静电纺丝技术制备稀土掺杂二氧化钛纳米带与光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米Ti02作为一种光催化材料,在环境保护、光能转换、工业催化等领域有着极为广泛的应用。但是Ti02只能被波长较短的紫外光激发(入<387nm),因此对太阳能利用率很低。通过对Ti02掺杂改性能够增大其可见光响应范围,提高量子效率,从而提高它的光催化活性。静电纺丝技术作为一种制备一维纳米材料的重要方法,因设备简单,适用范围广而倍受瞩目。应用静电纺丝技术制备纳米带及其性质和应用研究,是个有价值的研究课题。
     本文采用溶胶凝胶法配制出前驱体溶液,用静电纺丝技术制备掺杂四种稀土离子的PMMA/[Ti(OC4H9)4+Gd(phen)2(sal)2Cl], PMMA/[Ti(OC4H9)4+Nd(phen)2(sa l)2Cl], PMMA/[Ti(OC4H9)4+La(phen)2(sal)2Cl], PMMA/[Ti(OC4H9)4+Y(phen)2(sal)2 PMMA/Ti(OC4H9)复合纳米带,经高温煅烧后得到Gd/TiO2、Nd/TiO2、La/Ti O2、Y/TiO2和纯Ti02纳米带。并用XRD、SEM、TG-DTA及FTIR等分析手段对样品进行系统表征。结果表明:焙烧后纳米带均为规则的一维结构,平均宽度约为60-80μm,平均厚度为300nm左右。
     以罗丹明B,甲基橙以及感光废液为目标降解物,系统研究纯TiO2、Gd/TiO2、Nd/TiO2、La/TiO2和Y/TiO2纳米带的光催化性能。结果表明,稀土离子的掺杂量、降解液的pH、催化剂的添加量和焙烧温度对光催化性能有一定影响。掺杂摩尔分数为0.5%Nd3+的光催化剂对罗丹明B的降解效率较高,掺杂1.0%Gd3+的光催化剂对甲基橙具有较好的降解活性,掺杂1.0%Gd3+的光催化剂对感光废液具有较好的降解活性。因此,掺杂不同稀土离子的TiO2纳米带光催化剂对不同有机物具有选择性降解活性。
Nano- TiO2 particles, a prospective photocatalytic material, have very wide applications in areas such as environmental protection, solar energy conversion and industrial catalysts. TiO2 was only excited by shorter UV and the solar energy utilization is low. Dope of TiO2 is an important way to achieve visible response and to improve the quantum efficiency, thus photocatalytic activity can be greatly improved. Electrospinning technique is an important method to prepare one-dimension nanostructures and has drawn much awareness from scientists owing to its simple equipments and extensive adaptability. Research on the preparation, properties and application of nanobelts by electrospinning will be a valuable subject.
     In this dissertation, we firstly prepared precursor solution using sol-gel method, then synthesized PMMA/[Ti(OC4H9)4+Gd(phen)2(sal)2Cl],PMMA/[Ti(OC4H9)4+Nd(P hen)2(sal)2Cl],PMMA/[Ti(OC4H9)4+La(phen)2(sal)2Cl],PMMA/[Ti(C4H9)4+Y(phen)2s al)2Cl] and PMMA/Ti(OC4H9)4 composite nanobelts by electrospinning, and finally fabricated TiO2, Gd/TiO2, Nd/TiO2, La/TiO2 and Y/TiO2 nanobelts by calcinations of the relevant composite nanobelts. The samples were characterized by XRD,SEM, TG-DTA and FTIR. The results showed that nanobelts were regular one-dimensional structure and the thickness was about 300nm, and mean width ranged from 60μm to 80μm.
     Besides, the photocatalytic properties of TiO2, Gd/TiO2, Nd/TiO2, La/TiO2 and Y/TiO2 nanobelts on Rhodamine B, methyl orange and photographic waste liquid were investigated. The results showed impact factors for photocatalytic property were the added amount of catalyst, pH of degradation of the solution, volume of rare-earth-doped and the calcination temperature. The photocatalyst doped with (in Mole, the same below) 0.5%Nd3+ could degrade the rhodamine B effectively, while nano-TiO2 doped with 1.0%Gd3+ displayed an excellent activity in degrading the methyl orange, and nano-TiO2 doped with 1.0%Gd3+ demonstrated an excellent activity in degrading the photographic waste liquid. The photocatalysts doped with different rare-earth ions showed a selective degrading activity to different degradation agents.
