用户名: 密码: 验证码:
多功能纳米复合材料的制备、表征及其光、磁、传感等性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为纳米科学的基础,纳米材料既是纳米研究领域中极具活力和最为贴近实际应用的部分;同时作为化学、物理、生物、医学、信息等多学科交叉融合与发展的重要物质基础,它也是对未来社会与经济的发展最具影响力的部分。为了适应不同领域发展的要求,纳米材料研究的内涵和领域也在被不断地扩大和拓宽。近年来,复合化、低维化、智能化的多功能纳米复合材料受到了人们广泛的关注。这种材料既具有纳米材料的特殊性质,又能在保持功能材料原来物理、化学特性基础上,将不同材料所拥有的功能有机地结合在一起,赋予复合材料优化的光学、电学、磁学、生物学等性质;它能够充分发挥功能材料和纳米材料的优势,因而成为在生物、医药、化工、环境、能源等领域最具发展前景与应用潜力的纳米材料之一。本论文瞄准这一重要的研究方向,从功能材料和纳米复合材料的设计合成入手,围绕多功能纳米复合材料的制备、表征及其光、磁、传感等性能开展了一系列的研究,取得的主要研究成果如下:
     1.通过溶剂热法、溶胶-凝胶法和表面活性剂模板法合成出具有核壳结构的磁性介孔二氧化硅纳米复合材料(MMS),并利用共价嫁接技术将设计合成的荧光化学传感材料芘的衍生物(Py-OH)与其进行组装,制备成一种新颖的多功能纳米复合材料(MMS-Py)。该复合材料对汞离子具有好的选择性、短的响应时间和高的灵敏度,其检测限可达1.72ppb,低于EPA允许的饮用水中汞离子的浓度限值2ppb。复合材料对汞离子的检测具有可逆性,可实现多次重复使用,其荧光传感信号在较宽的pH范围稳定。另外,复合材料可作为吸收剂通过简单的磁分离技术快速有效的移除样品中的汞离子。这种多功能纳米复合材料有望应用于简便快捷的检测和移除环境、生物等样品中的汞离子。
     2.采用简单的基于溶液的方法将设计合成的光学氧传感材料钌(II)二亚胺配合物通过共价嫁接的方式固载到具有核壳结构的磁性介孔二氧化硅纳米复合材料(MMS)上,制备出一种新型的多功能纳米复合材料(Ru(bpy)2Phen-MMS)。获得的复合材料具有强的超顺磁性,高度有序的介孔结构,能够发出明亮的红光;同时表现出良好的光学氧传感性能,具有可实用化的灵敏度(I0/I100=5.2),短的响应及还原时间(t↓(s)=6and t↑(s)=12)以及好的Stern–Volmer关系曲线(R2=0.9995)。此外,该复合材料具有好的稳定性和重复使用性。多功能纳米复合材料优异的磁性、介孔、发光和氧传感性质使其在环境监测和生物传感等方面具有良好的发展前景与应用潜力。
     3.首次利用无孔二氧化硅包覆的四氧化三铁纳米粒子作为核,对氨基偶氮苯的衍生物(Azo-Si)作为溶胶-凝胶的前驱体,正硅酸乙酯(TEOS)作为硅源,十六烷基三甲基溴化铵(CTAB)作为模板剂成功通过共水解-聚合的方法制备了具有靶向运输和光控释放性质的多功能纳米复合材料(Azo-MMS)。这种制备方法简便、节能、环保。获得的复合材料具有高度有序的六方相介孔结构,强的超顺磁性和光刺激-响应性质,可以作为一种良好的载体材料用于负载、运输和释放客体分子。在450nm可见光的照射下可以触发复合材料将负载的罗丹明6G释放出来;通过光刺激的―开关‖可实现对罗丹明6G释放量和释放时间精确控制。此外,复合材料能通过外加磁场实现对罗丹明6G的靶向运输并在指定位点实现对其的光控释放。作为靶向可控释放载体的多功能纳米复合材料同样适用于药物分子布洛芬,显示出在药物传输系统方面潜在的应用价值。
Nanomaterial, as the basis of nanotechnology, is the most dynamic element inthe research and is very promising for practical application. It is not only the mostinfluential part for the future social and economic development, but also animportant material foundation for interdisciplinary fusion of physics, chemistry,information technology, biotechnology, medicine and other fields and their furtherdevelopment. The research area and connotation of nanomaterial has beencontinuously expanded. Multifunctional nanocomposites with low-dimensional andintelligent features have received considerable attention in recent years. They notonly have the special properties of nanomaterial, but also can acquire optimizedoptical, electrical, magnetic, and biological properties by combining the respectivefunction of different component organically, and meanwhile keep their originalphysical and chemical characteristics maintained. They have the advantages of boththe nanomaterial and functional material, so they have become one of the mostpromising materials, and exhibit great potential in many applications, such asbiology, medicine, chemistry, environment, energy and other areas. Aiming at thisimportant research direction, we start from the design and synthesis of functionalmaterials and nanocomposites. Surrounding the multifunctional nanocomposites, this dissertation presents a systematic research about their synthesis and characterizationas well as magnetic, optical, and sensing performance. The major achievementobtained is as follow:
     1. Core-shell magnetic mesoporous silica nanocomposites were prepared bysolvothermal reaction, sol-gel technology and surfactant template method. Thennovel multifunctional nanocomposites were fabricated by covalent coupling of thedesigned pyrene-based receptor within the channels of magnetic mesoporous silicananocomposites. This multifunctional nanomaterial shows excellent fluorescencesensing properties that allow for highly sensitive and selective Hg2+detection. Adetection limit of1.72ppb is obtained, which is sufficient to sense the Hg2+concentration in drinking water with respect to U.S. EPA limit (~2ppb). Thefluorescent sensing responses for Hg2+are reversible and stable over a broad pHrange and MMS-Py demonstrates its excellent recyclability. Moreover, MMS-Pyexhibits high performance in convenient magnetic separability, and can be used as anabsorbent for fast and efficient removal of Hg2+. This multifunctional nanocompositemay find potential applications for simple detection and easy removal of Hg2+inbiological, toxicological, and environmental areas.
     2. A novel multifunctional Ru(bpy)2Phen-MMS microspheres weresynthesized by immobilization of the as-prepared Ruthenium(II) polypyridylcompounds into the channels of magnetic mesoporous silica nanocomposites (MMS)using a simple solution based method. The well-designed multifunctionalnanocomposites show superparamagnetic behavior, ordered mesoporouscharacteristics, and exhibit a strong red-orange metal-to-ligand charge transferemission. Meanwhile, the obtained nanocomposites give good performance inoxygen sensing with practical sensitivity (I0/I100=5.2), short response/recoverytimes (t↓=6s and t↑=12s), and good Stern Volmer characteristics (R2=0.9995). In addition, they exhibit good stability and reproducibility. The magnetic,mesoporous, luminescent, and oxygen-sensing properties of this multifunctionalnanostructure make it hold great promise as a novel oxygen-sensing system for environmental monitoring and biosensor.
