用户名: 密码: 验证码:
食品级月桂酸单甘油酯微乳体系的构建及其抑菌研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微乳液是一种由一定配比的表面活性剂、助表面活性剂、水和油自发形成的各向同性、外观透明或半透明、热力学稳定的分散体系,其液滴粒径约为1~100nm。虽然微乳化技术在药物、化妆品、三次采油等领域已经有了广泛的应用,但在食品领域的研究还处于起步阶段。自1990年第199届美国化学协会论坛开始,食品微乳化逐渐引起研究者的重视,特别是作为生物活性物质的载运体系,已经成为近几年的研究热点。
     本论文利用微乳化技术,构建了以月桂酸单甘油酯为油相的食品级微乳体系,测定了其对典型食品腐败菌的抑菌作用,并揭示了食品级微乳液的抑菌机理。主要研究结果如下:
     (1)利用拟三元相图,研究了各成分对以月桂酸单甘油酯为油相的食品级微乳体系相行为的影响。结果表明,只由水、油、单一表面活性剂很难形成食品级微乳液,但是当加入短链醇、多元醇、有机酸和盐时能形成食品级微乳体系。短链醇、短链酸、多元醇能大大提高微乳体系中油相的增溶量。有机盐特别是苯甲酸钠,作为助水溶物,也能提高油相的增溶量。吐温20,作为吐温系列中亲水性最强的表面活性剂,对油相的增溶量也是最大的。但是,蔗糖酯、辛癸酸甘油酯和卵磷脂形成微乳液的能力很差。
     通过对粘度与pH值的测定结果表明,随着水相的稀释,微乳体系会在某一点从W/O型转变为O/W型,证实了所构建的以月桂酸单甘油酯为油相的食品级微乳体系为U型微乳体系。
     (2)构建了三种不同的食品级U型微乳体系,即月桂酸单甘油酯-乙醇-吐温20-乳酸钠-水体系、月桂酸单甘油酯-乙醇-丙二醇-吐温20-苯甲酸钠-水体系、月桂酸单甘油酯-乙醇-吐温80-山梨酸钾-水体系,成功制备了三个微乳液配方,以抑菌率为指标,分别测试其对枯草芽孢杆菌(Bacillus subtilis)、嗜麦芽窄食单胞菌(Stenotrophomonas maltophilia)、黑曲霉(Aspergillus niger)和意大利青霉(Penicillium italicum)的抑菌效果。结果表明,以月桂酸单甘油酯为油相的微乳体系能够增溶不同抗菌盐类物质,对食品腐败菌(革兰氏阳性、革兰氏阴性细菌以及霉菌)具有很好的抑制效果。在所得微乳液的抑菌效果中,月桂酸单甘油酯起主要抑菌作用,其次为所增溶的抗菌盐类物质。证实了增溶至少两种食品防腐剂于微乳体系的可行性,并初步验证了该体系对食品腐败菌的抑菌作用。
     (3)以月桂酸单甘油酯为油相,丙酸为助乳化剂,苯甲酸钠为盐、吐温80为表面活性剂构建U型食品级微乳体系,并测试该微乳体系配方的广谱抑菌作用,结果表明:
     微乳液对金黄色葡萄球菌(Staphylococcus aureus)、大肠杆菌(Escherichiacoli)、枯草芽孢杆菌的最低杀菌浓度分别是500μL/L、250μL/L、250μL/L。杀菌动力学曲线表明,在最低杀菌浓度下,微乳液在5 min内能杀死90%以上的细菌。微乳液对大肠杆菌的抑菌作用要强于金黄色葡萄球菌和枯草芽孢杆菌,因为在60 min后金黄色葡萄球菌和枯草芽孢杆菌细菌数下降4个数量级左右,而大肠杆菌则被全部杀死。
     微乳液对黑曲霉和意大利青霉的最低杀菌浓度分别是500μL/L和1000μL/L。杀菌动力学曲线表明,在最低杀菌浓度下,微乳液能在15 min和30 min内杀死99%以上的黑曲霉孢子和意大利青霉孢子。微乳液对黑曲霉的抑菌作用要强于意大利青霉,因为120 min后黑曲霉孢子数下降5个数量级左右,而意大利青霉孢子数则下降3个数量级左右。
     (4)以大肠杆菌和黑曲霉为代表,通过细胞表面疏水性试验和细胞膜通透性试验及超微结构观察,探讨了食品级微乳液对细菌和霉菌的抑菌作用机理。结果表明:
     细胞表面疏水性试验和细胞膜通透性试验与微乳液对大肠杆菌的杀菌动力学曲线的趋势是相一致的。这说明微乳液可作用于细菌细胞膜,使得细胞表面疏水性下降和细胞膜通透性增加,导致了细菌的死亡。
     细胞膜通透性试验以及采用光学和扫描电子显微镜观察真菌微观结构的变化,与微乳液对黑曲霉在液体和固体培养基中的杀菌结果也相一致,说明微乳液对真菌生长具有良好的抑制效果,对真菌孢子也有很好的杀灭作用,其原因在于微乳液引起真菌细胞壁和生物膜的结构与功能的破坏。
Microemulsions are colloidal nanodispersions of oil and water stabilized by an interfacial film of surfactant molecules,typically in conjunction with a cosurfactant. The technique has been widely used in pharmaceutics,cosmetics,enhanced oil recovery,but its application in foods hadn't caught much attention before 199th ACS (American Chemical Society) symposium in 1990.As a potential delivery system for bioactives in food,microemulsions recently have been of increasing interest to researchers and exhibited great potential on its industrial applications.
