用户名: 密码: 验证码:
基于静电诱导技术的微流体通道多物理场仿真与一步成型技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微流控芯片在近几年得到迅速发展,它集样品的制备、反应、分离、检测等功能于一体,具有简便、高效、成本低等诸多优势,在生化分析、疾病诊断方面得到广泛的应用之外,在记忆存储、信息安全、加工制造等方面也有巨大的应用前景。当前微流体通道主要以光刻、刻蚀和软光刻等加工技术,通过键合工艺实现微通道的封装。一般步骤多,工艺复杂,而且制造出来的微通道内表面粗糙度比较大,对微通道的流通传输特性影响很大。所以,能够实现一步化制造内表面光滑的微通道对微流体芯片来说具有重要的意义。为此,本课题将探索一种新型的基于毛细力辅助的静电诱导光刻这一液体成型微加工方法来制造表面光滑的微流体通道。本论文主要从以下几个方面进行了研究:
     首先,对静电诱导技术进行研究。静电诱导光刻技术作为一种比较新型的光刻技术,它不需要传统光刻技术的曝光、显影等过程,而是借助静电力作为驱动力驱动液体聚合物薄膜实现微结构的成型。研究了薄膜的稳定性与在静电场作用下薄膜表面形貌的演化。针对后期的实验研究参数,采用数值模拟的方法研究在特定的极板时液体聚合物薄膜的演化行为,寻求完整复制极板结构的条件。
     其次,采用有限元软件中的相场方法建立了微流体通道成型过程的瞬态仿真分析模型,对聚合物润湿角、液体薄膜厚度、极板形貌等相关的重要参数进行了研究。分析结果表明良好的润湿特性是微通道成型的重要条件,否则难以完成微通道的自封装,但对最终结构的形貌或者轮廓影响甚微;液体薄膜的初始厚度对微通道的形成影响不大,却可以在一定程度上控制最终成型的微通道的尺寸;极板结构的形貌也会对微通道的成型有着一定的影响,采用结构形貌更加光滑的极板更有利于微通道的形成。
     最后,对微流体通道的制造进行实验研究。采用UV-LIGA技术并优化了相应的工艺参数,制作了性能较为良好的镍金属极板,作为静电诱导实验的模板;采用PDMS作为实验材料进行实验工艺的研究,验证了微流体通道的一步化制作工艺;通过对PDMS进行预固化的方法改变了聚合物的润湿角,进行静电诱导实验,其结果验证了润湿特性在微通道形成过程中的重要作用。除此之外,实验结果还表明毛细力辅助的静电诱导技术在制作中空微胶囊、微透镜等三维中空微结构方面具有非常明显的优势。
In recent years, the lab-on-a-chip systems have great developments, and alsoattract much research attentions on them. Usually, the lab-chip systems integratemany functions, such as sample preparation, reaction, separation, detection, etc, withmany advantages including simple, high efficiency, low cost at the same time. So thelab-chip systems have been applied not only in the areas of bio and chemicalanalysis, disease detection, environment monitoring, but also a lot of other fieldsrelated with data memory, information security, fabrication, and so on. Therefore, theresearch of the lab-chip has been a vogue area at home and abroad. But so far, themain manufacture methods of the lab-chip are traditional lithography, etch, and softlithography, combined with the bounding process, which usually need multiplefabrication steps and are complicated. And the course inner surfaces have greatimpact on the liquid transmission. So, simpler fabrication method with smootherinner surface is of great meaning to the lab-chip systems. In the paper, we research anew liquid shaping technology, the electrostatic field assisted capillary (EFAC) toachieve one-step fabrication of microchannels with smoother inner surface. In orderto know more information about mechanics of the EFAC process, we studied from the followed aspects in the paper.
     Firstly, the electrohydrodynamic instabilities(EHDI) were studied. As a newmicrofabrication method, the EHDI don’t need the processes of exposure anddevelopment, and it uses electrostatic forces to drive the liquid film to formmicrostructures. The stability and evolution under the electrostatic field of the liquidfilm were researched. Referring to specific patterned masters, the evolutions of filmwere researched, and the conditions which the morphology perfectly replicates thestructures of master were studied.
     Secondly, the transient analysis model was built using the phase field method offinite element software, and factors such as the wetting angle, the initial thickness ofpolymer film, and the morphology of the master were studies. The results shown thatthe fine wetting property of the polymer is essential to the formation process of themicrochannels, otherwise the self-encapsulation can’t complete; but it doesn’t affectthe morphology of the final hollow microstructures obviously. The initial thicknessof the polymer film hardly impacts the microchannels formation, but can control themicrochannel size in an extent. The pattern of the master impact the formationprocess, and smoother structures are propitious to the microchannels formation.