     3. We have demonstrated a successful synthesis of azobenzene functionalizedmagnetic mesoporous silica nanocomposites (Azo-MMS) with targeted delivery andlight-controlled release property for the first time, which was simply constructed byusing the nonporous silica coated Fe3O4as the core,4-phenylazoanilinefunctionalized hydrolysable compounds (Azo-Si) as the sol gel precursor,tetraethoxysilane (TEOS) as the silica source, and cetyltrimethylammonium bromide(CTAB) was selected as the organic template for the formation of the outermesoporous silica layer. This synthetic procedure is fast, simple and low cost. Theobtained nanocomposites possess ordered hexagonal mesopores, superparamagneticand light-responsive properties. The nanocomposites can be used as an effectivecarrier for loading and releasing the cargo molecules. Irradiation with visible light(450nm) triggers the release of Rhodamine6G loaded in the mesopores, and thenanocomposites enable remotely controlled release of the cargos―on-off‖at will.Additionally, we have shown the feasibility of using this composite as a targeteddelivery system by external magnetic field. This composite was also applied to theloading and controlled release of ibuprofen (IBU), demonstrating its potential forapplications in drug delivery
引文
[1]张立德.纳米材料研究的新进展及在21世纪的战略地位[J].中国粉体技术,2000,6(1):1-5
    [2] R. P. Feynman. There is plenty of room at the bottom [R]. Lecture at the annualmeeting of the American Physical Society at the California Institute of Technology,1959
    [3]张立德.纳米材料[M].北京:化学工业出版社,2002.1-9
    [4]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2002.1-16
    [5] R. Birringer, H. Gleiter, H. P. Klein, et al. Nanocrystalline materials an approachto a novel solid structure with gas-like disorder [J]. Physics Letters A,1984,102(8):365-369
    [6] S. Mitura. Nanotechnology in Material Science [M].Elsivier Science B.V.,2000
    [7]张志,崔作林.纳米技术与纳米材料[M].北京:国防工业出版社,2000.1-20
    [8] R. Métivier, I. Leray, B. Valeur Lead and Mercury Sensing by Calixarene-BasedFluoroionophores Bearing Two or Four Dansyl Fluorophores [J]. Chemistry-AEuropean Journal,2004,10(18):4480-4490
    [9] Y. Zhao, Z. Lin, C. He, et al. A―Turn-On‖Fluorescent Sensor for Selective Hg (II)Detection in Aqueous Media Based on Metal-Induced Dye Formation [J]. InorganicChemistry,2006,45(25):10013-10015
    [10] M. Taki, M. Desaki, A. Ojida, et al. Fluorescence imaging of intracellularcadmium using a dual-excitation ratiometric chemosensor [J]. Journal of the AmericanChemical Society,2008,130(38):12564-12565
    [11] X. D. Lou, L. Y. Zhang, J. G. Qin, et al. Colorimetric sensing of α-amino acidsand its application for the―label-free‖detection of protease [J]. Langmuir,2010,26(3):1566-1569
    [12] Z. Guo, N. R. Song, J. H. Moon, et al. A benzobisimidazolium-based fluorescentand colorimetric chemosensor for CO2[J]. Journal of the American Chemical Society,2012,134(43):17846-17849
    [13] P. Jin, J. Chu, Y. Miao, et al. A NIR luminescent copolymer based on platinumporphyrin as high permeable dissolved oxygen sensor for microbioreactors [J]. AIChEJournal,2013,59(8):2743-2752
    [14] J. Homola. Surface plasmon resonance sensors for detection of chemical andbiological species [J]. Chem. Rev.,2008,108(2):462–493
    [15] S. A. El-Safty, A. A. Ismail, H. Matsunaga, et al. Optical Nanosensor Designwith Uniform Pore Geometry and Large Particle Morphology [J]. Chemistry-AEuropean Journal,2007,13(33):9245-9255
    [16] J. Wu, W. Liu, J. Ge, et al. New sensing mechanisms for design of fluorescentchemosensors emerging in recent years [J]. Chemical Society Reviews,2011,40(7):3483-3495
    [17] R. Martinez-Manez, F. Sancenon. Fluorogenic and chromogenic chemosensorsand reagents for anions [J]. Chemical Reviews,2003,103(11):4419-4476
    [18] B. Valeur, I. Leray. Design principles of fluorescent molecular sensors for cationrecognition [J]. Coordination Chemistry Reviews,2000,205:3-40
    [19] J. R. Askim, M. Mahmoudi, K. S. Suslick. Optical sensor arrays for chemicalsensing: the optoelectronic nose [J]. Chemical Society Reviews,2013,42(22):8649-8682
    [20] X. Chen, Y. Zhou, X. J. Peng, et al. Fluorescent and colorimetric probes fordetection of thiols [J]. Chemical Society Reviews,2010,39(6):2120-2135
    [21] E. M. Nolan, S. J. Lippard. Tools and tactics for the optical detection ofmercuric ion [J]. Chemical Reviews,2008,108(9):3443-3480
    [22] R. I. Dmitriev, D. B. Papkovsky. Optical probes and techniques for O2measurement in live cells and tissue [J]. Cellular and Molecular Life Sciences,2012,69(12):2025-2039
    [23] M. J. Yuan, Y. L. Li, J. B. Li, et al. A colorimetric and fluorometric dual-modalassay for mercury ion by a molecule [J]. Organic Letters,2007,9(12):2313-2316
    [24] X. L. Zhang, Y. Xiao, X. H. Qian. A Ratiometric Fluorescent Probe Based onFRET for Imaging Hg2+Ions in Living Cells [J]. Angewandte Chemie InternationalEdition,2008,47(42):8025-8029
    [25] Y. Shiraishi, H. Maehara, K. Ishizumi, et al. Hg(II)-Selective excimer emissionof a bisnaphthyl azadiene derivative [J]. Organic Letters,2007,9(16):3125-3128
    [26] M. Suresh, A. K. Mandal, S. Saha, et al. Azine-Based Receptor for Recognitionof Hg2+Ion: Crystallographic Evidence and Imaging Application in Live Cells [J].Organic Letters,2010,12(23):5406-5409
    [27] Y. Amao. Probes and polymers for optical sensing of oxygen [J]. MicrochimicaActa,2003,143(1):1-12
    [28] A. Ruggi, F. W. B. van Leeuwen, A. H. Velders. Interaction of dioxygen with theelectronic excited state of Ir (III) and Ru (II) complexes: Principles and biomedicalapplications [J]. Coordination Chemistry Reviews,2011,255(21):2542-2554
    [29] M. Schaferling. The Art of Fluorescence Imaging with Chemical Sensors [J].Angewandte Chemie-International Edition,2012,51(15):3532-3554
    [30] H. N. Kim, S. W. Nam, K. M. K. Swamy, et al. Rhodamine hydrazonederivatives as Hg2+selective fluorescent and colorimetric chemosensors and theirapplications to bioimaging and microfluidic system [J]. Analyst,2011,136(7):1339-1343
    [31] Y. Chen, C. Zhu, Z. Yang, et al. A new "turn-on" chemodosimeter for Hg2+: ICTfluorophore formation via Hg2+-induced carbaldehyde recovery from1,3-dithiane [J].Chemical Communications,2012,48(42):5094-5096
    [32] R. Martínez-Má ez, F. Sancenón, M. Hecht, et al. Nanoscopic optical sensorsbased on functional supramolecular hybrid materials [J]. Analytical and BioanalyticalChemistry,2011,399(1):55-74
