纳米或微米添加剂对铜—石墨复合材料组织与性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题采用粉末冶金方法制备了以纳米铜、纳米银、微米铜、微米镍为添加剂的四种铜-石墨复合材料试样,首先将添加剂含量为3%的每种复合材料,采用770℃、800℃、830℃、860℃四种烧结温度进行烧结,并依照国家标准中关于电碳制品物理化学性能试验方法的规定,测量了复合材料试样的几项主要性能,进而研究烧结温度对复合材料性能的影响。实验结果表明,随着烧结温度的增加,复合材料的密度、抗弯强度和硬度均增大,电阻率减小,最佳烧结温度为830℃,温度高于830℃后,四种复合材料的强度增加变缓,硬度则出现下降。
     其次用粉末冶金方法制备了四组添加剂含量不同的纳米铜-铜-石墨、纳米银-铜-石墨、微米铜-铜-石墨、微米镍-铜-石墨复合材料试样,经最佳烧结温度烧结后,根据国家标准测量了试样的密度、电阻率、硬度及抗弯强度,并用金相显微镜、扫描电镜和能谱分析,对它们的显微组织、断口形貌进行观察分析,研究添加剂含量和种类不同时对铜-石墨复合材料静态性能的影响。结果表明,纳米银添加剂能有效提高铜-石墨复合材料的性能,而纳米铜添加剂的效果则不甚理想。微米铜添加剂对铜-石墨复合材料的影响不大,微米镍的加入不利于提高铜-石墨复合材料的导电性。
     最后,利用摩擦磨损试验机在滑动速度为10m/s,载荷为4.9N的干摩擦条件下,对四种添加剂含量分别为0%,3%,5%的四组复合材料电刷,进行36h机械摩擦磨损试验,测量了各电刷的磨损量和摩擦系数,用金相显微镜观察了它们的磨面形貌。研究结果表明,含添加剂的复合材料电刷的摩擦系数比不含添加剂的复合材料电刷要大;随着添加剂含量的增加,微米镍-铜-石墨复合材料的磨损量增大,其它三种复合材料的磨损量先增大后减小。
In this paper, four kinds of specimens of Cu-C composites added by nano-copper , nano-silver, micron-copper , micron-nickel were obtained by powder metallurgy technology. Each kind of specimens with 3% additives was sintered under the temperature of 770℃, 800℃, 830℃, 860℃. The important properties are tested according to the state standard of test method for physical-chemical properties of electrical carbon product in order to study the influence of sintering temperature on the specimens. The result shows that as the sintering temperature increases, the density, bending strength and hardness are all larger while the resistivity reduces. The optimum sintering temperature is 830℃. When the sintering temperature exceeds 830℃, the strength increases slowly and the hardness even becomes smaller.
     Secondly, nano-copper , nano-silver, micron-copper , micron-nickel with different contents were added into the Cu-C composites . After having been sintered under the optimum sintering temperature, density, electrical resistivity, hardness and bending strength of specimen were tested, then microstructure and fracture surface were observed by metallographic microscope, SEM and EDS. The relationship between the content of additives and static properties was researched. The investigation shows that nano-silver could significantly improve properties of composite. But the effect of nano-copper is not ideal. The micron-copper doesn’t have obvious effects on the properties of composite. The micron nickel will reduce electric conductivity.
     Finally, friction and wear properties of four kinds of composite brush with 0% additives, 3% additives and 5% additives were tested for 36 hours on dry friction test with the sliding speed of 10m/s and the load of 4.9N. The weight loss of mechanical wear and friction coefficient were measured. The microstructure and wearing surface were observed by the metallographic microscope. The result shows that the friction coefficient of composite brush with additive is larger than that of composite brush without additive. With the increasing of additive, the wear loss of Cu-C composites added by micron-nickel increases while the wear loss of the other three kinds of composites first increases then decreases.
引文
[1]林芸.复合材料的发展及应用研究[J].贵州金筑大学学报,2003,(3):105-108.
    [2]王桦.复合材料的性能及应用[J].四川纺织科技,2000,(4):6-9.
    [3]宋伟.金属基复合材料的发展与应用[J].铸造设备研究,2004,(5):48-50.
    [4]吴人杰.复合材料[M].天津:天津大学出版社,2000.
    [5]杜寿全.美国复合材料工业展望[J].纤维复合材料,2000,(2):48-49.
    [6]顾宜.材料科学与工程基础[M].北京:化学工业出版社,2002.
    [7]赵玉涛,戴起勋,陈刚.金属基复合材料[M].北京:机械工业出版社,2007.
    [8]胥锴,刘政,刘萍.金属基复合材料的发展及其应用[J].南方金属,2005,(6):1-6.
    [9]田荣璋,王祝堂.铜合金及其加工手册[M].长沙:中南大学出版社,2002.
    [10]王晓娟,蔡薇,柳瑞清.铜合金引线框架材料现状与发展[J].江西有色金属,2004,18(1):31-34.
    [11] Froes F H.5th international conference on semi-solid processing of alloy and compounds[J].Light Metal Age,1988,56(9):56-61.
    [12]陈文革,王纯.集成电路用金属铜基引线框架和电子封装材料研究进展[J].材料导报,2002,16(7):29-30.
    [13]葛继平.高强度高导电率材料研究概述[J].大连铁道学院学报,2003,24(4):63-70.
    [14] Miyake J, Ghosh G, Fine M E. Design of high-strength, high-conductivity alloy[J].MRS Bulletin,1996,6:13-18.