     And lastly, the experiments researches were carried out. With the UV-LIGAtechnology and optimizing related parameters, fine nickel masters of the experimentswere manufactured. In experiments, PDMS was used, and the results validated theone-step fabrication method. After pre-cured, the wetting angle of polymer increased,and the results shown the essential impact of the wetting in the microchannelsformation. Furthermore, the microfabrication technology has shown greatadvantages in the manufacture of the hollow microcapsules, hollow microlens andother3D hollow microstructures.
引文
[1]方肇伦.微流控分析芯片[M].北京:科学出版社,2003.
    [2]林炳承,秦建华.图解微流控芯片实验室[M].北京:科学出版社,2008.
    [3]程秀兰,蔡炳初,徐东,陈鉴,王莉.基于硅结构的微流体控制系统[J].微细加工技术,2002,2:58-67.
    [4] Terry, S.C., Jerman, J.H., Angell, J.B. A gas chromatographic air analyzerfabricated on a silicon wafer [J]. IEEE TANSACTIONS ON ELECTRON DEVICES,1979,26(12):1880-1886.
    [5]夏飞.PDMS微流控芯片的制备工艺研究[D]:[硕士学位论文].南京:南京理工大学,2010.
    [6] Jacobson S C, Hergenroder R, Koutny L B, et al. High-speed separations on amicrochip[J]. Analytical Chemistry,1994,66(7):1114-1118.
    [7] Woolley A T, Mathies R A. Ultra-high-speed DNA sequencing using capillaryelectrophoresis chips[J]. Analytical chemistry,1995,67(20):3676-3680.
    [8] Woolley A T, Hadley D, Landre P, et al. Functional integration of PCRamplification and capillary electrophoresis in a microfabricated DNA analysisdevice[J]. Analytical Chemistry,1996,68(23):4081-4086.
    [9]方肇伦.微流控分析芯片发展与展望[J].大学化学,2001,16(2):1-6.
    [10] Paul J.A. Kenis, Rustem F. Ismagilv, George M.Whitesides, Microfabricationinside capillaries using multiphase laminar flow patterning[J]. Science,1999,285,83-85.
    [11] Petersen K, McMillan W, Kovacs G, et al. The promise of miniaturized clinicaldiagnostic systems[J]. IVD Technol,1998,4(4):43-49.
    [12] Guo L J, Cheng X, Chou C F. Fabrication of size-controllable nanofluidicchannels by nanoimprinting and its application for DNA stretching[J]. Nano letters,2004,4(1):69-73.
    [13] Hong M H, Kim K H, Bae J, et al. Scanning nanolithography using amaterial-filled nanopipette[J]. Applied Physics Letters,2000,77(16):2604-2606.
    [14] Daiguji H, Yang P, Szeri A J, et al. Electrochemomechanical energy conversionin nanofluidic channels[J]. Nano letters,2004,4(12):2315-2321.
    [15]方肇伦,殷学锋,方群.微流控分析芯片[M].第1版.北京:科学出版社,2003.
    [16]殷学锋,方群,凌云痒.微流控分析芯片的加工技术[C].第165次香山科学会议报告论文.
    [17]朱学林,熊瑛,刘刚,田扬超,褚家如.基于SU-8和PMMA的毛细管电泳芯片制作[J].功能材料与器件学报,2008,14(2):412-416.
    [18]王彬,陈翔,许宝建,金庆辉,赵建龙,徐元森.基于SU-8负胶的微流体器件的制作及研究[J].功能材料与器件学报,2006,12(3):215-219.
    [19] Saki Kondo, Yoshiaki Ukita, Kuniyo Fujiware, Yuichi Utsumi. A novelmicromixer with three-dimensionally cross-linked capillary array structure fabricatedby deep X-Ray lithography[J]. Electrical Engineering in Japan,2011,177(1):277-281.
    [20] Li, H.F., Lin, J.M., Su, R.G., Cai, Z.W., A polymeric master replicationtechnology for mass fabrication of poly(dimethylsioxane) microfluidicdevices.[J].Electrophoresis,2005,26(9):1825-1833.
    [21] Larisa Martynova, Larrie E. Locascio, Michael Gaitan, Gary W. Kramer,Richard G. Christensen, Willian A. Mac Crehan. Fabrication of plastic microfluidchannels by imprinting methods[J].Anal Chem.1997,69(23):4783-4789.