    [33] P. D. Beer, D. P. Cormode, J. J. Davis. Zinc metalloporphyrin-functionalisednanoparticle anion sensors [J]. Chemical Communications,2004,4:414-415
    [34] E. Kim, H. Eun Kim, S. Jin Lee, et al. Reversible solid optical sensor based onacyclic-type receptor immobilized SBA-15for the highly selective detection andseparation of Hg(II) ion in aqueous media [J]. Chemical Communications,2008,33:3921-3923
    [35] D. B. Cordes, S. Gamsey, B. Singaram. Fluorescent Quantum Dots with BoronicAcid Substituted Viologens to Sense Glucose in Aqueous Solution [J]. AngewandteChemie International Edition,2006,45(23):3829-3832
    [36] S. J. Lee, S. S. Lee, M. S. Lah, et al. Organic-inorganic hybrid nanomaterial as anew fluorescent chemosensor and adsorbent for copper ion [J]. ChemicalCommunications,2006,43:4539-4541
    [37] B. Lei, B. Li, H. Zhang, et al. Mesostructured Silica Chemically Doped withRuII as a Superior Optical Oxygen Sensor [J]. Advanced Functional Materials,2006,16(14):1883-1891
    [38] V. Salgueirino-Maceira, M. A. Correa-Duarte. Increasing the complexity ofmagnetic core/shell structured nanocomposites for biological applications [J].Advanced Materials,2007,19(23):4131-4144
    [39] R. G. Chaudhuri, S. Paria. Core/Shell Nanoparticles: Classes, Properties,Synthesis Mechanisms, Characterization, and Applications [J]. Chemical Reviews,2012,112(4):2373-2433
    [40] H. Y. Lee, D. R. Bae, J. C. Park, et al. A Selective Fluoroionophore Based onBODIPY-functionalized Magnetic Silica Nanoparticles: Removal of Pb2+fromHuman Blood [J]. Angewandte Chemie-International Edition,2009,48(7):1239-1243
    [41] Y. Cho, S. S. Lee, J. H. Jung. Recyclable fluorimetric and colorimetric mercuryspecific sensor using porphyrin-functionalized Au@SiO2core/shell nanoparticles [J].Analyst,2010,135(7):1551-1555
    [42] M. E. Caldorera-Moore, W. B. Liechty, N. A. Peppas Responsive TheranosticSystems: Integration of Diagnostic Imaging Agents and Responsive ControlledRelease Drug Delivery Carriers [J]. Accounts of Chemical Research,2011,44(10):1061-1070
    [43] C. Alvarez-Lorenzo, L. Bromberg, A. Concheiro. Light-sensitive IntelligentDrug Delivery Systems [J]. Photochemistry and Photobiology,2009,85(4):848-860
    [44] R. Deloncle, A. M. Caminade. Stimuli-responsive dendritic structures: The caseof light-driven azobenzene-containing dendrimers and dendrons [J]. Journal ofPhotochemistry and Photobiology C-Photochemistry Reviews,2010,11(1):25-45
    [45] J. Q. Jiang, B. Qi, M. Lepage, et al. Polymer micelles stabilization on demandthrough reversible photo-cross-linking [J]. Macromolecules,2007,40(4):790-792
    [46] H. I. Lee, W. Wu, J. K. Oh, et al. Light-induced reversible formation ofpolymeric micelles [J]. Angewandte Chemie International Edition,2007,46(14):2453-2457
    [47] A. M. Kloxin, A. M. Kasko, C. N. Salinas, et al. Photodegradable Hydrogels forDynamic Tuning of Physical and Chemical Properties [J]. Science,2009,324(5923):59-63
    [48] G. Wang, X. Tong, Y. Zhao. Preparation of azobenzene-containing amphiphilicdiblock copolymers for light-responsive micellar aggregates [J]. Macromolecules,2004,37(24):8911-8917
    [49] J. W. Liu, J. Nie, Y. F. Zhao, et al. Preparation and properties of differentphotoresponsive hydrogels modulated with UV and visible light irradiation [J].Journal of Photochemistry and Photobiology A-Chemistry,2010,211(1):20-25
    [50] R. H. Bisby, C. Mead, C. C. Morgan. Wavelength-programmed solute releasefrom photosensitive liposomes [J]. Biochemical and Biophysical ResearchCommunications,2000,276(1):169-173
    [51] P. Yang, S. Gai, J. Lin. Functionalized mesoporous silica materials for controlleddrug delivery [J]. Chemical Society Reviews,2012,41(9):3679-3698
    [52] A. Bernardos, L. Mondragon, I. Javakhishvili, et al. Azobenzene PolyestersUsed as Gate-Like Scaffolds in Nanoscopic Hybrid Systems [J]. Chemistry-aEuropean Journal,2012,18(41):13068-13078
    [53] Y. A. Lau, B. L. Henderson, J. Lu, et al. Continuous spectroscopicmeasurements of photo-stimulated release of molecules by nanomachines in a singleliving cell [J]. Nanoscale,2012,4(11):3482-3489
    [54] Q. Yuan, Y. F. Zhang, T. Chen, et al. Photon-Manipulated Drug Release from aMesoporous Nanocontainer Controlled by Azobenzene-Modified Nucleic Acid [J].ACS Nano,2012,6(7):6337-6344
    [55] M. Guo, Y. Yan, X. Liu, et al. Multilayer nanoparticles with a magnetite core anda polycation inner shell as pH-responsive carriers for drug delivery [J]. Nanoscale,2010,2(3):434-441
    [56] X. Kang, Z. Cheng, D. Yang, et al. Drug Delivery: Design and Synthesis ofMultifunctional Drug Carriers Based on Luminescent Rattle-Type Mesoporous SilicaMicrospheres with a Thermosensitive Hydrogel as a Controlled Switch [J]. AdvancedFunctional Materials,2012,22(7):1539-1539
    [57] H. Wu, S. Zhang, J. Zhang, et al. A Hollow-Core, Magnetic, and MesoporousDouble-Shell Nanostructure: In Situ Decomposition/Reduction Synthesis, Bioimaging,and Drug-Delivery Properties [J]. Advanced Functional Materials,2011,21(10):1850-1862
    [58] A. Baeza, E. Guisasola, E. Ruiz-Hernandez, et al. Magnetically TriggeredMultidrug Release by Hybrid Mesoporous Silica Nanoparticles [J]. Chemistry ofMaterials,2012,24(3):517-524
    [59] B. Chang, X. Sha, J. Guo, et al. Thermo and pH dual responsive, polymer shellcoated magnetic mesoporous silica nanoparticles for controlled drug release [J].Journal of Materials Chemistry,2011,21(25):9239-9247
    [60] W. Fang, J. Yang, J. Gong, et al. Photo-and pH-Triggered Release of AnticancerDrugs from Mesoporous Silica-Coated Pd@Ag Nanoparticles [J]. AdvancedFunctional Materials,2012,22(4):842-848
    [61] Z. Zhang, L. Wang, J. Wang, et al. Mesoporous Silica-Coated Gold Nanorods asa Light-Mediated Multifunctional Theranostic Platform for Cancer Treatment [J].Advanced Materials,2012,24(11):1418-1423
    [62] S. Wei, Q. Wang, J. Zhu, et al. Multifunctional composite core-shellnanoparticles [J]. Nanoscale,2011,3(11):4474-4502
    [63] R. Roy. Ceramics by the solution-sol-gel route [J]. science,1987,238(4834):1664-1669
    [64] O. G. Glotov, V. E. Zarko, V. V. Karasev. Problems and prospects ofinvestigating the formation and evolution of agglomerates by the sampling method [J].Combustion Explosion and Shock Waves,2000,36(1):146-156
    [65]张立德,徐国财.纳米复合材料[M].北京:化学工业出版社,2002.1-16.
