量苯丙纳米乳液聚合研究,胶体与聚合物,2005, 23(4): 14~17
    [124]赖贵贞,李晓,张卫英等.高聚合物含量丙烯酸酯超微胶乳的制备,离子交换与吸附,2005, 21(5): 474~480
    [125] S. F. Yang, P. T. Xiong, T. Gong, et al. St-BA copolymer emulsions prepared by using novel cationic maleic dialkyl polymerizable emulsifier, European Polymer Journal, 2005, 41(12): 2973~2979
    [126]邓宝祥,于瑞香,赵梅仙.聚丙烯酸酯乳液的合成及其性能研究,天津工业大学学报,2005, 24(3): 31~34
    [127]张匀.用作光敏热显成像材料粘合剂的苯丙乳液的合成及性能研究,硕士学位论文,天津:天津大学,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700