用户名: 密码: 验证码:
ZnO/Ag纳米复合材料的金属、非金属掺杂及其光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了ZnO/Ag纳米复合材料的金属掺杂和非金属掺杂工艺及其掺杂后的光催化性能。研制出光催化性能较好的铁掺杂ZnO/Ag、镉掺杂ZnO/Ag、氮掺杂ZnO/Ag纳米复合材料
     1.以Zn(SO4)2、NH4HCO3、AgNO3、Fe2(SO4)3等为原料,采用两步液相沉淀法对ZnO/Ag纳米复合材料进行过渡金属铁掺杂。考察铁的掺杂比和掺铁反应物浓度对ZnO/Ag纳米复合材料光催化性能的影响规律。采用TEM、XRD等测试方法对铁掺杂ZnO/Ag纳米复合材料的微观形貌和物相结构进行表征。通过观察甲基橙溶液宏观颜色变化及采用UV-vis对铁掺杂ZnO/Ag纳米复合材料光催化降解甲基橙溶液的结果进行表征。
     结果表明:铁掺杂可以改善ZnO/Ag纳米复合材料的光催化性能。铁掺杂ZnO/Ag纳米复合材料粒径较小、分散好、团聚程度小。掺铁反应物浓度为0.134 mol?L-1、铁的掺杂比为5 %时甲基橙的降解速率最高,3 h后对甲基橙溶液的降解率达到97.2 %。
     2.以Zn(NO3)2、(NH4)2CO3、AgNO3、Cd(NO3)2、NH3·H2O等为原料,采用配位均匀共沉淀法对ZnO/Ag纳米复合材料进行过渡金属镉掺杂。考察镉的掺杂比和掺镉反应物浓度对ZnO/Ag纳米复合材料的光催化性能的影响规律。采用TEM、XRD、FT-IR、ICP等测试方法对掺杂材料的微观形貌、物相结构、组成、组分含量进行表征。通过观察甲基橙溶液宏观颜色变化及采用UV-vis对镉掺杂ZnO/Ag纳米复合材料光催化降解甲基橙溶液的结果进行表征。
     结果表明:镉掺杂可以改善ZnO/Ag纳米复合材料的光催化性能。镉掺杂ZnO/Ag纳米复合材料分散性较好,粒径在20 nm左右。掺镉反应物浓度0.084 mol?L-1、掺杂比1:12时镉掺杂ZnO/Ag纳米复合材料的光催化性能最好,3 h后对甲基橙溶液的降解率达到97.9 %,此组掺杂材料中Cd、Zn、Ag的质量比为5:33:3。
     3.以Zn(SO4)2、NH4HCO3、AgNO3、N2、H2等为原料,采用等离子法对ZnO/Ag纳米复合材料进行非金属氮掺杂。考察渗氮时间对ZnO/Ag纳米复合材料的光催化性能的影响规律。采用TEM、XRD、元素分析等测试方法对掺杂材料的微观形貌、物相结构、氮含量进行表征。通过观察甲基橙溶液的宏观颜色变化及采用UV-vis对氮掺杂ZnO/Ag纳米复合材料光催化降解甲基橙溶液的结果进行表征。
     结果表明:等离子法氮掺杂可以明显改善ZnO/Ag纳米复合材料的光催化性能。氮掺杂ZnO/Ag纳米复合材料分散性较好,粒径在20 nm左右。渗氮时间30 min对应的氮掺杂ZnO/Ag纳米复合材料的光催化性能最好。2h后对甲基橙溶液的降解率达到99.7 %。
     4.以Zn(SO4)2、NH4HCO3、AgNO3、C3N3H6等为原料,用气相法对ZnO/Ag纳米复合材料进行非金属氮掺杂。通过正交实验考察渗氮温度、掺杂比、保温时间对ZnO/Ag纳米复合材料光催化性能的影响规律。采用TEM、XRD、ICP、元素分析等测试方法对掺杂材料的微观形貌、物相结构、氮含量进行表征。通过观察甲基橙溶液宏观颜色变化及采用UV-vis对氮掺杂ZnO/Ag纳米复合材料光催化降解甲基橙溶液的结果进行表征。
     结果表明:气相法氮掺杂可以明显改善ZnO/Ag纳米复合材料的光催化性能。氮掺杂ZnO/Ag纳米复合材料分散性较好,粒径在20 nm左右。渗氮温度、掺杂比和保温时间均对ZnO/Ag纳米复合材料的光催化性能有影响,其中掺杂比对ZnO/Ag纳米复合材料的光催化性能影响最大。降解30 min后,渗氮温度380℃、掺杂比1、保温时间2.5 h的氮掺杂ZnO/Ag纳米复合材料对甲基橙溶液的降解率达到94 %,此组纳米复合材料中含氮量为2.564 %。
In this paper, ZnO/Ag nanocomposites doped by Fe, Cd and N were prepared for improving photocatalytic properties of nanocomposites.