引文
[1]李群.纳米材料的制备与应用技术.北京:化学工业出版社,2008:1-4
    [2]PAN ZW, DA I ZR, WANG ZL, et al. Nanobelts of semi-conducting oxides. Science,2001,291(68):1947-1949
    [3]Yao Q, Jun Li, De jie. Progress in field emission disp laywith carbon nanotube emitter. Vacuum electronics,2002,12(6): 6-9
    [4]Xiang Yang Kong, Zhong Lin Wang. Structures of indium oxide nanobelts. Solid State Communications,2003, 128(23):1-4
    [5]CUI Y, WEI QQ, PARK HK, et al. Nanowire Nanosensorsfor Highly Sensitive and Selective Detection of Biologicaland Chemical Species. Science,2001,293(52):1289-1292
    [6]LAW M, KIND H, MESSER B, et al. Photochemicalsensing of NO2 with SnO2 nano-ribbon nanosensors atroom temperature. Angew Chem Int Ed,2002,41(13):2405-2408
    [7]Lao C S, Liu J, Gao P X, et al. ZnO nanobelt nanowireschottky diodesformed by dielect rophoresis alignmentacrossAu elect rodes. Nano Lett,2006,6(12):26313-26314
    [8]邹强,张之圣,李海燕等.高分子自组装Zn0纳米带合成过程的研究.无机化学学报.2006,22(9):1675-1678
    [9]刘春霞,严文,范新会等.用热蒸发法制备CdS纳米带材料.科学与工程学报.2005,23(11):102-104
    [10]陈红升,齐俊杰,黄运华等.Sn掺杂ZnO半导体纳米带的制备、结构和性能.物理化学学报.2007,23(1):55-58
    [11]陈晨,庄京,王定胜等.新颖氧化镁纳米带共沉淀法合成与表征.无机化学学报.2005,21(6):859-861
    [12]RQ Song, AW Xu, B Deng, et al. Novel multila-mellar mesostructured molybdenum oxide nanofibers. J Phys Chem B, 2005,109(48):22758-22766
    [13]Yu Y, Wang R H, Q Chert, et al. High-quality ultralong Sb2S3 nanoribbons on large scale. J Plays Chem B,2005, 109(56):23312-23315
    [14]Q Lu, F Gao, S Komanmni, et al. Cellulose-directed growth of selenium nanobelts in solution. Chem Mater,2006, 18(1):159-163
    [15]Choopuna S,Hongsitha N,Tanunchaia S,et al. Single crys talline ZnO nanobelts by RF sputtering. J Crystal Growth, 2005,282(3):365-369
    [16]李志国.静电纺丝技术制备二氧化钛纳米材料与表征:[硕士学位论文].长春:长春理工大学化学与环境工程学院,2007
    [17]Fujishima A,Tara N R,Donald A T. Journal of Photochemistry and Photobiology. Photochemistry Reviews,2000, 1(1):1-21
    [18]Ikeda K, Sakai H, Baba R, et al. Photocatalytic reactionsinvolving radical chain reactions using microelectrodes. Phys Chem B,1997,101(83):2617-2620
    [19]周武艺.纳米TiO2的掺杂改性及光催化性能的研究:[硕士学位论文].长沙:湖南大学材料科学与工程学院,2005
    [20]曹茂盛,关长斌,徐甲强等.纳米材料导论.哈尔滨:哈尔滨工业大学出版社,2001,6-13
    [21]UCHIHARA T, MATSUMURA M, ONO J, et al. Effect of ethylene diamine tetraacetic acid on the photocatalytic activities and flat-band potentials of cadmium sulfide and cadmium selenide. J Phys Chem,1990,94(1):415-418
    [22]MOSER J, PUNCHIHEWA S, PIERRE P, et al. Surface complexation of colloidal semiconductors strongly enhances interfacial elec-tron-transfer rates. Langmuir,1991,7(12):3012-3018
    [23]DOY R, LEE W, DWIGHT K, et al. The effect of WO3 on the photocatalytic activity of TiO2. J Solid State Chem,1994, 108(1):198-201
    [24]VOGEL R, HOYER P, WELLER H. Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers forvarious nanoporous wide-bandgap semiconductors. J Phys Chem,1994,98(12):3183-3188