    [22] Matthew A. Roberts, Joel S. Rossier, Paul Bercier, Hubert Girault. UV lasermachined polymer subtrates for the development of microdiagnostic system[J]. Anal.Chem.,1997,69(11):2035-2042.
    [23]伊福延,吴坚武,冼鼎昌.微细加工新技术-LIGA技术[J].微细加工技术,1993,4:1-7.
    [24] Younan Xia, George M. Whitesieds. Soft lithography[J]. Angew.Chem.Int.Ed.,1998,37:550-575.
    [25]李永刚,PDMS微流控芯片关键工艺技术研究[D]:[硕士学位论文].长春:中国科学院长春光机所,2006.
    [26]谢海波,傅新,杨华勇.非超净条件下玻璃微流控芯片加工工艺[J].浙江大学学报:工学版,2007,41(4):560-563.
    [27] Alexander I, Akio O.,Nicole P.. Bonding of soda-lime glass microchips at lowtemperature[J]. Microfluid Nanofluid,2007,3:119-122.
    [28]方群,贾志舰,方肇伦.玻璃基质微流控分析芯片的低温封接方法[P].中国专利,200110016216.3,2003.
    [29] Byung-Ho Jo, Linda M. Van Lerberhe, Kathleen M. Motsegood, David J. Beebe.Three-dimensional micro-channel fabrication in polydimethylsiloxane(PDMS)leastomer[J]. Journal of Microelectromechanical Systems,2000,9(1):76-81.
    [30]金鹏,谭久彬.PDMS微小流路微加工技术的研究[J].微细加工技术,2001,3:31-40.
    [31] David C. Duffy, J. Cooper McDonald, Olivier J.A. Schueller, GeorgeM.Whitesides. Rapid prototyping of microfluidic systems inpoly(dimethylsiloxane)[J].Anal. Chem.,1998,70(23):4974-4984.
    [32]页美英,方群,殷学峰.借二甲基硅氧烷基质微流控芯片的氧气氛改性研究[J].分析化学,2004,12:1585-1589.
    [33]周嘉萍,赵昕.静电场中介电液体的流体静力学特性及应用[J].武汉水利电力大学学报,1997,30(5):93-96.
    [34] Harkema S. Capillary Instabilities in Thin Polymer Films: Mechanism ofStructure Formation and Pattern Replication[M]. University Library Groningen,2006.
    [35] Wu Ning. Nonlinear dynamics of pattern formation via electrohydrodynamicinstabilities[D]:[博士学位论文]. Princeton:Princeton University,2008.
    [36] Lewi Tonks. A theory of liquid surface rupture by a uniform electric field[J].Physical Review.,1935,48(6):562-568.
    [37] J.W. Beams. Field electro emission from liquid mercury[J]. Physical Review.,1933,44(10):0803-0807.
    [38] G.I. Taylor, A.D. McEwan. The stability of a horizontal fluid interface in avertical electric field[J]. Journal of Fluid chanics,1965,22(01):1-15.
    [39] D.A. Saville. Electrohydrodynamics: The Taylor-Melcher leaky dielectricmedel[J]. Annual Review of Fluid Mechanics,1997,29:27-64.
    [40] Leonard F. Pease, William B. Russell. Linear stability analysis of thin leakydielectric films subjected to electric fields[J]. Journal of Non-Newtonian FluidMechanics,2002,102(2):233-250.
    [41] Chou, S. Y., Zhuang L.. Lithographically induced self-assembly of periodicpolymer micropillar arrays[J].Journal of Vacuum Science&Technology B,1999,17(6):3197–3202.
    [42] Xiaolei Xi, Dan Zhao, Fei Tong, Tingbing Cao. The self-assembly andpatterning of thin polymer films on pyroelectric substrates driven byelectrohydrodynamic instability[J]. Soft Matter,2012,8(2):298-302.
    [43] Erik Schaffer, Thomas Thurn-Albrecht, Thomas P. Russell, Ullrich Steiner.Electrically induced structure formation and pattern transfer[J]. Nature,2000,403,874-877.
    [44] Goldberg‐Oppenheimer P, Mahajan S, Steiner U. HierarchicalElectrohydrodynamic Structures for Surface‐Enhanced Raman Scattering[J].Advanced Materials,2012,24(23): OP175-OP180.