     1. Fe-doped ZnO/Ag nanocomposites were prepared by dual-step liquid deposition approach with ZnSO4, NH4HCO3, AgNO3, Fe2(SO4)3 as raw materials. The influences of iron-doped concentration and iron-doped ratio on photocatalytic properties of ZnO/Ag nanocomposites were systemically studied. The micromorphology, microstructures were characterized by transmission electron microcopy, X-ray diffraction. The photocatalytic properties of Fe doped-ZnO/Ag nanocomposites were analyzed quantitatively by UV-vis and macroscopic color change of methyl orange solutions.
     The results show that: doping iron could improve the photocatalytic properties of ZnO/Ag nanocomposites. Fe-doped ZnO/Ag nanocomposite was well-dispersed with small particle size between 15-20 nm. The photocatalytic properties of Fe-doped ZnO/Ag nanocomposites with doping concentration of 0.134 mol?L-1 and doping ratio of 5 % were best, and the degradation ratio of methyl orange solutions was 97.2 % after 3 h.
     2. Cd-doped ZnO/Ag nanocomposites were prepared by coordination homogeneous precipitation approach with Zn(NO3)2, (NH4)2CO3, AgNO3, Cd(NO3)2, NH3·H2O as raw materials. The influences of cadmium-doped concentration and cadmium-doped ratio on photocatalytic properties of ZnO/Ag nanocomposites were systemically studied. The micromorphology, microstructures, components, contents of components were characterized by transmission electron microcopy, X-ray diffraction, Fourier transform infrared spectroscopy and inductively coupled plasma emission spectrometer. The photocatalytic properties of Cd doped-ZnO/Ag nanocomposites were analyzed quantitatively by UV-vis and macroscopic color change of methyl orange solutions.
     The results show that: doping cadmium could improve the photocatalytic properties of ZnO/Ag nanocomposites. Cd-doped ZnO/Ag nanocomposite was well-dispersed with small particle size about 20 nm. The optimization cadmium-doping conditions are shown as follows: the reactant concentration 0.084 mol/L, the doping ratio 1:12, and the degradation ratio of methyl orange solutions was 97.9 % after 3 h. The mass rate of Cd, Zn and Ag of this Cd-doped ZnO/Ag nanocomposite is 5:33:3.
     3. N-doped ZnO/Ag nanocomposites were prepared by a combination of liquid deposition approach and subsequent plasma nitriding with Zn(SO4)2, NH4HCO3, AgNO3, N2, H2 as raw materials. The influences of nitriding time on photocatalytic properties of ZnO/Ag nanocomposites were systemically studied. The micromorphology, microstructures, contents of components were characterized by transmission electron microcopy, X-ray diffraction, elemental analyzer. The photocatalytic properties of N doped-ZnO/Ag nanocomposites were analyzed quantitatively by UV-vis and macroscopic color change of methyl orange solutions.
     The results show that: doping nitrogen could improve the photocatalytic properties of ZnO/Ag nanocomposites. N-doped ZnO/Ag nanocomposite was well-dispersed with small particle size between 15-20 nm. The photocatalytic properties of N-doped ZnO/Ag nanocomposites with nitriding time 30 min were best, and the degradation ratio of methyl orange solutions was 99.7 % after 2 h.
     4. N-doped ZnO/Ag nanocomposites were prepared by a combination of liquid deposition approach and atmosphere nitriding with Zn(SO4)2, NH4HCO3, AgNO3, C3N3H6 as raw materials. The influences of nitriding time, nitrogen-doped ratio, holding time on photocatalytic properties of ZnO/Ag nanocomposites were systemically studied. The micromorphology, microstructures, contents of components were characterized by transmission electron microcopy, X-ray diffraction, inductively coupled plasma emission spectrometer and elemental analyzer. The photocatalytic properties of N doped-ZnO/Ag nanocomposites were analyzed quantitatively by UV-vis and macroscopic color change of methyl orange solutions.