    [25]MARCI G, AUGUGLIARO V, LOPEZ-MUNOZ M J, et al. Prepara-tion characterization and photocatalytic activity of polycrystalline ZnO/TiO2 systems. surface, bulk characterization, and 4-nitrophenol photodegradation in liquid-solid regime. J Phys Chem B,2001,105(5):1033-1040
    [26]TADA H, HATTORI A, TOKIHISA Y, et al. A patterned-Ti02/Sn02 bilayer type photocatalyst. J Phys Chem B,2000, 104(26):4585-4587
    [27]SOLBRAND A, HENNINGSSON A, SO1DERGREN S. Charge transport properties in dye-sensitized nanostructured TiO2 thin film electrodes studied by photoinduced current transients. J Phys Chem B,1999,103(7):1078-1083
    [28]CHO Y M, CHOI W Y. Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2. Environ Sci Technol,2001.35(5):966-970
    [29]BAE E Y, CHOI W Y. Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visible light. Environ Sci Technol,2003,37(1):147-152
    [30]CHO Y M, CHOI W Y. Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2. Environ Sci Technol,2001,35(5):966-970
    [31]Jing Dengwei, Zhang Yaojun, Guo Liejin. Study on the synthesis of Ni doped mesoporous TiO2 and its photocatalytic activity for hydrogen evolution in aqueous methanol solution. Chem Phys Lett,2005,415(1):74-78
    [32]Weng Wenjian, Ma Ming, Du Piyi, et al. Preparation of high-density TiO2 nanodots on Si substrate by a novel method. Materials Letters,2008,62(12-13):1965-1968
    [33]Hiromi Yamashita, Masaru Harada, Junko Misaka, et al. Preparation of Titanium Oxide Photocatalysts Anchored on Porous Silica Glass by a Metal Ion-Implantation Method and Their Photocatalytic Reactivities for the Degradation of 2-Propanol Diluted in Water. J Photochem Photobio A:Chem,2002,148(123):257-262
    [34]Tsutomu Umebayashi, Tetsuya Yamada, Hisayoshi Itoh,et al. Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations. J Phys Chem Solids,2002.63 (10):1909-1911
    [35]Choi W, Termin A, Hoffmann M R. Role of metal ion dopants in quantum-sized TiO2:correlation between photoactivity and charge carrier recombination dynamics. J Phys Chem,1994,98(49):13669-13675
    [36]Saila Karvinen.The Effects of Trace Elements on the Crystal Properties of TiO2. Solid State Sciences, 2003.5(5):8112-8119
    [37]Ryu Abe etal. Z-scheme Overall Water Splitting on Modified-TaON Photocatalysts under Visible Light (λ<500 nm). Chemistry Letters,2008,37 (2):138-139
    [38]Alexandre V etal. Addenda and Comments to Mathematics under the Microscope. Journal of Catalysis, 2004,221(13):102-105
    [39]SONG K Y, KWON Y T, CHOI G J, et al. Photocatalytic activity of Cu/TiO2 with oxidation state of surface-loaded copper. Bull Korean Chem Soc,1999,20(8):957-960
    [40]Mantana Moonsiri, Pmmoch Langsunvigit, Sumaeth Chavade, et al. Effects of Pt and Ag on the photocatalytic degradation of chlorophenol and its by-products. Chem Eng J,2004,97(33):241-243