    [66] J. Liu, S. Z. Qiao, Q. H. Hu, et al. Magnetic Nanocomposites with MesoporousStructures: Synthesis and Applications [J]. Small,2011,7(4):425-443
    [67] Y. Deng, Y. Cai, Z. Sun, et al. Magnetically responsive ordered mesoporousmaterials: A burgeoning family of functional composite nanomaterials [J]. ChemicalPhysics Letters,2011,510(1):1-13
    [68] A. H. Lu, E. L. Salabas, F. Schuth. Magnetic nanoparticles: Synthesis, protection,functionalization, and application [J]. Angewandte Chemie International Edition,2007,46(8):1222-1244
    [69] J. H. Gao, H. W. Gu, B. Xu. Multifunctional Magnetic Nanoparticles: Design,Synthesis, and Biomedical Applications [J]. Accounts of Chemical Research,2009,42(8):1097-1107
    [70] C. Fang, M. Q. Zhang. Multifunctional magnetic nanoparticles for medicalimaging applications [J]. Journal of Materials Chemistry,2009,19(35):6258-6266
    [71] A. K. Gupta, M. Gupta. Synthesis and surface engineering of iron oxidenanoparticles for biomedical applications [J]. Biomaterials,2005,26(18):3995-4021
    [72] S. Shylesh, V. Schünemann, W. R. Thiel. Magnetically Separable Nanocatalysts:Bridges between Homogeneous and Heterogeneous Catalysis [J]. AngewandteChemie International Edition,2010,49(20):3428-3459
    [73] B. J. Scott, G. Wirnsberger, G. D. Stucky. Mesoporous and mesostructuredmaterials for optical applications [J]. Chemistry of Materials,2001,13(10):3140-3150
    [74] M. Hartmann. Ordered mesoporous materials for bioadsorption and biocatalysis[J]. Chemistry of Materials,2005,17(18):4577-4593
    [75] B. Melde, B. Johnson. Mesoporous materials in sensing: morphology andfunctionality at the meso-interface [J]. Analytical and Bioanalytical Chemistry,2010,398(4):1565-1573
    [76] Y. Klichko, M. Liong, E. Choi, et al. Mesostructured Silica for OpticalFunctionality, Nanomachines, and Drug Delivery [J]. Journal of the AmericanCeramic Society,2009,92: S2-S10
    [77] V. Mamaeva, C. Sahlgren, M. Lindén. Mesoporous silica nanoparticles inmedicine—Recent advances [J]. Advanced Drug Delivery Reviews,2013,65(5):689-702
    [78] P. Wu, J. Zhu, Z. Xu. Template-Assisted Synthesis of Mesoporous MagneticNanocomposite Particles [J]. Advanced Functional Materials,2004,14(4):345-351
    [79] S. Zhu, Z. Zhou, D. Zhang, et al. Design and synthesis of delivery system basedon SBA-15with magnetic particles formed in situ and thermo-sensitive PNIPA ascontrolled switch [J]. Microporous and Mesoporous Materials,2007,106(1):56-61
    [80] Y. Wang, J. Ren, X. Liu, et al. Facile synthesis of ordered magnetic mesoporousγ-Fe2O3/SiO2nanocomposites with diverse mesostructures [J]. Journal of Colloid andInterface Science,2008,326(1):158-165
    [81] C. Tu, J. Du, L. Yao, et al. Magnetic Ni/SiO2composite microcapsules preparedby one-pot synthesis [J]. Journal of Materials Chemistry,2009,19(9):1245-1251
    [82] W. Zhao, J. Gu, L. Zhang, et al. Fabrication of Uniform MagneticNanocomposite Spheres with a Magnetic Core/Mesoporous Silica Shell Structure [J].Journal of the American Chemical Society,2005,127(25):8916-8917
    [83] D. K. Yi, S. T. Selvan, S. S. Lee, et al. Silica-Coated Nanocomposites ofMagnetic Nanoparticles and Quantum Dots [J]. Journal of the American ChemicalSociety,2005,127(14):4990-4991
    [84] J. Kim, J. E. Lee, J. Lee, et al. Magnetic Fluorescent Delivery Vehicle UsingUniform Mesoporous Silica Spheres Embedded with Monodisperse Magnetic andSemiconductor Nanocrystals [J]. Journal of the American Chemical Society,2005,128(3):688-689
    [85] Y. H. Deng, D. W. Qi, C. H. Deng, et al. Superparamagnetic High-MagnetizationMicrospheres with Fe3O4@SiO2Core and Perpendicularly Aligned Mesoporous SiO2Shell for Removal of Microcystins [J]. Journal of the American Chemical Society,2007,130(1):28-29
    [86] W. Zhao, H. Chen, Y. Li, et al. Uniform Rattle-type Hollow MagneticMesoporous Spheres as Drug Delivery Carriers and their Sustained-Release Property[J]. Advanced Functional Materials,2008,18(18):2780-2788
    [87] L. Zhang, S. Z. Qiao, Y. G. Jin, et al. Magnetic Hollow Spheres of PeriodicMesoporous Organosilica and Fe3O4Nanocrystals: Fabrication and Structure Control[J]. Advanced Materials,2008,20(4):805-809
    [88] S. Alam, C. Anand, R. Logudurai, et al. Comparative study on the magneticproperties of iron oxide nanoparticles loaded on mesoporous silica and carbonmaterials with different structure [J]. Microporous and Mesoporous Materials,2009,121(1-3):178-184
    [89] D. Lee, J. Lee, H. Lee, et al. Filtration-Free Recyclable Catalytic AsymmetricDihydroxylation Using a Ligand Immobilized on Magnetic Mesocellular MesoporousSilica [J]. Advanced Synthesis&Catalysis,2006,348(1):41-46
    [90] K. R. Lee, S. Kim, D. H. Kang, et al. Highly Uniform SuperparamagneticMesoporous Spheres with Submicrometer Scale and Their Uptake into Cells [J].Chemistry of Materials,2008,20(21):6738-6742
    [91] T. Nakamura, Y. Yamada, K. Yano Novel synthesis of highly monodispersedgamma-Fe2O3/SiO2and epsilon Fe2O3/SiO2nanocomposite spheres [J]. Journal ofMaterials Chemistry,2006,16(25):2417-2419
    [92] R. P. Hodgkins, A. Ahniyaz, K. Parekh, et al. Maghemite NanocrystalImpregnation by Hydrophobic Surface Modification of Mesoporous Silica [J].Langmuir,2007,23(17):8838-8844
    [93] Z. Lei, Q. Shi Zhang, C. Lina, et al. Fabrication of a magnetic helicalmesostructured silica rod [J]. Nanotechnology,2008,19(43):435608