     The results show that: doping nitrogen could improve the photocatalytic properties of ZnO/Ag nanocomposites. N-doped ZnO/Ag nanocomposite was well-dispersed with small particle size between 15-20 nm. The nitriding time, nitrogen-doped ratio and holding time affected the photocatalytic properties of ZnO/Ag nanocomposites, and the maximum impact factor was doping ratio. When nitriding parameter was 380℃, 1, 2.5 h, the degradation rate of methyl orange was the best and was 94 % after 30 min, and N wt. % was 2.564 %.
引文
[1]阎守胜编著.固体物理基础[M].北京:北京大学出版社,2000:80~83
    [2] Fujishima A,Honda K. Electrochemical photolysis of water at a semiconductor electrode[J],Nature,1972,238 (5358):37~38
    [3]胡长峰,光催化氧化在水溶液染料降解处理中的应用[J],内蒙古石油化工,2008,7:19~20
    [4]马育栋,新型纳米光催化材料的研究进展[J],济宁学院学报,2008,29(3):18~21
    [5]余家国,赵修建.半导体多相光催化原理及其在环境保护中的应用[J],武汉工业大学学报,2000,22(4):12~15
    [6] Daneshvar N,Salari D,Khataee A.R.Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2[J],Journal of Photochemistry and Photobiology A: Chemistry,2004,162(2-3):317~322
    [7]李琳.多相光催化在水污染治理中的应用[J],环境科学进展,1994,2(6):23~31
    [8] Ollis D F,Pelizzetti E,Serpone N. Photocatalysis,Fundamentals and Applications[M]. John Wiley & Sons,1989:609~637
    [9] Ollis D F.Photocatalysis and Environment,Trends and Application[M]. Kluwer Aeademic Publishers. 1988:663~677
    [10] Cary H J,Lawrence J,Tosine H M.Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions[J],Bull.Environ.Contam.Toxicol,1976,16(7):697~701
    [11] Shashikant Patole,Islam M,Aiyer R.C.Optical studies of ZnO/Ag nanojunctions[J],Mater. Sci.,2005,10:1007~1013
    [12] KU Y,LEU R M,LEE K C.Decomposition of 2-chlorophenol in aqueous solution by UV irradiation with the presence of titanium dioxide[J],Wat Res,1996,30 (11):2569~2578
    [13] CALZA P,MINERO C,PELIZZETTI E.Photocatalytic transformations of chlorinated methanes in the presence of electron and holes scavengers [J],J. Chem. Soc,1997,93(2):3765~3771
    [14] Wang Chenchi,ZHANG Zhibiao,JACKIE Y Y.Photocatalytic decomposition of halogenated organics over nanocrystalline titanic[J],Nano Structured Mater 1997,30(13):583~586
    [15] FAN Jinfu,YATES J.Mechanism of photooxidation of trichioroethylene on TiO2 detection of intermediates by infrared spectroscopy[J],J Am. Chem. Soc,1996,25(18):4686~4692
    [16] STANFFORD U,GRAY K A,KAMAT P V.Photocatalytic degradation of Chlorophenol: the effects of verified TiO2 concentration and light wave length[J],J Catal,1997,(167):25~32
    [17]司民真,杨正安,武荣国,TiO2光催化降解甲基橙[J],陕西师范大学学报(自然科学版) ,2001,29(专辑):173~174
    [18] Hidaka H.Bahnemann D, Hidaka H,Light-induced degradation of perfluorocarboxylic acids in the presence of titanium dioxide[J],Chemosphere,2007,67:785~790
    [19] Hameraki M,Grzechulska J,Morawski A W,Photocatalytic purification of soil contaminated with oil using modified TiO2 powders[J],Sol. Energy,1999,66(6):395~399
    [20]孙尚梅,赵莲花,康振晋.农药厂生产废水的光催化处理[J],延边大学学报,1998,24 (4):77~79
    [21]包南,王吉顺,王宇.水中吠吗哩酮的固定化光催化氧化[J],大连铁道学院学报,1998,19(2)14~18
    [22]张新荣,杨平,赵梦月.玻璃微球负载复合光催化剂降解有机磷农药[J],郑州工业大学学报,1999,20(1):39~41