     The physicochemical characterization of food-grade microemulsion systems with glycerol monolaurate as oil and the antimicrobial activities against foodborne pathogens have been studied in this paper.The main research findings are as follows:
     (1) The effects of short-chain alcohols,organic acids,polyols,nonionic surfactants and salts on the phase behavior of the food-grade microemulsions have been elucidated.Results showed that the food-grade microemulsions were difficult to formulate from a three-component systems based on water,oil and single surfactant, but it is possible to formulate these microemulsions by the addition of short-chain alcohols,organic acids,polyols and salts.The oil solubilization was dramatically improved in the presence of short-chain alcoho-ls,organic acids and polyols,and organic salts contributed to the improved oil solubilization as hydrotropes.Tween 20 being the most hydrophilic surfactant in Tweens solubilized the maximum oil. However,it was hard to form microemulsions in the presence of sucrose esters even when mixed with ethanol.The oil solubilization capability in these systems was clearly reflected in the phase behavior of these systems.
     Viscosity and pH results showed that along the dilution lines,at a certain composition the systems inverted from water-in-oil to oil-in-water microemulsions, demonstrated as U-type microemulsion systems capable of being infinitely and progressively aqueous phase diluted.
     (2) Three different food-grade microemulsion systems(glycerol monolaurate/ethanol/Tween 20/sodium lactate/water microemulsion system,glycerol monolaurate/ethanol/propylene glycol/Tween 20/sodium benzoate/water microemulsion system and glycerol monolaurate/ethanol/Tween 80/potassium Sorbate/water microemulsion system) were established and their antimicrobial activities against Bacillus subtilis,Stenotrophomonas maltophilia,Aspergillus niger and PeniciIlium italicum respectively were examined.Results showed that the food-grade microemulsion systems with glycerol monolaurate as oil was able to sotubilize different antimicrobial salts and exhibited effective inhibitory activities against foodborne pathogens,including Gram-positive,Gram-negative bacteria and fungi.It was found that in the antimicrobial activities of these microemulsion systems, glycerol monolaurate made a major contribution,followed by the solubilized salts. These results confirmed the feasibility of solubilizing at least two food preservatives in a microemulsion system and the antimicrobial effects on foodborne pathogens.
     (3) The U-type microemulsion system with glycerol monolaurate as oil, propionic acid as cosurfactant,sodium benzoate as salt and Tween 80 as surfactant was characterized and the broad-spectrum antimicrobial activities were examined.
     The minimum bactericidal concentrations of the microemulsion against Staphylococcus aureus,Escherichia coli and B.subtilis were 500μL/L,250/μL/L and 250μL/L,respectively.Kinetics of killing results showed that the microemulsion at minimum bacterial concentrations killed over 90%bacteria in 5 min.The antimicrobial activities of the microemulsion against E.coli were stronger than those against S.aureus and B.subtilis,since after 60 min the microemulsion caused a 4 log reduction in S.aureus and B.subtilis titre while a complete loss ofE.coli viability.
     The minimum fungicidal concentrations of the microemulsion against A.niger and P.italicum were 500μL/L and 1000μL/L,respectively.Kinetics of killing results showed that the microemulsion at minimum fungicidal concentrations killed over 99%A.niger and P.italicum spores in 15 min and 30 min respectively.The antimicrobial activities of the microemulsion against A.niger were stronger than those against P.italicum,since after 120 min the microemulsion caused a 5 log reduction in A.niger spores titre while a 3 log reduction in P.italicum spores titre.