    [94] S. Tao, C. Wang, W. Ma, et al. Designed multifunctionalized magneticmesoporous microsphere for sequential sorption of organic and inorganic pollutants[J]. Microporous and Mesoporous Materials,2012,147(1):295-301
    [95] F. Zhang, G. B. Braun, A. Pallaoro, et al. Mesoporous MultifunctionalUpconversion Luminescent and Magnetic―Nanorattle‖Materials for TargetedChemotherapy [J]. Nano Letters,2011,12(1):61-67
    [96] Y. S. Lin, S. H. Wu, Y. Hung, et al. Multifunctional Composite Nanoparticles:Magnetic, Luminescent, and Mesoporous [J]. Chemistry of Materials,2006,18(22):5170-5172
    [97] J. Lee, H. Kim, S. Kim, et al. A multifunctional mesoporous nanocontainer withan iron oxide core and a cyclodextrin gatekeeper for an efficient theranostic platform[J]. Journal of Materials Chemistry,2012,22(28):14061-14067
    [98] C. Mi, J. Zhang, H. Gao, et al. Multifunctional nanocomposites ofsuperparamagnetic (Fe3O4) and NIR-responsive rare earth-doped up-conversionfluorescent (NaYF4:Yb, Er) nanoparticles and their applications in biolabeling andfluorescent imaging of cancer cells [J]. Nanoscale,2010,2(7):1141-1148
    [99] J. Kim, H. S. Kim, N. Lee, et al. Multifunctional Uniform NanoparticlesComposed of a Magnetite Nanocrystal Core and a Mesoporous Silica Shell forMagnetic Resonance and Fluorescence Imaging and for Drug Delivery [J].Angewandte Chemie International Edition,2008,47(44):8438-8441
    [100] J. Feng, S. Y. Song, R. P. Deng, et al. Novel Multifunctional Nanocomposites:Magnetic Mesoporous Silica Nanospheres Covalently Bonded with Near-InfraredLuminescent Lanthanide Complexes [J]. Langmuir,2009,26(5):3596-3600
    [101] M. Liong, J. Lu, M. Kovochich, et al. Multifunctional Inorganic Nanoparticlesfor Imaging, Targeting, and Drug Delivery [J]. ACS Nano,2008,2(5):889-896
    [102] Y. H. Deng, Y. Cai, Z. K. Sun, et al. Multifunctional Mesoporous CompositeMicrospheres with Well-Designed Nanostructure: A Highly Integrated CatalystSystem [J]. Journal of the American Chemical Society,2010,132(24):8466-8473
    [103] L. Guo, J. Li, L. Zhang, et al. A facile route to synthesize magnetic particleswithin hollow mesoporous spheres and their performance as separable Hg2+adsorbents [J]. Journal of Materials Chemistry,2008,18(23):2733-2738
    [104] J. Kim, Y. Piao, N. Lee, et al. Magnetic Nanocomposite Spheres Decorated withNiO Nanoparticles for a Magnetically Recyclable Protein Separation System [J].Advanced Materials,2010,22(1):57-60
    [105] C. A. Quirarte-Escalante, V. Soto, W. de la Cruz, et al. Synthesis of HybridAdsorbents Combining Sol Gel Processing and Molecular Imprinting Applied toLead Removal from Aqueous Streams [J]. Chemistry of Materials,2009,21(8):1439-1450
    [106] Y. Y. Yang, T. Y. Cheng, W. P. Zhu, et al. Highly Selective and SensitiveNear-Infrared Fluorescent Sensors for Cadmium in Aqueous Solution [J]. OrganicLetters,2010,13(2):264-267
    [107] H. G. Wang, L. Sun, Y. P. Li, et al. Layer-by-Layer Assembled Fe3O4@C@CdTeCore/Shell Microspheres as Separable Luminescent Probe for Sensitive Sensing ofCu2+Ions [J]. Langmuir,2011,27(18):11609-11615
    [108] T. Y. Cheng, Y. F. Xu, S. Y. Zhang, et al. A Highly Sensitive and SelectiveOff-On Fluorescent Sensor for Cadmium in Aqueous Solution and Living Cell [J].Journal of the American Chemical Society,2008,130(48):16160-16161
    [109] Q. T. Meng, X. L. Zhang, C. He, et al. Multifunctional Mesoporous SilicaMaterial Used for Detection and Adsorption of Cu2+in Aqueous Solution andBiological Applications in vitro and in vivo [J]. Advanced Functional Materials,2010,20(12):1903-1909
    [110] M. Park, S. Seo, I. S. Lee, et al. Ultraefficient separation and sensing of mercuryand methylmercury ions in drinking water by using aminonaphthalimidefunctionalized Fe3O4@SiO2core/shell magnetic nanoparticles [J]. ChemicalCommunications,2010,46(25):4478-4480
    [111] L. Marbella, B. Serli-Mitasev, P. Basu. Development of a Fluorescent Pb2+Sensor [J]. Angewandte Chemie International Edition,2009,48(22):3996-3998
    [112] R. von Burg. Inorganic mercury [J]. Journal of Applied Toxicology,1995,15(6):483-493
    [113] H. H. Harris, I. J. Pickering, G. N. George. The Chemical Form of Mercury inFish [J]. Science,2003,301(5637):1203
    [114] S. H. Kim, K. C. Song, S. Ahn, et al. Hg2+-selective fluoroionophoric behaviorof pyrene appended diazatetrathia-crown ether [J]. Tetrahedron Letters,2006,47(4):497-500
    [115] C. Wang, S. Y. Tao, W. Wei, et al. Multifunctional mesoporous material fordetection, adsorption and removal of Hg2+in aqueous solution [J]. Journal ofMaterials Chemistry,2010,20(22):4635-4641
    [116] J. V. Ros-Lis, R. Casasús, M. Comes, et al. A Mesoporous3D Hybrid Materialwith Dual Functionality for Hg2+Detection and Adsorption [J]. Chemistry-AEuropean Journal,2008,14(27):8267-8278
    [117] S. J. Lee, J. E. Lee, J. Seo, et al. Optical Sensor Based on Nanomaterial for theSelective Detection of Toxic Metal Ions [J]. Advanced Functional Materials,2007,17(17):3441-3446
    [118] Y. H. Wang, B. Li, L. M. Zhang, et al. A highly selective regenerable opticalsensor for detection of mercury(II) ion in water using organic-inorganic hybridnanomaterials containing pyrene [J]. New Journal of Chemistry,2010,34(9):1946-1953
    [119] W. S. Han, H. Y. Lee, S. H. Jung, et al. Silica-based chromogenic andfluorogenic hybrid chemosensor materials [J]. Chemical Society Reviews,2009,38(7):1904-1915