    [23]陈士夫,梁新,陶跃武,空心玻璃微球负载TiO2光催化降解有机磷农药[J],感光科学与化学1999,17(1)85~91
    [24] Grzechulska J,Hamerski M,Antoni W M,Photocatalytic decomposition of oil in water[J],Wat. Res.,2000,34(5):1638~1644
    [25]陈士夫,程雪丽,空心玻璃微球附载TiO2清除水面飘浮的油层[J],中国环境科学,1999,19(1):47~50
    [26] Mrowetz M,Selli E,Photocatalytic degradation of formic and benzoic acids and hydrogen peroxide evolution in TiO2 and ZnO water suspensions[J],J. Photochem. Photobio. A: Chem.,2006,180:15~22
    [27] Peng F, Wang H J, Y H, et.al, Preparation of aluminum foil-supported nanosized ZnO thin films and its photocatalytic degradation to phenol under visible light irradiation[J],Mater. Res. Bull.,2006,41(11):2123~2129
    [28]祖庸,雷闫盈,王训等,纳米ZnO的奇妙用途[J],化工新型材料,1999(4):14~16
    [29] He Weiwei,Li Yuping,Chen Zhiqiao,et.al,One-step solution synthesis of monodispersed ZnO nanowhiskers at low-temperature[J],Materials Letter,2006,60(18):2299~2301
    [30] Fang Zhen,Tang Kaibin,Shen Guozhen,et.al,Self-as-sembled ZnO 3D flowerlike nano-st ructures[J],Materials Letter,2006,60(20):2530~2533
    [31] Yang Yinling,Yan Hongwei,Fu Zhengping,et.al,Enhanced photoluminescence from there-dimensional ZnO photonic crystals[J],Solid State Communication,2006,139(5):218~221
    [32] Zhao Aiwu,Luo Tao,Chen Luyang,et.al,Synthesis of ordered ZnO nanorods film on zinc coated Si substrate and their photoluminescence property[J],Materials Chemistry and Physics,2006,99(1):50~53.
    [33] Lao. J.Y,Huang. J.Y,Wang. D.Z,et.al,Nanobridges and Nanonails[J],Nano Lett,2003,3:235~237
    [34] S.J.Pearton,D.P.Norton,K.Ip, et.al,Recent progress in processing and properties of ZnO[J],Progress in Materials Science,2005,50(3):293~340
    [35] D. P. Norton,Y. W. Heo,M. P. Ivill,et. al,ZnO:growth,doping&processing[J],Materials Today,2004,7(6):34~40
    [36]王艳香,余熙,范学运等,纳米氧化锌粉的制备方法[J],陶瓷学报,2008,29(2):183~186
    [37]章金兵,许民,周小英,固相法合成纳米氧化锌[J],无机盐工业,2005,37(7):18~20
    [38]王国平,石晓波,汪德先,纳米氧化锌的制备与表征[J],合肥工业大学学报,2002,25(1):32~35
    [39] Xu C. K.,Xu G. D.,Liu Y. K.,et.al,A simple and novel route for the preparation of ZnO nanorods[J],Solid State Commun,2002,122(3-4):175~179
    [40] Wang X. D.,Summers C. J.,Wang Z. L.,et.al,Large-scale Hexagonal-patterned Growth of Aligned ZnO Nanorods foe Nano-optoelectronics and Nanosensor Arrays[J],Nano. Lett,2004,4(3):8773~8777
    [41] Sun Ye,Katherine E Addison,Michael N R Ashfold,Growth of arrays of Al-doped nanocones by pulsed laser deposition[J],Nanotechnology,2007,18(49):5601~5604
    [42] Terasako T.,Yagi M.,Ishizaki M,Growth of Znic Oxide Films and Nanowires by Atmospheric-pressure Chemical Vapor Deposition Using Znic Powder and Water as Source as Materials[J],Surf. Coat. Technol.,2007,20:8924~8930
    [43] Gyu-Chul Yi,Chunrui Wang,Won II Park,ZnO nanorods: synthesis, characterization and applications[J],Semiconductor Science and Technology,2005,20(4):22~26
    [44] Gráinne M Duffy,Suresh C Pillai,Declan E McCormack,A novel processing route for the production of nanoparticulate zinc oxide using an isophthalate precursor[J],Smart Mater. Struct,2007,16(4):1379~1382