     (4) Based on the broad-spectrum antimicrobial activities,the antimicrobial mechanisms of the microemulsion against E.coli representing foodbome bacteria and A.niger representing foodborne fungi were examined.
     The cell surface hydrophobicity and membrane permeability experiments were in good agreement with the kinetics of killing results,and indicated that the interaction between the antimicrobial microemulsion and bacterial membranes significantly decreases the bacterial cell hydrophobicity and induces the quick release of 260 nm absorbing materials,leading to the rapid loss of bacterial viability.
     The membrane permeability experiment and microstructure observation using light microscopy and scanning electron microscopy were in good agreement with the antifungal activities by agar dilution method and broth dilution method,and indicated excellent growth inhibition and sporicidal activities against A.niger,These findings suggested that the observed antimicrobial activities may be attributed to a disruption and disfunction of fungal cell walls and biological membranes.
引文
Agrawal S, Pancholi SS, Jain NK, Agrawal GP. Hydrotropic solubilization of nimesulide for parenteral administration. International Journal of Pharmaceutics 2004,274: 149-155.
    
    Aguilera JM. Why food microstructure? Journal of Food Engineering 2005, 67: 3-11.
    Al-Adham ISI, Khalil E, Al-Hmoud ND, Kierans M, Collier PJ. Microemulsions are membrane-active, antimicrobial, self-preserving systems. Journal of Applied Microbiology 2000, 89: 32-39.
    Al-Adham ISI, Al-Hmoud ND, Khalil E, Kierans M, Collier PJ. Microemulsions are highly effective anti-biofilm agents. Letters in Applied Microbiology 2003, 36: 97-100.
    Amar I, Aserin A, Garti N. Solubilization patterns of lutein and lutein esters in food grade nonionic microemulsions. Journal of Agricultural and Food Chemistry 2003, 51:4775-4781.
    Amar I, Aserin A, Garti N. Microstructure transitions derived from solubilization of lutein and lutein esters in food microemulsions. Colloids and Surfaces B: Biointerfaces 2004, 33: 143-150.
    Attwcod D. Coloid drug delivery systems. In: Kreuter J, editor. Drug and the Pharmaceutical Sciences Series. New York: Marcel Dekker. 1994, p 31-71.
    Balasubramanian D, Friberg SE. Hydrotropes-Recent Developments. In: Matijevic E, editor. Surface and Colloid Science. New York: Plenum Press. 1993, p 197-220.
    Bartnicki-Garcia S. Glucans, walls and morphogenesis: on the contributions of J.G.H. Wessels to the golden decades of fungal physiology and beyond. Fungal Genetics and Biology 1999, 27: 119-127.
    Bergsson G, Arnfinnsson J, Karlsson SM, Steingrimsson O, Thormar H. In vitro inactivation of Chlamydia trachomatis by fatty acids and monoglycerides. Antimicrobial Agents and Chemotherapy 1998, 42: 2290-2294.
    Bergsson G, Arnfinnsson J, Steingrimsson O, Thormar H. In vitro killing of Candida albicans by fatty acids and monoglycerides. Antimicrobial Agents and Chemotherapy 2001, 45: 3209-3212.
    Bergsson G, Steingrimsson O, Thormar H. In vitro susceptibilities of Neisseria gonorrhoeae to fatty acids and monoglycerides. Antimicrobial Agents and Chemotherapy 1999, 43: 2790-2792.
    Bergsson G, Steingrimsson O, Thormar H. Bactericidal effects of fatty acids and monoglycerides on Helicobacter pylori. International Journal of Antimicrobial Agents 2002, 20: 258-262.
    Betriu C, Sanchez A, Palau ML, Gomez M, Picazo JJ. Antibiotic resistance surveillance of Stenotrophomonas maltophilia, 1993-1999. Journal of Antimicrobial Chemotherapy 2001,48: 152-154.
    Blundell JE, Thurlby PL. Experimental manipulations of eating: advances in animal models for studying anorectic agents. Pharmacology & Therapeutics 1987, 34: 349-401.
    Bolzinger-Thevenin MA, Grossiord JL, Poelman MC. Characterization of a sucrose ester microemulsion by freeze fracture electron micrograph and small angle neutron scattering experiments. Langmuir 1999, 15: 2307-2315.