    [41]Gao Lian. Nano-TiO2 Photocatalytic Materials and Its Application.beijing:Chemical Industry Press,2002,32(20): 239-241
    [42]Chen Qisi,et al. Pioneering with Science.Technology Monthly,2005,1:156-157
    [43]He J X, Yang P J, Akihiko Y, et al. Effects of Ag-Photodeposition On Photocurrent of an ITO Electrode Modified by a Hybrid Film of TiO2 Nanosheets. Journal of Electroanalytical Chemistry,2004,566(1):227-233
    [44]Xu A-W,Gao Y, Liu H-Q. The preparation,characterization and their photocatalytic activites Ofrar-earth-doped TiO2 nanoparticles. J Catal,2002,207(22):151 - 157
    [45]Xie Y, Yuan C. Photocatalysis of neodymium ion modified TiO2 sol under visible light irradiation. Appl Surf Sci,2004,221(12):17-19
    [46]Xie Y, Yuan C. Characterization and photocatalysis of Eu3+/TiO2 sol in the hydrosol reaction system. Mater Res Bull, 2004,39(2):533-555
    [47]Xie Y, Yuan C, Li X. Photocatalytic degration of X-3B dye by visible light using lanthanide ion modified titanium dioxide hydrosol system.Colloids and Surface A:Physicochem, Eng, Aspects,2005,25(6):87-88
    [48]徐小勇,施卫国等.掺氮TiO2光催化剂制备与性能研究.中国陶瓷.2009,45(4):46-48
    [49]Khan S U M, Al Shahry M, Ingler W B Jr. Efficient Photochemical Water Splitting by a Chemically Modifiedn-TiO2. Science,2002,297(12):22432-22435
    [50]Umebayashi T, Yamada T, Itoh H, et al. First-Principles Band Calculations on Electronic Structures of Ag-Doped Rutile and Anatase TiO2. Aplied Physics Letters,2002,81(3):454-456
    [51]Wang J S, N Yin S, Zhang Q W, et al. Mechanochemical synthesis of fluorine doped Sr2TiO3 and its photo oxidation properties.Chem Lett,2003,32 (6):540-541
    [52]Wang J S,Yin S.Zhang Q W, et al. Mechanochemical synthesis of Sr2TiO3 with high visible light hotocatalyticactivities for nitrogenmonoxide destruction. Mater Chem,2003,13(9):2348-2352
    [53]Wang D F, Zou ZG, Ye JH. A novel Zn-doped Lu2O3/Ga2O3 composite photocatalyst for stoichiometric water splitting under UV light irradiation. Chemical Physics Letters,2004,384 (1-3):139-143
    [54]Chen S L, Li X G, Zhang J Y, et al. A study on photocatalysis of nitrogen doped TiO2 nanometer powders. Rare Metal Mat,2004,33(1):36-40
    [55]李发堂,赵地顺等.氟掺杂纳TiO2粉体的合成及光催化活性研究.化学工程.2009,37(2):54-57
    [56]赵秀峰,张志红,孟宪锋等.B掺杂TiO2/AC光催化剂的制备及活性.分子催化.2003,17(4):292-296
    [57]Hideki K.Akihiko K.Visible light response and photop alalytic aeiivities of TiO2 and Sr2TiO3 photocatalys tscoded with antimony and chnmium.Phy J Chem B,2002,106(19):5029-5030
    [58]Li D, Haneda H, Hishita S, et al. Visible-Light-Driven N-F-Codoped TiO2 Photocatalysts.2.Optical Characterization, Photocatalysis, and Potential Application to Air Purification. Chem Mater,2005,17(10):2596-2602
    [59]王剑波,张景来,卢寿慈.金属共掺杂对TiO2光催化性能的影响.安徽理工大学学报(自然科学版).2004,4(3):61-64
    [60]石宗利,徐松梅等.Fe、Gd共掺杂改性TiO2的可见光光催化活性.湖南大学学报(自然科学版).2009,36(3):51-54