    [45] Masuda Y.,Kinoshita N.,Koumoto K,Morphology control of ZnO crystalline particles in aqueous solution[J],Electrochimica Acta,2007,53(1):171~174
    [46] Wahab R.,Ansari S. G.,Kim Y. S.,et.al,Effect of hydroxylamine hydrochloride on the floral decoration of znic oxide synthesized by solution method[J],Mater. Res. Bull.,2008,254(7):2037~2042
    [47] Ratana T.,Amornpitoksuk P.,Suwanboon S,The wide band gap of highly oriented nanocrystalline Al doped ZnO thin films from sol-gel dip coating[J],J. Alloys Compd.,2009,470:408~412
    [48] Zhang S. C.,Li X. G,Preparation of ZnO particles by precipitation transformation method and its inherent formation mechanisms[J],Colloids and Surfaces A: Physicochem. Eng. Aspects,2003,226(1-3):35~44
    [49]刘家祥,丁德玲,王震等,均匀沉淀法制备纳米氧化锌[J],有色金属,2006,58(1):49~52
    [50] Liu Y.,Zhou J. E.,Larbot A,Preparation and characterization of nano-znic oxide[J],J. Mater. Process,Technol.,2007,189(1/3):379~383
    [51]祝振奇,周建,刘桂珍等,微波加热合成针状ZnO晶体结构与形貌研究[J],武汉科技大学学报(自然科学版),31(2):181~184
    [52] Kim K. D.,Choi D. W.,Choa H. O.,Applying the Taguchi method to the optimization for the synthesis of TiO2 nanoparticles by hydrolysis TEOT in micelles[J],Colloids and Surfaces A: Physicochem. Eng. Aspects,2005,254(1-3):99~105
    [53]王玉棉,李存增,王胜等,表面改性剂在溶胶-凝胶法制备纳米氧化锌中的应用[J],有色金属(冶炼部分),2007,4:50~52
    [54]邵金璐,卢秀萍,纳米ZnO的应用研究进展[J],浙江化工,2005,36(10):22~24
    [55] Zhu B L,Xie C S,Wang W Y,et.al,Improvement in gas sensitivity of ZnO thick film to volatile organic compounds(VOCs) by adding TiO2[J],Mater Lett,2004,58:624~629
    [56] Baratto C,Sberveglieri G,Onisehuk A,et.al,Low temperature selective NO2 sensors b y nanostructured fibres of ZnO[J],Sensors and Actuators B,2004,100(l):261~264
    [57]龚文琪,张晓辉,环境保护新署光-纳米材料在环保中的应用[J]新疆环境保护,2002(4):34~37
    [58]王黔平,吴卫华,付伟等,自洁抗菌陶瓷技术的现状和发展[J],陶瓷,2006,4:45~48
    [59] Tamas Szabo,Jozsef Nemeth,Imre Dekany,Zinc oxide nanopartieles incorporated in ultrathin layer silicate films and their Photocatalytic properties[J],Colloids and Surface A: Physieochem,Eng.Aspects,2004,230:23~25
    [60]胡幸鸣,袁国栋,ZnO基纳米电子材料研究进展[J],材料科学与工程学报,2005,23(4): 621~624
    [61]段永华,竺培显,纳米氧化锌粉体制备技术及其应用的研究[J],中国粉体技术,2006, 4:44~47
    [62]李镇江,岑伟,郭峰等,抗菌天然橡胶纳米复合材料的研制[J],化工新型材料,2008,36 (l):66~68
    [63]王学川,任龙芳,强涛涛,纳米材料在化妆品中的应用[J],日用化学品科学,2006,29 (4):15~17
    [64]刘华,纳米材料在化工生产领域中的应用[J],潍坊教育学院学报,2007,20(3):37~39
    [65] Li H X,Bian Z F,Zhu J,et.al,Mesoporous TiO2/Au nanocomposites with enhanced photocatalytic activity[J],Journal-American chemical society,2007,129(15):4538~4539
    [66] Kanga M,Chounga S J,Park J Y,Photocatalytic performance of nanometer-sized FexOy/TiO2 particle synthesized by hydrothermal method[J],Catalysis Today,2003,87(1):87~97 [67 Ohno T,Akiyoshi M,Umebayashi T,et.al,Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light[J],Applied Catalysis,A:General,2004,265(1):115~121
    [68] Wu T X , Liu G M , Zhao J C , Photoassisted degradation of dye pollutants .V. self-Photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO2 dispersions[J],Journal of Physical Chemistry B,1998,102(30):5845~5851