    Boned C, Saidi Z, Xans P, Peyrelasse J. Percolation phenomenon in ternary microemulsions: The effect of pressure. Phys Rev E 1994, 49: 5295-5302.
    Boutonnel M, Kizling J, Stenins P, Maire G. The preparation of monedisperse coloidal metal particles from microemulsion. Coloids and Surfaces 1982, 5: 209-225.
    Cagri A, Ustunol Z, Ryser ET. Antimicrobial edible films and coatings. Journal of Food Protection 2004, 67: 833-848.
    Callaghan A, Doyle R, Alexander E, Palepu R. Thermodynamic properties of micellization and adsorption and electrochemical studies of hexadecylpyridinium bromide in binary mixtures of 1,2-ethanediol with water. Langmuir 1993, 9: 422-3426.
    Carson CF, Mee BJ, Riley TV. Mechanism of action of melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrobial agents and chemotherapy 2002,46: 1914-1920.
    Cha DS, Chinnan MS. Biopolymer-based antimicrobial packaging: review. Critical Reviews in Food Science and Nutrition 2004, 44: 223-237.
    Chang YC, Chen DGH. Adsorption kinetics and thermodynamics of acid dyes on a carboxymethylated chitosan-conjugated magnetic nano-adsorbent. Macromolecular Bioscience 2005, 5: 254-261.
    Charych D, Cheng Q, Reichert A, Kuziemko G, Stroh N, Nagy J, Spevak W, Stevens R. A 'litmus test' for molecular recognition using artificial membranes. Chemistry & Biology 1996, 3: 113-120.
    Chen H, Weiss J, Shahidi F. Nanotechnology in nutraceuticals and functional foods. Food Technology 2006, 60: 30-36.
    Chhater AS, Joshi RA, Kalkarni BD. Microemulsions as media for organic synthesis: selective nitration of phenol to ortho-nitrophenol using dilute nitric acid. Journal of Colloid and Interface Science 1993, 158: 183-187.
    Chinnan MS, Park HJ. Effect of plasticizer level and temperature on water vapor transmission of cellulose-based edible films. Journal of Food Process Engineering 1995,18:417-429.
    Clausse M, Nicolas Morgantini L, Zradba A, Touraud D. Water/ionic surfactant/alkanol/hydrocarbon system: influence of certain constitution and composition parameters upon realms of existence and transport properties of microemulsion type media. In: Rosano HL, Clausse M, editors. Microemulsion systems. New York: Marcel Dekker. 1987, p 15-63.
    de Campo L, Yaghmur A, Garti N. Five-component food-grade microemulsions: structural characterization by SANS. Journal of Colloid and Interface Science 2004, 274: 251-267.
    Dungan SR. Microemulsions in foods: properties and applications. In: Solans C, Kunieda H, editors. Industrial Applications of Microemulsions. New York: Marcel Dekker. 1997, p 148-170.
    El-Nokaly M, Hiler GD, Mcgrady J. Food microemulsion. 1991, US Patent 5045337.
    Fanun M, Wachtel E, Antalek B, Aserin A, Garti N. A study of the microstructure of four-component sucrose ester microemulsions by SAXS and NMR. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2001, 180: 173-186.
    Flanagan J, Singh H. Microemulsions: a potential delivery system for bioactives in food. Critical Reviews in Food Science and Nutrition 2006, 46: 221-237.
    Fletcher PDI, Galal M, Robinson BH. Structural study of AOT stabilised microemulsions of glycerol dispersed in n-heptane. Journal of the Chemical Society, Faraday Transactions 1 1984, 80: 3307-3314.
    Fu X, Feng F, Huang B. Physicochemical characterization and evaluation of a microemulsion system for antimicrobial activity of Glycerol Monolaurate. International Journal of Pharmaceutics 2006, 321: 171-175.
    Garti N, Benichou A. Recent developments in double emulsions for food applications. In: Friberg S, Larsson K, Sjoblom J, editors. Food emulsions, 4th ed. New York: Marcel Dekker. 2004, p 353-412.
    Garti N, Spernath A, Aserin A, Lutz R. Nano-sized self-assemblies of nonionic surfactants as solubilization reservoirs and microreactors for food systems. Soft Matter 2005, 1:206-218.