    [120] A. B. Descalzo, R. Martínez-Má ez, F. Sancenón, et al. The SupramolecularChemistry of Organic–Inorganic Hybrid Materials [J]. Angewandte ChemieInternational Edition,2006,45(36):5924-5948
    [121] W. St ber, A. Fink, E. Bohn. Controlled growth of monodisperse silica spheresin the micron size range [J]. Journal of Colloid and Interface Science,1968,26(1):62-69
    [122] B. Tan, S. E. Rankin. Interfacial Alignment Mechanism of Forming SphericalSilica with Radially Oriented Nanopores [J]. The Journal of Physical Chemistry B,2004,108(52):20122-20129
    [123] S. B. Yoon, J. Y. Kim, J. H. Kim, et al. Synthesis of monodisperse sphericalsilica particles with solid core and mesoporous shell: mesopore channelsperpendicular to the surface [J]. Journal of Materials Chemistry,2007,17(18):1758-1761
    [124] C. Y. Peng, H. J. Zhang, J. B. Yu, et al. Synthesis, characterization, andluminescence properties of the ternary europium complex covalently bonded tomesoporous SBA-15[J]. Journal of Physical Chemistry B,2005,109(32):15278-15287
    [125] P. Tien, L. K. Chau. Novel Sol Gel-Derived Material for Separation andOptical Sensing of Metal Ions: Propyl-ethylenediamine Triacetate FunctionalizedSilica [J]. Chemistry of Materials,1999,11(8):2141-2147
    [126] K. S. W. Sing, D. H. Everett, R. A. W.Haul, et al. Reporting physisorption datafor gas/solid systems with special reference to the determination of surface area andporosity [J]. Pure and Applied Chemistry,1985,57(4):603–619
    [127] L. Z. Zhang, Y. Xiong, P. Cheng, et al. Molecular orbital confinement of aSchiff base molecule in the nanoporous channels of MCM-41host [J]. ChemicalPhysics Letters,2002,358(3-4):278-283
    [128] L. Zhang, W. Sun, P. Cheng. Spectroscopic and Theoretical Studies of Quantumand Electronic Confinement Effects in Nanostructured Materials [J]. Molecules,2003,8(1):207-222
    [129] R. Weissleder, K. Kelly, E. Y. Sun, et al. Cell-specific targeting of nanoparticlesby multivalent attachment of small molecules [J]. Nat Biotech,2005,23(11):1418-1423
    [130] A. Caballero, R. Martínez, V. Lloveras, et al. Highly Selective Chromogenic andRedox or Fluorescent Sensors of Hg2+in Aqueous Environment Based on1,4-Disubstituted Azines [J]. Journal of the American Chemical Society,2005,127(45):15666-15667
    [131] Mercury Update: Impact on Fish Advisories; EPA Fact SheetEPA-823-F-01-011; EPA, Office of Water: Washington, DC,2001
    [132] L. Cheng, K. Yang, Y. Li, et al. Facile Preparation of MultifunctionalUpconversion Nanoprobes for Multimodal Imaging and Dual-Targeted PhotothermalTherapy [J]. Angewandte Chemie International Edition,2011,50(32):7385-7390
    [133] R. Zhang, C. Wu, L. Tong, et al. Multifunctional Core Shell Nanoparticles asHighly Efficient Imaging and Photosensitizing Agents [J]. Langmuir,2009,25(17):10153-10158
    [134] D. R. Rolison, J. W. Long, J. C. Lytle, et al. Multifunctional3Dnanoarchitectures for energy storage and conversion [J]. Chemical Society Reviews,2009,38(1):226-252
    [135] L. Liu, B. Li, R. Qin, et al. Synthesis and characterization of new bifunctionalnanocomposites possessing upconversion and oxygen-sensing properties [J].Nanotechnology,2010,21(28):285701
    [136] D. Pinkowicz, R. Podgajny, W. Nitek, et al. Multifunctional MagneticMolecular {[MnII(urea)2(H2O)]2[NbIV(CN)8]}n System: Magnetization-Induced SHGin the Chiral Polymorph [J]. Chemistry of Materials,2010,23(1):21-31
    [137] M. J. Li, Z. Chen, V. W. W. Yam, et al. Multifunctional Ruthenium(II)Polypyridine Complex-Based Core–Shell Magnetic Silica Nanocomposites:Magnetism, Luminescence, and Electrochemiluminescence [J]. ACS Nano,2008,2(5):905-912
    [138] X. Li, F. Gittleson, M. Carmo, et al. Scalable Fabrication of MultifunctionalFreestanding Carbon Nanotube/Polymer Composite Thin Films for EnergyConversion [J]. ACS Nano,2012,6(2):1347-1356
    [139] H. W. Gao. A multifunctional magnetic hybrid synthesized for adsorption ofenvironmental contaminants [J]. RSC Advances,2012:
    [140] Y. H. Deng, C. H. Deng, D. W. Qi, et al. Synthesis of Core/Shell ColloidalMagnetic Zeolite Microspheres for the Immobilization of Trypsin [J]. AdvancedMaterials,2009,21(13):1377-1382
    [141] P. W. Lee, S. H. Hsu, J. S. Tsai, et al. Multifunctional core-shell polymericnanoparticles for transdermal DNA delivery and epidermal Langerhans cells tracking[J]. Biomaterials,2010,31(8):2425-2434
    [142] S. Guha, S. Roy, A. Banerjee. Fluorescent Au@Ag Core–Shell Nanoparticleswith Controlled Shell Thickness and HgII Sensing [J]. Langmuir,2011,27(21):13198-13205
    [143] N. H. Cho, T. C. Cheong, J. H. Min, et al. A multifunctional core-shellnanoparticle for dendritic cell-based cancer immunotherapy [J]. Nat Nano,2011,6(10):675-682
    [144] D. Tamburro, C. Fredolini, V. Espina, et al. Multifunctional Core–ShellNanoparticles: Discovery of Previously Invisible Biomarkers [J]. Journal of theAmerican Chemical Society,2011,133(47):19178-19188
    [145] Y. Chen, H. Chen, D. Zeng, et al. Core/Shell Structured Hollow MesoporousNanocapsules: A Potential Platform for Simultaneous Cell Imaging and AnticancerDrug Delivery [J]. ACS Nano,2010,4(10):6001-6013
    [146] L. Zhang, B. Liu, S. Dong. Bifunctional Nanostructure of Magnetic CoreLuminescent Shell and Its Application as Solid-State ElectrochemiluminescenceSensor Material [J]. The Journal of Physical Chemistry B,2007,111(35):10448-10452