    [69] Xie Y B,Yuan C W,Visible-light responsive cerium ion modified titania sol and nanocrystallites for X-3B dye photodegradation[J],Applied Catalysis,B:Environmental,2003,46(2):251~259
    [70] Zheng Lirong,Zheng Yuanhui,Chen Chongqi,et.Al,Network structured SnO/ZnO heterojunction nanocatalyst with high pnotocatalytic activity [J],Inorganic Chemistry,2009,48(5):1819~1825
    [71] P. S. Casey,C. J. Rossouw,S. Boskovic,et.al,Incorporation of dopants into the lattice of ZnO nanoparticles to control photoactivity[J],Superlattices and Microstructures,2006,39(1-4):97~106
    [72] Di Li,Hajime Haneda,Synthesis of nitrogen-containing ZnO powders by spray pyrolysis and their visible-light photocatalysis in gas-phase acetaldehyde decomposition[J],Journal of Photochemistry and Photobiology A:Chemistry,2003,155(1-3):171~178
    [73]张留成,蔡克峰,纳米氧化锌材料的最新研究和应用进展[J],材料导报,2006,20(VI):13~15
    [74]杜仕国,超微粉制备技术及其进展[J].功能材料,1997,28(3):237~253
    [75] Akyol A,Yatmaz H C,Bayramoglu M,Photoeatalytic decolonization of Remazol RedRR in aqueous ZnO suspensions[J],Appl. Catal. B:Environ,2004,54:19~24
    [76] O. D. Jayakumar,I. K. Gopalakrishnan,S. K. Kulshreshtha,The structural and magnetization studies of Co-doped ZnO co-doped with Cu:Synthesized by co-precipitation method[J],Journal of Materials Chemistry,2005,15:3514~3518
    [77] Yoshinari T,Uchida M,Antibacterial ceramics[J],Ceramics Japan,1993,28 (7):651~657
    [78] Moriyama Y,Imai S,Ag containing antibacterial ceramics[J],Ceramics Japan,1996,31(7):584~586
    [79] Kiwamu Sue,Kazuhito Kimura,Kenji Murata,et.al.,Effect of cations and anions on properties of zinc oxide particles synthesized in supercritical water[J],J.of Supercritical Fluids,2004,30: 325~331
    [80] Z. V. Marinkovic,L. Mancic,O. Milosevic.The nature of structural changes in nanocrystalline ZnO powders under linear heating conditions[J],Journal of the European Ceramic Society, 2004,24:1929~1933
    [81] S. D. Skapin,G. Drazic,Z. Crnjak Orel.Microstructure of nanoscale zinc oxide crystallites[J],Materials Lerrters,2006,14:1~6
    [82] Bonamali Pal,Maheshwar Sharon,Enhanced photocatalytic activity of highly porous ZnO thin films prepared by sol-gel process[J],Materials Chemistry and Physics,2002,76(1):82~87
    [83]孟阿兰,岑伟,李镇江等,ZnO/Ag纳米复合材料光催化性能研究[J],稀有金属材料与工程,2007,36(2):299~302
    [84]王怡中,符雁,不同类型染料化合物太阳光催化降解研究[J],太阳能学报,1998,19 (2):119~120
    [85] Zhang Maolin,An Taicheng,Hu Xiaohong,et.al.,Preparation and photocatalytic properties of a nanometer ZnO-SnO2 coupled oxide[J],Applied Catalysis A:General,2004,260(2):215~222
    [86] Joyce-Wohrmann RM,Hentschel T,M.unstedt H,Thermoplastic silver-filled polyurethanes for antimicrobial catheters[J],Adv Eng Mater,2000,2:380~386
    [87] Hsiu-Fen Lin,Shih-Chieh Liao,Sung-Wei Hung,The thermal plasma synthesis of ZnO nanoparticles for visible-light photocatalyst[J],Journal of Photochemistry and Photobiology A:Chemistry,2005,174(1):82~87
    [88]刘立华,纳米复合材料的应用现状及前景展望[J],唐山师范学院学报,2004,26(3):13~14
    [89]牛新书,杜卫平,杜卫民等,掺杂稀土氧化物的ZnO材料的制备及气敏性能[J],稀土,2004,24(6):44~47
    [90]王贇,阎永胜,沈湘黔等,ZnO包覆Al2O3的制备表征及光催化性能研究[J],环境科学与技术,2006,29(12):33~35.