    Garti N, Yaghmur A, Leser ME, Clement V, Watzke HJ. Improved oil solubilization in oil/water food grade microemulsions in the presence of polyols and ethanol. Journal of Agricultural and Food Chemistry 2001, 49: 2552-2562.
    Gaonkar AG. Microemulsions of oil and water. 1994, US Patent 5376397.
    Gaysinksy S, Davidson PM, Bruce BD, Weiss J. Growth inhibition of Escherichia coli O157:H7 and Listeria monocytogenes by carvacrol and eugenol encapsulated in surfactant micelles. Journal of Food Protection 2005a, 68: 2559-2566.
    Gaysinksy S, Davidson PM, Bruce BD, Weiss J. Stability and antimicrobial efficiency of eugenol encapsulated in surfactant micelles as affected by temperature and pH. Journal of Food Protection 2005b, 68: 1359-1366.
    Gaysinsky S, Taylor TT, Davidson PM, Bruce BD, Weiss J. Antimicrobial efficacy of eugenol microemulsions in milk against Listeria monocytogenes and Escherichia coli O157:H7. Journal of Food Protection 2007, 70: 2631-2637.
    Golding M, Sein A. Surface rheology of aqueous casein-monoglyceride dispersions. Food Hydrocolloids 2004, 18: 451-461.
    Gradzielski M. Effect of the cosurfactant structure on the bending elasticity in nonionic oil-in-water microemulsions. Langmuir 1998, 14: 6037-6044.
    Gradzielski M, Hoffmann H. Rheological properties of microemulsions. In: Kumar P, Mittal KL, editors. Handbook of Microemulsion Science and Technology. New York: Dekker. 1999, p. 161-192.
    Graveland-Bikker JF, de Kruif C. Self-assembly of hydrolysed alpha-lactalbumin into nanotubes. FEBS Journal 2005, 272 (Suppl 1): 550.
    Graveland-Bikker JF, de Kruif CG. Unique milk protein-based nanotubes: food and nanotechnology meet. Trends in Food Science & Technology 2006a, 17: 196-203.
    Graveland-Bikker JF, Fritz G, Glatter O. Growth and structure of α-lactalbumin nanotubes. Journal of Applied Crystallography 2006b, 39:180-184.
    Graveland-Bikker JF, Schaap IAT, Schmidt CF, de Kruif CG. Structural and mechanical study of a self-assembling protein nanotube. Nano Letters 2006, 6: 616-621.
    
    Guo R, Zhang Q, Qian J, Zou A. Hydrotrope and hydrotrope-solubilization action of penicillin-K in CTAB/n-C_5H_(11)OH/H_2O system. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2002, 196: 223-234.
    Gupta AK, GuptaM. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005, 26: 3995-4021.
    Hamouda T, Baker JR, Antimicrobial mechanism of action of surfactant lipid preparations in enteric Gram-negative bacilli. Journal of Applied Microbiology 2000, 89: 397-403.
    Hamouda T, Hayes MM, Cao Z, Tonda R, Johnson K, Wright DC, Brisker J, Baker JR. A novel surfactant nanoemulsion with broadspectrum sporicidal activity against Bacillus species. The Journal of Infectious Diseases 1999, 180: 1939-1949.
    Hamouda T, Myc A, Donovan B, Shih AY, Reuter JD, Baker JR. A novel surfactant nanoemulsion with a unique non-irritant topical antimicrobial activity against bacteria, enveloped viruses and fungi. Microbiological Research 2001, 156: 1-7.
    Haruyama T. Micro- and nanobiotechnology for biosensing cellular responses. Advanced Drug Delivery Reviews 2003, 55: 393-401.
    Helal GA, Sarhan MM, Abu Shahla ANK, Abou El-Khair EK. Effects of Cymbopogon citratus L. essential oil on the growth, morphogenesis and aflatoxin production of Aspergillus flavus ML2-strain. Journal of Basic Microbiology 2007, 47:5-15.
    Helmut Kaiser Consultancy. Study: nanotechnology in food and food processing industry worldwide 2003-2006-2010-2015. Tuebingen, Germany: Helmut Kaiser Consultancy. 2004, p 80.
    Hoar TP, Schulman JH. Transparent water in oil dispersions: the oleopathic hydromicelle. Nature 1943, 152: 102-103.
    Imafidon GI, Spanier AM. Unraveling the secret of meat flavor. Trends in Food Science & Technology 1994, 5: 315-321.