    [147] J. M. Lee, J. Kim, Y. Shin, et al. Heterogeneous asymmetric Henry reactionusing a chiral bis(oxazoline)-copper complex immobilized on magnetically separablemesocellular mesoporous silica support [J]. Tetrahedron: Asymmetry,2010,21(3):285-291
    [148] C. S. Gill, B. A. Price, C. W. Jones. Sulfonic acid-functionalized silica-coatedmagnetic nanoparticle catalysts [J]. Journal of Catalysis,2007,251(1):145-152
    [149] J. Kim, J. Lee, H. B. Na, et al. A Magnetically Separable, Highly Stable EnzymeSystem Based on Nanocomposites of Enzymes and Magnetic Nanoparticles Shippedin Hierarchically Ordered, Mesocellular, Mesoporous Silica [J]. Small,2005,1(12):1203-1207
    [150] P. Yang, Z. Quan, Z. Hou, et al. A magnetic, luminescent and mesoporouscore–shell structured composite material as drug carrier [J]. Biomaterials,2009,30(27):4786-4795
    [151] H. Wu, G. Liu, S. Zhang, et al. Biocompatibility, MR imaging and targeted drugdelivery of a rattle-type magnetic mesoporous silica nanosphere system conjugatedwith PEG and cancer-cell-specific ligands [J]. Journal of Materials Chemistry,2011,21(9):3037-3045
    [152] J. E. Lee, N. Lee, H. Kim, et al. Uniform Mesoporous Dye-Doped SilicaNanoparticles Decorated with Multiple Magnetite Nanocrystals for SimultaneousEnhanced Magnetic Resonance Imaging, Fluorescence Imaging, and Drug Delivery[J]. Journal of the American Chemical Society,2009,132(2):552-557
    [153] S. Liu, H. Chen, X. Lu, et al. Facile Synthesis of Copper (II) Immobilized onMagnetic Mesoporous Silica Microspheres for Selective Enrichment of Peptides forMass Spectrometry Analysis [J]. Angewandte Chemie,2010,122(41):7719-7723
    [154] H. Tian, J. J. Li, Q. Shen, et al. Using shell-tunable mesoporous Fe3O4@HMSand magnetic separation to remove DDT from aqueous media [J]. Journal ofHazardous materials,2009,171(1-3):459-464
    [155] L. Ji, J. H. Wu, Q. Luo, et al. Quantitative Mass Spectrometry Combined withSeparation and Enrichment of Phosphopeptides by Titania Coated MagneticMesoporous Silica Microspheres for Screening of Protein Kinase Inhibitors [J].Analytical Chemistry,2012,84(5):2284-2291
    [156] Z. Wu, K. Yu, S. Zhang, et al. Hematite Hollow Spheres with a MesoporousShell: Controlled Synthesis and Applications in Gas Sensor and Lithium Ion Batteries[J]. The Journal of Physical Chemistry C,2008,112(30):11307-11313
    [157] Q. Li, L. Zeng, J. Wang, et al. Magnetic Mesoporous Organic InorganicNiCo2O4Hybrid Nanomaterials for Electrochemical Immunosensors [J]. ACS AppliedMaterials&Interfaces,2011,3(4):1366-1373
    [158] M.C.Hitchman. Measurement of dissolved oxygen [M]. New York: Wlley,1978.130-135
    [159] L. C. Clark. Monitor and control of blood and tissue oxygen tensions [J].Transactions American Society for Artificial Internal Organs,1956,2:41-48
    [160] P. Chojnacki, G. Mistlberger, I. Klimant. Separable Magnetic Sensors for theOptical Determination of Oxygen [J]. Angewandte Chemie,2007,119(46):9006-9009
    [161] G. Mistlberger, K. Koren, E. Scheucher, et al. Multifunctional Magnetic OpticalSensor Particles with Tunable Sizes for Monitoring Metabolic Parameters and as aBasis for Nanotherapeutics [J]. Advanced Functional Materials,2010,20(11):1842-1851
    [162] Q. Zhao, F. Li, C. Huang. Phosphorescent chemosensors based on heavy-metalcomplexes [J]. Chemical Society Reviews,2010,39(8):3007-3030
    [163] B. Lei, B. Li, H. Zhang, et al. Synthesis, Characterization, and Oxygen SensingProperties of Functionalized Mesoporous SBA-15and MCM-41with a CovalentlyLinked Ruthenium(II) Complex [J]. The Journal of Physical Chemistry C,2007,111(30):11291-11301
    [164] B. P. Sullivan, D. J. Salmon, T. J. Meyer. Mixed phosphine2,2‘-bipyridinecomplexes of ruthenium [J]. Inorganic Chemistry,1978,17(12):3334-3341
    [165] B. Marler, U. Oberhagemann, S. Vortmann, et al. Influence of the sorbate typeon the XRD peak intensities of loaded MCM-41[J]. Microporous Materials,1996,6(5–6):375-383
    [166] Y. Zhao, B. J. Lynch, D. G. Truhlar. Development and Assessment of a NewHybrid Density Functional Model for Thermochemical Kinetics [J]. The Journal ofPhysical Chemistry A,2004,108(14):2715-2719
    [167] D. Perez-Quintanilla, I. del Hierro, M. Fajardo, et al. Adsorption of cadmium (II)from aqueous media onto a mesoporous silica chemically modified with2-mercaptopyrimidine [J]. Journal of Materials Chemistry,2006,16(18):1757-1764
    [168] H. Xia, Y. Zhu, D. Lu, et al. Ruthenium(II) Complexes with the Mixed Ligands2,2‘-Bipyridine and4,4‘-Dialkyl Ester-2,2‘-bipyridine as Pure Red Dopants for aSingle-Layer Electrophosphorescent Device [J]. The Journal of Physical Chemistry B,2006,110(37):18718-18723
    [169] X. Li, F. Ruan, K. Wong. Optical characteristics of a ruthenium (II) compleximmobilized in a silicone rubber film for oxygen measurement [J]. Analyst,1993,118:289-292
    [170] M. Wrighton, D. L. Morse. Nature of the lowest excited state intricarbonylchloro-1,10-phenanthrolinerhenium (I) and related complexes [J]. Journalof the American Chemical Society,1974,96(4):998-1003
    [171] F. N. Castellano, T. A. Heimer, M. T. Tandhasetti, et al. Photophysical Propertiesof Ruthenium Polypyridyl Photonic SiO2Gels [J]. Chemistry of Materials,1994,6(7):1041-1048
    [172] I. Bergman. Rapid-response atmospheric oxygen monitor based on fluorescencequenching [J]. Nature,1968,218:396-397
    [173] B. W. Chu, V. W. Yam. Sensitive single-layered oxygen-sensing systems:Polypyridyl ruthenium (II) complexes covalently attached or deposited asLangmuir-Blodgett monolayer on glass surfaces [J]. Langmuir,2006,22:7437-7443