    [45] Zhiqun Lin, Tobias Kerle, Shenda M. Baker, David A. Hoagland, Erik Schaffer,Ullrich Stenier, Thomas P. Russell. Electric field induced instabilities at liquid/liquidinterfaces[J]. J.Chem.Phys.,2001,114(5):2377-2381.
    [46] Zhiqun Lin, Tobias Kerle, Thomas P. Russell. Structure Formation at theInterface of liquid/Liquid Bilayer in Electric Field[J]. Macromolecules,2002,35(10):3971-3976.
    [47] Joonwon Bae, Elizabeth Glogowski, Suresh Gupta, Wei Chen, Todd Emrich,Thomas P. Russel. Effect of Nanoparticles on the Electrohydrodynamic Instabilities ofPolymer/Nanoparticle Thin Films[J]. Macromolecules,2008,41(7):2722-2726.
    [48] Jia-Yu Wang, Ting Xu, Julie M. Leiston-Belanger, Suresh Gupta, Thomas P.Russell. Ion Complexation: A Route to Enhanced Block Copolymer Alignment withElectric Fields[J]. Physical Review Letters,2006,96(12):128301.
    [49] Famiza Latif, Madzlan Aziz, Nasir Katun, Ab Malik Marwan Ali, MuhdZuazhan Yahya. The role and impact of rubber in poly(methyl methacrylate)/lithiumtriflate electrolyte[J]. Journal of Power Sources,2006,159(2):1401-1404.
    [50] Paru Deshpande, Xiaoyun Sun, Stephen Y. Chou. Observation of dynamicbehavior of lithographically induced self-assembly of supramolecular periodic pillararrays in a homopolymer film[J]. Applied Physics Letters,2001,79(11):1688-1690.
    [51] Atta A, Crawford D G, Koch C R, et al. Influence of electrostatic and chemicalheterogeneity on the electric-field-induced destabilization of thin liquid films[J].Langmuir,2011,27(20):12472-12485.
    [52] Ning Wu, Leonard F.Pease III, William, B.Russel. Electric-field-induced patternsin thin polymer film: weakly nonlinear and fully nonlinear evolution[J]. Langmuir,2005,21(26):12290-12302.
    [53] Ruhi Verma, Ashutosh Sharma, Kajari Kargupta, Jaita Bhaumik. Electric fieldinduced instability and pattern formation in thin liquid films[J]. Langmuir,2005,21(8):3710-3721.
    [54] K. Amanda Leach, Suresh Gupta, Michael D. Dickey, C. Grant Willson, ThomasP. Russel. Electric field and dewetting induced hierarchical structure formation inpolymer/polymer/air trilayers[J]. Chaos,2005,15(4):Art.047506.
    [55] Mihai D. Morariu, Nicoleta E. Voicu, Erik Schaffer, Zhiqun Lin, Thomas P.Russell, Ullrich Steiner. Hierarchical structure formation and pattern replicationinduced by an electric field[J]. Nature Materials,2003,2(1):48-52.
    [56] E. Schaffer, T. Thurn-Albrecht, T.P. Russell, U. Steiner. Electrohydrodynamicinstabilities in polymer films[J]. Eruophysics Letters,2001,53(4):518-524.
    [57] Leonard F. Pease, III, William B. Russel. Limitations on Length Scales forElectrostatically Induced Submicrometer Pillars and Holes[J]. Langmuir,2004,20(3):795-804.
    [58] Y. J. Lee, Y. W. Kim. Microlens array fabricated using electrohydrodynamicinstability and surface properties [J]. Optics Express,2011,19(11):10673-10678.
    [59] Sun Hun Lee, Pilnam Kim, Hoon Eui Jeong, Kahp Y. Suh. Electrically inducedformation of uncapped, hollow polymeric microstructures[J]. J.Micromech.Microeng.,2006,16:2292-2297.
    [60]刘国杰.基于静电诱导的微细加工技术研究[D]:[博士学位论文].长春:中科院长春光机所,2013.
    [61] G. Liu, W. Yu, H. Li, J. Gao, D. Flynn, R.W. Kay, S. Cargill, C. Tonry, M.K.Patel, C. Bailey, M.P.Y. Desmulliez. Microstructure formation in a thick polymer byelectrostatic-induced lithography[J]. J.Micrmesh.Microeng.,2013,23(3):Art:0.35018.
    [62] H. Chen, W. Yu, S. Cargill, M.K.Patel, C. Bailey, C. Tonry, M.P.Y. Desmulliez.Self-encapsulated hollow microstructures formed by electric field-assistedcapillarity[J]. Microfluid Nanofluid,2012,13:75-82.