    [61]Wei H Y, Wu Y S, Sun N, et al. One-step growth of ZnO from films to vertically well-aligned nanorods and the morphology-dependent Raman scattering. Applied Physics Letters,2005,87(23):231903 -231908
    [62]孙彤,翟玉春,马培华等.锶、氟双元素改TiO2光催化材料性能研究.功能材.2008,2(39):186-190
    [63]孙彤,翟玉春等.银、氟双元素改性TiO2光催化材料的性能.过程工程学报.2009,9(2):368-374
    [64]Huang L H, Sun C, Liu Y L, et al.Pt/N-codoped TiO2 Nano-tubes and its photocatalytic activity under visible light. Appl Surf Sci,2007,(253):7029-7033
    [65]张英仙,崔建升,霍跃晖等.纳TiO2光催化活性及其在废水处理中的应用进展.河北化工.2007,30(4):9-13
    [66]海景,程江等.纳米材料在水污染治理方面的应用.广东化工.2004,32(9):51-52
    [67]王银川,王保学等.纳米技术及材料在废水处理中的应用研究.国外建材科技.2007,28(1):49-52
    [68]李国辉,李春忠,朱以华.防晒化妆品用纳米氧化钛的表面处理及紫外吸收性能.化学世界.2000,(2):59-63
    [69]涂国荣,王武尚,张利新等.纳TiO2与天然紫外吸收剂防晒效果的研究.精细化工.2001,18(7)379-381
    [70]张萍,周大利,刘恒.化妆品与肤色二氧化钛的制备研究.日用化学工业.2002,32(1):29-30
    [71]郑今欢,钟幼芝,邵建中等.纳米抗紫外防水涂层的研究.印染.2005,31(17):7-10
    [72]李全明,王崇礴,王浩.防紫外线织物的研究.高科技带与应用.2002,27(3):19-21
    [73]张强,张立武,杨延涛.纳米涂料的应用及发展建议,化工新型材料.2004,32(6)38-40
    [74]刘福春,韩恩厚,柯伟.纳米复合材料的研究进展.材料保护.2001,34(5):1-5
    [75]姜洪泉,王鹏,卢丹丹等.TiO2/Gd2O3纳米粉体的制备、表征及光催化活性.无机化学学报.2006,22(1):73-78
    [76]张志火昆,崔作林.纳米技术与纳米材料.北京:国防工业出版社,2000
    [77]Serpone N, Law less D, Khairutdinov R. Size effects on thephotophysical properties of colloidal anatase TiO2 particles: size quantization or direct transitions in this indirect semiconductor. J Phys Chem,1995,99:16646-16650
    [78]王娟.Gd3+掺杂纳米TiO2光催化剂的制备及其光催化活性的研究:[硕士学位论文].南京:东南大学材料物理与化学,2006
    [79]Horikoshi S, Hidaka H, Serpone N. Environmental remediation by an integratemicorowave/UV-illumination method microwaveassisted degradation of Rhodamine-B dye in aqueous TiO2 dispersions. Environmental Science Technology,2002,36(6):1357-1366
    [80]陈剑雄.稀土掺杂二氧化钛的制备及其光催化性能研究:[硕士学位论文].福州:福州大学化学化工学 院,2005
    [81]王艳芹,张莉,程虎民.掺杂过渡金属离子的TiO2复合纳米粒子光催化剂罗丹明B的光催化降解.高等学校化学学报.2000,21(6):958-960
    [82]Dong Qian, J.Z.Jiang, Poul Lenvig Hansen. Preparation of ZnO nanocrystals via ultrasonic irradiation. Chem Commun,2003,(9):1078-1079
    [83]Yuan Shuai, Sheng Qiao rong. Synthesis of La3+ doped mesoporous titania with highly crystallized walls. Microporous and Mesoporous Materials,2005, (79):93-95
    [84]张峰,李庆霖,杨建军等.TiO2光催化剂的可见光敏化研究.催化学报.1999,20(3):329-330
    [85]Poulios I, Micropoulou E, Panou R, et al. Photooxidation of eosin Y in the presence ofsemiconducting oxides.Applied Catalysis B:Environmental,2003,(41):345-347
    [86]王怡中,符雁,汤鸿霄.甲基橙溶液多相光催化降解.环境科学.1998,19(1):1-4
    [87]沈伟韧,贺飞,赵文宽等.TiO2纳米粉体的制备及光催化活性.武汉大学学报.1999,45(4):389-392
    [88]张慧,陈建华,陈鸿博等.纳米TiO2混晶的形成及其对光催化性能的影响.分子催化.2006,20(3):249-254
    [89]卢维奇,赵黎明,刘弋璐等.镧或钕掺杂TiO2可见光催化剂及其对甲基橙的降解活性.稀土.2006,27(1):4-7
    [90]Fujishima A, Honda K. Elect rochemical photolysis of water at a semiconductor elect rode. Nature,1972, 238(5358):37-39