    Institute of Food Science and Technology (IFST) Trust Fund. Nanotechnology information statement. Available from: http://www.ifst.org/uploadedfiles/ cms/store/attachments/nanotechnology.pdf. Accessed Oct 10, 2006.
    Iwanaga T, Suzuki M, Kunieda H. Effect of added salts or polyols on the liquid crystalline structures of polyoxyethylene-type nonionic surfactants. Langmuir 1998, 14:5775-5781.
    Janaswamy S, Chandrasekaran R. Cation-induced polymorphism in iota-carrageenan. Carbohydrate Polymers 2005, 60: 499-505.
    Kabalnov A, Olsson U, Wennerstrgm H. Salt effects on nonionic microemulsions are driven by adsorption/depletion at the surfactant monolayer. Journal of Physical Chemistry 1995, 99: 6220-6230.
    Kang BK, Lee JS, Chon SK, Jeong SY, Yuk SH, Khang G, Lee HB, Cho SH. Development of self-microemulsifying drug delivery systems (SMEDDS) for oral bioavailability enhancement of simvastatin in beagle dogs. International Journal of Pharmaceutics 2004, 274: 65-73.
    Kramer JM, Gilbert MJ. Bacillus cereus and other Bacillus species. In: Doyle MP, editor. Foodborne bacterial pathogens. New York: Marcel Dekker. 1989, p. 22-70.
    Kriegel C, Kit KM, McClements DJ, Weiss J. Nanofibers as carrier systems for antimicrobial microemulsions. Part I: Fabrication and Characterization. Langmuir 2009,25:1154-1161.
    Kunieda H, Ushio N, Nakano A, Miura M. Three-phase behavior in a mixed sucrose alkanoate and polyethyleneglycol alkyl ether system. Journal of Colloid and Interface Science 1993, 159: 37-44.
    Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Advanced Drug Delivery Reviews 2000, 45: 89-121.
    Lennette EH, Balows A, Hausler WJ, Shadomy HJ. 1985. Manual of clinical microbiology. Washington: American Society for Microbiology.
    Leser ME, van Evert WC, Agterof WGM. Phase behaviour of lecithin-water-alcohol-triacylglycerol mixtures. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1996, 116: 293-308.
    Lichtenberg D, Rosenberg M, Sharfman N, Ofek I. A kinetic approach to bacterial adherence to hydrocarbon. Journal of Microbiological Methods 1985, 4: 141-146.
    Losche M. Protein monolayers at interfaces. Current Opinion in Solid State and Materials Science 1997, 2: 546-556.
    Martino A, Kaler EW. Phase behavior and microstructure of nonaqueous microemulsions. The Journal of Physical Chemistry 1990, 94: 1627-1631.
    Martino A, Kaler EW. Phase behavior and microstructure of nonaqueous microemulsions. 2. Langmuir 1995, 11: 779-784.
    McClements DJ. 2004. Food emulsions: principles, practice and techniques, 2nd ed. Boca Raton, Fla.: CRC Press.
    McClements DJ, Decker EA. Lipid oxidation in oil-in-water emulsions: impact of molecular environment on chemical reactions in heterogeneous food systems. Journal of Food Science 2000, 65: 1270-1282.
    McClements DJ, Decker EA, Weiss J. Novel procedure for creating nano-laminated edible films and coatings. 2005, US Patent UMA 05-27.
    McWilliam Leitch EC, Stewart CS. Susceptibility of Escherichia coli O157 and non-O157 isolates to lactate. Letters in Applied Microbiology 2002, 35: 176-180.
    Morillon V, Debeaufort F, Blond G, Capelle M, Voilley A. Factors affecting the moisture permeability of lipid-based edible films: a review. Critical Reviews in Food Science and Nutrition 2002, 42: 67-89.
    Nagarajan R, Wang C-C. Solution behavior of surfactants in ethylene glycol: probing the existence of a CMC and of micellar aggregates. Journal of Colloid and Interface Science 1996, 178:471-482.
    National Nanotechnology Initiative. Available from: http://www.nano.gov/html/facts/whatIsNano.html. Accessed May 15, 2006.
    Neuberg C. Hydrotropy. Biochemistry Z 1916, 76: 107-176.
    Park HJ. Development of advanced edible coatings for fruits. Trends in Food Science & Technology 1999, 10: 254-260.
    Pelletier C, Bouley C, Cayuela C, Bouttier S, Bourlioux P, Bellon-Fontaine M-N. Cell surface characteristics of Lactobacillus casei subsp. casei, Lactobacillus paracasei subsp. paracasei, and Lactobacillus rhamnosus strains. Applied and Environmental Microbiology 1997, 63:1725-1731.