    [174] E. R. Carraway, J. N. Demas, B. A. DeGraff. Luminescence quenchingmechanism for microheterogeneous systems [J]. Analytical Chemistry,1991,63(4):332-336
    [175] E. R. Carraway, J. N. Demas, B. A. DeGraff, et al. Photophysics andphotochemistry of oxygen sensors based on luminescent transition-metal complexes[J]. Analytical Chemistry,1991,63(4):337-342
    [176] C. Huo, H. Zhang, H. Zhang, et al. Synthesis and Assembly with MesoporousSilica MCM-48of Platinum(II) Porphyrin Complexes Bearing Carbazyl Groups:Spectroscopic and Oxygen Sensing Properties [J]. Inorganic Chemistry,2006,45(12):4735-4742
    [177] A. Mills, Q. Chang. Modelled diffusion-controlled response and recoverybehaviour of a naked optical film sensor with a hyperbolic-type response to analyteconcentration [J]. Analyst,1992,117(9):1461-1466
    [178] A. Mills, A. Lepre. Controlling the Response Characteristics of LuminescentPorphyrin Plastic Film Sensors for Oxygen [J]. Analytical Chemistry,1997,69(22):4653-4659
    [179] M. E. Caldorera-Moore, W. B. Liechty, N. A. Peppas. Responsive TheranosticSystems: Integration of Diagnostic Imaging Agents and Responsive ControlledRelease Drug Delivery Carriers [J]. Accounts of Chemical Research,2011,44(10):1061-1070
    [180] X. Feng, F. Lv, L. Liu, et al. Conjugated Polymer Nanoparticles for DrugDelivery and Imaging [J]. ACS Applied Materials&Interfaces,2010,2(8):2429-2435
    [181] W. K. Fong, T. Hanley, B. J. Boyd. Stimuli responsive liquid crystals provideon-demand‘drug delivery in vitro and in vivo [J]. Journal of Controlled Release,2009,135(3):218-226
    [182] E. A. Rozhkova. Nanoscale Materials for Tackling Brain Cancer: RecentProgress and Outlook [J]. Advanced Materials,2011,23(24): H136-H150
    [183] Z. Xu, D. Wang, M. Guan, et al. Photoluminescent Silicon Nanocrystal-BasedMultifunctional Carrier for pH-Regulated Drug Delivery [J]. ACS Applied Materials&Interfaces,2012,4(7):3424-3431
    [184] I. I. Slowing, B. G. Trewyn, S. Giri, et al. Mesoporous Silica Nanoparticles forDrug Delivery and Biosensing Applications [J]. Advanced Functional Materials,2007,17(8):1225-1236
    [185] N. Z. Knezevic, B. G. Trewyn, V. S. Y. Lin. Functionalized mesoporous silicananoparticle-based visible light responsive controlled release delivery system [J].Chemical Communications,2011,47(10):2817-2819
    [186] G. F. Luo, X.D. Xu, J. Zhang, et al. Encapsulation of anAdamantane-Doxorubicin Prodrug in pH-Responsive Polysaccharide Capsules forControlled Release [J]. ACS Applied Materials&Interfaces,2012,4(10):5317-5324
    [187] K. C. F. Leung, T. D. Nguyen, J. F. Stoddart, et al. Supramolecular NanovalvesControlled by Proton Abstraction and Competitive Binding [J]. Chemistry ofMaterials,2006,18(25):5919-5928
    [188] A. Bernardos, E. Aznar, M. D. Marcos, et al. Enzyme-Responsive ControlledRelease Using Mesoporous Silica Supports Capped with Lactose [J]. AngewandteChemie,2009,121(32):5998-6001
    [189] Y. L. Zhao, Z. Li, S. Kabehie, et al. pH-Operated Nanopistons on the Surfacesof Mesoporous Silica Nanoparticles [J]. Journal of the American Chemical Society,2010,132(37):13016-13025
    [190] J. Croissant, J. I. Zink. Nanovalve-Controlled Cargo Release Activated byPlasmonic Heating [J]. Journal of the American Chemical Society,2012,134(18):7628-7631
    [191] U. Manna, S. Patil Glucose-Triggered Drug Delivery from Borate MediatedLayer-by-Layer Self-Assembly [J]. ACS Applied Materials&Interfaces,2010,2(5):1521-1527
    [192] X. Mei, S. Yang, D. Chen, et al. Light-triggered reversible assemblies ofazobenzene-containing amphiphilic copolymer with cyclodextrin modified hollowmesoporous silica nanoparticles for controlled drug release [J]. ChemicalCommunications,2012,48(80):10010-10012
    [193] X. Wang, Y. Yang, Y. Liao, et al. Robust polyazobenzene microcapsules withphotoresponsive pore channels and tunable release profiles [J]. European PolymerJournal,2012,48(1):41-48
    [194] J. Lu, E. Choi, F. Tamanoi, et al. Light-Activated Nanoimpeller-ControlledDrug Release in Cancer Cells [J]. Small,2008,4(4):421-426
    [195] C. R. Thomas, D. P. Ferris, J. H. Lee, et al. Noninvasive Remote-ControlledRelease of Drug Molecules in Vitro Using Magnetic Actuation of MechanizedNanoparticles [J]. Journal of the American Chemical Society,2010,132(31):10623-10625
    [196] Q. Gan, X. Lu, Y. Yuan, et al. A magnetic, reversible pH-responsive nanogatedensemble based on Fe3O4nanoparticles-capped mesoporous silica [J]. Biomaterials,2011,32(7):1932-1942
    [197] Z. Teng, X. Zhu, G. Zheng, et al. Ligand exchange triggered controlled-releasetargeted drug delivery system based on core-shell superparamagnetic mesoporousmicrospheres capped with nanoparticles [J]. Journal of Materials Chemistry,2012,22(34):17677-17684
    [198] S. Angelos, E. Choi, F. V gtle, et al. Photo-Driven Expulsion of Molecules fromMesostructured Silica Nanoparticles [J]. The Journal of Physical Chemistry C,2007,111(18):6589-6592
    [199] T. Tanaka, H. Ogino, M. Iwamoto. Photochange in pore diameters ofazobenzene-planted mesoporous silica materials [J]. Langmuir,2007,23(23):11417-11420
    [200] P. Sierocki, H. Maas, P. Dragut, et al. Photoisomerization of AzobenzeneDerivatives in Nanostructured Silica [J]. The Journal of Physical Chemistry B,2006,110(48):24390-24398

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700