    [91]Hoffman M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis. Chem Rev, 1995,95(17):69-73
    [92]Kamat P V. Photochemistry on nonreactive and reactive(semiconductor) surfaces. Chem Rev,1993,93(1):267-300
    [93]梁金生,金宗哲,王静.稀土/纳米TiO2的表面电子结构.中国稀土学报.2002,20(1):74-76
    [94]Li Fangbai, Gu Guobang, Li Xinjun, et al. Preparation, characterization and photo-catalytic behavior of Y2O3/TiO2 composite semiconductor nanopowder. Journal of RareEarths,2001,19(3):187-189
    [95]吴峰,蔡继业.Nd离子掺杂TiO2纳米颗粒制备及其光催化降解性能.怀化学院学报.2007,6(2):59-61
    [96]Shunji Matsuo,Nahomi Sakaguchi,Keiji Yamada.Role in photocatalysis and coordination structure of metal ions adsorbedon titanium dixide particles:a comparison between Ian thanide and iron ions. Applied Surface Science, 2004,228(58):2332-2441
    [97]冯良荣,吕绍洁,邱发礼.稀土元素掺杂对纳米TiO2光催化剂性能的影响.复旦学报.2003,42(3):413-417
    [98]O Regan,M Gratzel. A low-cost high effciency solar cell based ondyesensitized colloidal TiO2 films.Nature,1991,353(3):737-741
    [99]M R Hoffman,S T Martin, Choi, et al. Environmental Applications of Semiconductor Photocatalysis.Chem Rev,1995,95 (1):69-96
    [100]J M Herrmann,C Guillard,P Pichat. Heterogeneous photocatalysis:Anemerging technology for water treatment. Catalysis Today,1993(17):7-17
    [101]H Yamashita,Y Ichihashi,M Anpo,et al. Photocatalytic decomposition of NO at 275 K on titanium oxide catalysts anchored within zeolite cavities and framework.Applied Surface Science.1997.121-122(6):305-309
    [102]H Yamashita,Y Ichihashi,M Harada,et al. Photocatalytic degradationof Octanol on anchored titanium oxide and on TiO2 powder catalysts. J Catal,1996,158 (11):97-101
    [103]吴海宝.太阳能-TiO2光催化氧化有机物在水处理上的应用.太阳能学报.1996,17(3):288-292
    [104]李振宏,伍虹.我国稀土应用的现状和前景.稀土.1996,17(6):48-51
    [105]Lin J,Yu J C. An investigation on photocatalytic activities of mixed TiO2-rare eart hoxides for the oxidation of acetonein Air. J Photochem Photobiol A,1998,116 (1):63-67
    [106]张俊平,陈萍.感光科学与光化学.应用化工.2002,20(4):241-247
    [107]吴忠杰,万涛,吴秀玲.掺钇纳米二氧化钛光催化降解甲基橙的研究.应用化工.2007,36(12):1221-1223
    [108]Choi W, Termin A, Hoffmann M R. The Role of Metal Ion Dopants in Quantum-Sized TiO2:Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. J Phys Chem,1994,98(51):13669-13679
    [109]Gao Lian, Zhen Shan, Zhang Qinghong. Nanosized Titania Photocatalytic Material and Application. Beijing: Chemical Industry Press,2002,Chapter 4
    [110]Ping Yang, Cheng Lu, Nan Ping Hua, et al. Titanium dioxide nanopart icles codoped with Fe3+ and Eu3+ions for photocatalysis [J]. Materials Letters,2002,57(4):794-801
    [111]石建稳,郑经堂.纳米TiO2光催化剂可见光催化的研究进展.化工进展.2005,24(8):841-844
    [112]El Ghazi I, Elamrani M K, MansourM. Photocatalytic Oxidation of the Textile Dye Basic Red 18 with Irradiated Titanium Dioxide.Toxicological and Environm ental Chemistry,2003,85 (123):126-215

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700