    Petschow BW, Batema RP, Ford LL. Susceptibility of Helicobacter pylori to bactericidal properties of medium-chain monoglycerides and free fatty acids Antimicrobial Agents and Chemotherapy 1996, 40: 302-306.
    Ricke SC. Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poultry Science. 2003, 82: 632-639.
    Rhim JW. Increase in water vapor barrier property of biopolymer-based edible films and coatings by compositing with lipid materials. Food Science and Biotechnology 2004, 13: 528-535.
    Rihakova Z, Plockova M, Filip V, Smidrkal J. Antifungal activity of lauric acid derivatives against Aspergillus niger. European Food Research and Technology 2001,213:488-490.
    Riley T, Govender T, Stolnik S, Xiong CD, Garnett MC, Ilium L, Davis SS. Colloidal stability and drug incorporation aspects of micellar-like PLA-PEG nanoparticles. Colloids and Surfaces B: Biointerfaces 1999, 16: 147-159.
    Ritzoulis C, Scoutaris N, Papademetriou K, Stavroulias S, Panayiotou C. Milk protein-based emulsion gels for bone tissue engineering. Food Hydrocolloids 2005, 19:575-581.
    Roy BK, Moulik SP. Functions of hydrotropes (sodium salicylate, proline, pyrogallol, resorcinol and urea) in solution with special reference to amphiphile behaviors. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2002, 203: 155-166.
    Schechter RS, Bourrel M. 1988. Microemulsion and Related Systems: formulation, solvency and physical properties. New York and Basel: Marcel Dekker.
    Shibasaki I. Food preservation with nontraditional antimicrobial agents. Journal of Food Safety 1982, 4: 35-58.
    Shrestha LK, Sato T, Acharya DP, Iwanaga T, Aramaki K, Kunieda H. Phase behavior of monoglycerol fatty acid esters in nonpolar oils: reverse rodlike micelles at elevated temperatures. The Journal of Physical Chemistry B 2006a, 110: 12266-12273.
    Shrestha LK, Aramaki K, Kato H, Takase Y, Kunieda H. Foaming properties of monoglycerol fatty acid esters in nonpolar oil systems. Langmuir 2006b, 22: 8337-8345.
    Sikkema J, de Bont JAM, Poolman B. Interactions of cyclic hydrocarbons with biological membranes. Journal of Biological Chemistry 1994, 269: 8022-8028.
    Spernath A, Aserin A. Microemulsions as carriers for drugs and nutraceuticals. Advances in Colloid and Interface Science 2006a, 21: 47-64.
    Spernath A, Aserin A, Garti N. Fully dilutable microemulsions embedded with phospholipids and stabilized by short-chain organic acids and polyols. Journal of Colloid and Interface Science 2006b, 299: 900-909.
    Spernath A, Yaghmur A, Aserin A, Hoffmam RE, Garti N. Food-grade microemulsions based on nonionic emulsifiers: media to enhance lycopene solubilization. Journal of Agricultural and Food Chemistry 2002, 50: 6917-6922.
    Teixeira PC, Leite GM, Domingues RJ, Silva J, Gibbs PA, Ferreira JP. Antimicrobial effects of a microemulsion and a nanoemulsion on enteric and other pathogens and biofilms. International Journal of Food Microbiology 2007, 118: 15-19.
    ter steeg PF, Otten GD, Alderliesten M, de Weijer R, Naaktgeboren G, Bijl J, Vasbinder AJ, Kershof I, van Duijvendijk AM. Modelling the effects of (green) antifungals, droplet size distribution and temperature on mould outgrowth in wate-in-oil emulsions. International Journal of Food Microbiology 2001, 67: 227-239.
    Thevenin MA, Grossiord JL, Poelman MC. Sucrose esters/cosurfactant microemulsion systems for transdermal delivery: assessment of bicontinuous structures. International Journal of Pharmaceutics 1996, 137: 177-186.
    von Corswant C, Engstrom S, Soderman O. Microemulsions based on soybean phosphatidylcholine and triglycerides. Phase behavior and microstructure. Langmuir 1997,13:5061-5070.
    
    von Corswant C, Soderman O. Effect of adding isopropyl myristate to microemulsions based on soybean phosphatidylcholine and triglycerides. Langmuir 1998,14:3506-3511.