    [91]张绍岩,丁士文,刘淑娟等,均相沉淀法合成纳米ZnO及其光催化性能研究[J],化学学报,2002,60(7):215~222
    [92] Di Li,Haneda H J,Ohashi N,et.al,Synthesis of nanosized nitrogen-containingMOx-ZnO(M=W,V,Fe)composite powders by spray pyrolysis and their visible light driven photocatalysis in gas phase acetaldehyde decomposition[J],Catal. Today,2004,93~95
    [93] Wang C,Xu B Q,Wang X M,et.al,Preparation and photocatalytic activity of ZnO/TiO2/SnO2 mixture[J],J. Solid State Chem.,2005,178:3500~3506
    [94] Mohammad R. Elahifard,Sara Rahimnejad,Saeed Haghighi,et.al,Apatite-Coated Ag/AgBr/TiO2 Visible-Light Photocatalyst for Destruction of Bacteria[J],J. Am. Chem. Soc.,2007,129:9552~9553
    [95] Anandan S.,A. Vinu,T. Mori,et.al,Photocatalytic degradation of 2,4,6-trichlorophenol using lanthanum doped ZnO in aqueous suspension[J],Catalysis Communications,2007,8:1377~1382
    [96] Irie H,Watanabe Y,Hashimoto K,Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powder[J],J Phys Chem B,2003,107(23):5483~5486
    [97]张靖峰,杜志平,赵永红等,Fe3+改性纳米ZnO光催化降解壬基酚聚氧乙烯醚[J],催化学报,2007,28(6):561~566
    [98]陈航,邓宏,戴丽萍等,掺Cd对ZnO薄膜光学性能的影响[J],人工晶体学报,2008,37(1):214~216
    [99] William K. Liu,G. Mackay Salley,Daniel R. Gamelin,Spectroscopy of Photovoltaic and Photoconductive Nanocrystalline Co2+-Doped ZnO Electrodes[J],J. Phys. Chem. B,2005,109:14486~14495
    [100] Yang Xunyu,Abraham Wolcott,Gongming Wang,et.al,Nitrogen-doped ZnO Nanowire Arrays for Photoelectrochemical Water Splitting[J],NANO LETTERS,2009,9(6):2331~2336
    [101]吴佳卿,郑敏,氮掺杂ZnO纳米晶的防紫外和抗菌整理[J],印染,2008,10:9~12
    [102] Craig L. Perkins,Se-Hee Lee,Xiaonan Li,et.al,Identification of nitrogen chemical states in N-doped ZnO via x-ray photoelectron spectroscopy [J],JOURNAL OF APPLIED PHYSICS,2005,97,034907:2~6
    [103] Asahi.R,Monkawa T,Ohwaki T,et.al,Visible-light photocatalysis in nitrogen-doped titanium oxides[J],Science,2001,293:269~271
    [104]杨华斌,段月琴,别利剑等,Fe3+,Zn2+共掺杂高效纳米TiO2光催化剂的制备表征及光催化性能[J],天津理工大学学报,2008,24(6):22~24
    [105]赵慧芳,曹全喜,李建涛,N,Ga共掺杂实现p型ZnO的第一性原理研究[J],物理学报,2008,57(9):5828~5831
    [106] Jing Liqiang,Sun Xiaojun,Shang Jing,et.al,Review of Surface photovoltage spectra of nano-sized semiconductor and its application in heterogeneous photocatalysis[J],Solar EnergyMaterials & Solar Cell,2003,79:133~151.
    [107]王怡中,符雁,不同类型染料化合物太阳光催化降解研究[J],太阳能学报,1998,19 (2):119~120

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700