    [15]王润.金属材料物理性能[M].北京:冶金工业出版社,1993.
    [16] Schreiner H, Ohmann H. Method for internal oxidation of metal powder from an alloy, A mental-powder mixture of various alloys or a partially metal-powder mixture[P].USA:3488183,1970-01-06
    [17] Morioka, Yasuaki. Recent trends in powder metallurgy industry and technology[J].Journal of the Japan Society of Powder and Powder Metallurgy,1993,40(8):755-762.
    [18]李凤平.金属基复合材料的发展与研究现状[J].玻璃钢/复合材料,2004,(1):48-52.
    [19] Karni N, Barkay G B, Bamberger M. Structure and properties of metal-matrix composite[J].Journal of Materials Science Letter,1994,13(7):541-544.
    [20]陈煜,顾明元.真空压力浸渍法制备Gr/Mg复合材料[J].机械工程材料,1996,20(2):23-25.
    [21]葛建华,王迎军,等.溶胶凝胶法在聚合物/无机纳米复合材料中的应用[J].材料科学与工程学报,2004,22(3):442-445.
    [22]殷声.燃烧合成的发展现状[J].粉末冶金技术,2001,19(2):93-97.
    [23]郑华均,黄建国.磁控溅射法制备碳化钨薄膜的研究及应用进展[J].浙江化工,2005,36(1):33-36.
    [24]高海燕,王俊,疏达,等.形变铜基原位复合材料的研究现状及展望[J].材料导报,2006,20(3):87-91.
    [25]杨桦,朱满康,陈延民,等.电刷用铜-石墨复合材料生产新工艺的研究[J].矿物岩石地球化学通报,1997,16:67.
    [26]王彪.银-镀铜石墨复合材料的制备及测试[D].合肥工业大学硕士学位论文,2005年.
    [27]黄守国.碳纤维-铜-石墨复合材料电磨损性能研究[D].合肥:合肥工业大学材料科学与工程学院,2001.
    [28]丁华东,李雅文,浩宏奇,等.铜石墨材料抗弯强度与孔隙的关系[J].中国有色金属学报,1996,6(4):123.
    [29]韩凤麟.铜基粉末冶金的过去、现状及前景[J].粉末冶金工业,2009,1(1):39.
    [30]王树杰,樊云昌,王建强,等.纳米金属粉在粉末冶金中的应用前景[J].石家庄铁道学院学报,2005,18(4):77-79.
    [31]孙丽丽,盖轲.纳米材料的特性及用途[J].锦州师范学院学报,2002,23(2):10-12.
    [32]李泉,曾广赋,席时劝.纳米粒子[J].化学通报,1995(6):29-32.
    [33]杨鼎宜,孙伟.纳米材料的结构特征与特殊性能[J].材料导报,2003,17(10):7-10.
    [34]柳闽生,杨迈之,蔡生民,等.半导体纳米粒子的基本性质及光化学特性[J].化学通报,1997,(1):20-24.
    [35] Gleiter H. Nanostructured materials[J].Acta Metalurgica Sinica, 1997,33(2):30-38
    [36]李斗星,平德海.纳米固体材料的显微结构[J].电子显微学报, 1997 ,16(3):255-260.
    [37]孔晓丽,刘勇兵,杨波.纳米复合材料的研究进展[J].材料科学与工艺,2002,10(4):436-441.
    [38]黄培云.粉末冶金原理[M].北京:冶金工业出版社,1997.
    [39]程继贵,应美芳,王成福.碳纤维增强铜基轴承合金的制造工艺和性能研究[J].中国机械工程,1995,6(3):94-98.
    [40]何平,王志法,肖迎红.烧结温度对Mo-Cu-Ni合金性能的影响[J].中国钼业,2004,28(5):32-34.
    [41]李庶,凤仪,林森等.烧结温度对Cu-MoS2复合材料性能的影响[J].金属功能材料,2008,15(1):24-26.
    [42]梁淑华,范志康.超细Al2O3颗粒增强铜基复合材料的研究[J].复合材料学报,1998,15(3):44-48.
    [43]汪峰涛,吴玉程,王涂根,等.粉末冶金法制备纳米颗粒增强Cu基复合材料[J].材料热处理学报,2007,28(5):10-14.
    [44] Beech.R.N. Copper-graphite materials in industrial Carbon and Graphite[M].London: Soc Chem,1958 448-462
    [45]丁红燕,周广宏,章跃,等.混粉工艺对纳米Al2O3弥散强化铜基复合材料摩擦学特征的影响[J].润滑与密封,2006(1):69-71.
    [46] F.P.鲍登.固体的摩擦与润滑续篇[M].机械工业出版社,1986.
    [47]周序科.浸银石墨电刷的显微组织结构与摩擦磨损的研究[J].新型碳材料,1995,(15):32.
    [48]项启贤.电机滑动接触,碳素译丛,1983,23-34.
    [49] N.B.克拉盖尔斯基.摩擦、磨损与润滑手册[M].机械工业出版社,1985,476-486.
    [50] A.凯尔.电刷和电接触材料[M].北京:机械工业出版社,1993,12-36.
    [51] Shinchi A, Imada Y, Honda F. Electric contact surface of Pd-plated metal in organic gas air atmospheres[J].Wear, 1999, 230:78-85.
    [52]凤仪.电机的电接触及表面膜研究[J].合肥工业大学学报,2000,23(6):12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700