    Wang LL, Johnson EA. Control of Listeria monocytogenes by monoglycerides in foods. Journal of Food Protection 1997, 60: 131-138.
    Weiss J, Takhistov P, McClements DJ. Functional Materials in Food Nanotechnology. Journal of Food Science 2006, 71: R107-R116.
    Winsor PA. Solvent properties of amphiphilic compounds. London: Butterworths Scientific Pubications. 1954, p 1041-1045.
    Yaghmur A, Aserin A, Abbas A, Garti N. Reactivity of furfural-cysteine model reaction in food-grade five-component nonionic O/W microemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2005, 253: 223-234.
    Yaghmur A, Aserin A, Antalek B, Garti N. Microstructure considerations of new five-component winsor IV food-grade microemulsions studied by pulsed gradient spin-echo NMR, conductivity, and viscosity. Langmuir 2003, 19: 1063-1068.
    Yaghmur A, Aserin A, Garti N. Furfural-cysteine model reaction in food grade nonionic oil/water microemulsions for selective flavor formation. Journal of Agricultural and Food Chemistry 2002a,50: 2878-2883.
    Yaghmur A,Aserin A,Garti N.Phase behavior of microemulsions based on food-grade nonionic surfactants:effect of polyols and short-chain alcohols.Colloids and Surfaces A:Physicochemical and Engineering Aspects 2002b,209:71-81.
    Yaghmur A,Aserin A,Garti N.Fully dilutable microemulsions embedded with phospholipids and stabilized by short-chain organic acids and polyols.Journal of Colloid and Interface Science 2006,299:900-909.
    Yu W,Zou A,Guo R.Hydrotrope and hydrotrope-solubilization action of Vitamin C.Colloids and Surfaces A:Physicochemical and Engineering Aspects 2000,167:293-303.
    Zana R.Microemulsion Heterogeneous.Chemical Reviews 1994,1:145-157.
    安娅,徐军,张晋,胡长刚,李干佐,王志宁,王仲妮,张笑一,郑利强.Brij35/油酸钠/油酸/水体系的溶致液晶性质—应用偏光显微镜,SAXS,~2H-NMR和流变等方法.中国科学:B辑.2006,3:234-243.
    崔正刚,殷福珊.微乳化技术与应用.北京:中国工业出版社.1999,p 306-311.
    傅小伟,冯凤琴,刘闽年.微乳化防霉剂的应用研究.中国食品学报.2003,3:13-17.
    郭荣.微乳液特性与应用.江苏化工,1989,4:14-17.
    侯振建.食品添加剂及其应用技术.北京:化学工业出版社.2004.
    黄放良,李干佐,张文吉,折东梅,李凤敏,张春华,卜小莉.高效氯氰菊酯微乳化复合表面活性剂体系的相行为及增溶.中国农业科学.2006,6:1173-1178.
    蒋笃孝,彭一鸣,宋龄瑛.改性卵磷脂的微乳化性研究.食品科学.2004,25:28-32.
    李干佐.表面活性剂复配对胶束和微乳液形成的影响.日用化学工业.1989,5:1-6.
    李刚森,王红霞,张高勇.微乳聚合制备聚苯乙烯-聚乙烯醇纳米粒子.化工新型材料.2006,3:24-26.
    李华佳,辛志宏,胡秋辉.食品纳米技术与纳米食品研究进展.食品科学.2006,27:271-274.
    梁英.TiGeW12040/Ti02催化剂微乳化合成葡萄糖酯.食品科技.2005,4:54-56.
    S恒次,H田中,K森.透明微乳液.2002,中国专利CN1348353.
    邵庆辉,古国榜,章莉娟.微乳液系统的研究和应用现状与展望.江苏化工.2002.,30:18-27.
    沈吉静,赵振国,马季铭.微乳在有机反应中的应用.化学通报.1998,1:18.
    王刚,尤静,王玉东,王九成,傅经国,赵清香,刘民英.棕榈氯霉素卵磷脂O/W型微乳制剂的研究.江苏药学与临床研究.2006,4:223-225.
    王延平,赵德智,王雷,岳坤霞,高鹏,王峰.柴油微乳液的配制与应用.辽宁石油化工大学学报.2004,3:14-17.
    朱银燕,张高勇,洪昕林,董金凤,张晓光,曾晖.微乳中纳米胶囊的复凝聚法制备.化学学报.2005,16:1505-1509.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700