    [63]李欣.电诱导微加工形成过程的力学行为和调制方法研究[D]:[博士学位论文].西安:西安交通大学,2012.
    [64]李欣,邵金友,田洪淼,刘红忠,丁玉成.电场诱导微结构图形化形成机理及常温制备工艺[J].纳米技术与精密工程,2010,8(6):504-509.
    [65] Erik Schaffer. Instabilities in thin polymer films: structures formation andpattern transfer[D].[博士学位论文]:Netherlands:University of Groningen.
    [66] Vrij A. Light scattering by soap films[J]. Journal of colloid science,1964,19(1):1-27.
    [67] Milcolm B. Williams, Stephan H. Davis. Nonliear theory of filmrupture[J].Journal of Collid and Interface Science,1982,90(1):220-228.
    [68] Laudau, L.D., Lifshitz, E.M., Fluid mechanics[M].London::Pergamon Press,1959.
    [69] Todd M. Squires, Stephen R. Quake. Microfluidics: Fluid physics at thenanoliter scale[J]. Reviews of Modern Physics,2005,77:977-1026.
    [70] Israelachvili, J.N.. Intermolecular and surface force[M]. Longdon:AcademicPress,1991.
    [71]郭硕鸿.电动力学(第二版)[M].北京:高等教育出版社,1997.
    [72] Ning Wu, William B. Russel. Micro-and nano-patterns created viaelectrohydrodynamic instabilities[J]. Nano Today,2009,4,180-192.
    [73] Bandyopadhyay D, Sharma A, Thiele U, et al. Electric-field-induced interfacialinstabilities and morphologies of thin viscous and elastic bilayers[J]. Langmuir,2009,25(16):9108-9118.
    [74] Srivastava S, Bandyopadhyay D, Sharma A. Embedded Microstructures byElectric-Field-Induced Pattern Formation in Interacting Thin Layers[J]. Langmuir,2010,26(13):10943-10952.
    [75] Partho S.G. Pattader, Indrani Banerjee, Ashutosh Sharma, DipankarBandyopadhyay. Multiscale pattern generation in viscoelastic polymer films byspatiotemporal modulation of electric field and control of rheology[J]. AdvancedFunctional Materials,2011,21(2):324-335.
    [76] Leger L, Joanny J F. Liquid spreading[J]. Reports on Progress in Physics,1992,55(4):431.
    [77] Stephan Harkema. Capillary instabilities in thin polymer films mechanism ofstructure formation and pattern replication[D]:[博士学位论文]. Netherlands:University of Gronigen,2005.
    [78] Washburn E W. The dynamics of capillary flow[J]. Physical review,1921,17(3):273.
    [79] Genick Bar-Meir, Basic of fluid mechanics[M]. Chicago,2011.
    [80] Dengying Zhang, Weixing Yu, Dongliang Hao, Lingli LI, Hua Liu, Zhenwu Lu.Functional nanostructured surface in hybrid sol-gel glass in large area forantireflective and super-hydrophobic purposes[J]. Journal of Materials Chemistry,2012,22,17328-17331.
    [81] Nosonovsky M, Bhushan B. Roughness-induced superhydrophobicity: a way todesign non-adhesive surfaces[J]. Journal of Physics: Condensed Matter,2008,20(22):225009.
    [82]田菲菲,胡安民,李明,等.电化学沉积法制备超疏水镍薄膜[J].复旦学报:自然科学版,2012,51(2):163-167.
    [83]徐建海.具有微纳米结构超疏水表面润湿性能研究[D]:[硕士学位论文].上海:上海交通大学,2006.
    [84] Renaud Dufour, Guillaume Perry, Maxime Harnois, Yannick Coffiner, VincentThomy, Vincent Senez, Rabh Boukherroub. From micro to nano reentrant structures:hysteresis on superomniphobic surfaces[J]. Colloid and Polymer Science,2013,291(2):409-415.
    [85] Neil R. Smith, Linlin Hou, Jinlin Zhang, Jason Heikenfeld. Fabrication anddemonstration of electrowetting liquid lens arrays[J]. Journal of Display Technology,2009,5(11):411-413.
    [86] Quilliet C, Berge B. Electrowetting: a recent outbreak[J]. Current Opinion inColloid&Interface Science,2001,6(1):34-39.
    [87] Ya-Pu Zhao, Ying Wang. Fundamentals and applications of electrowetting: acritical review[J]. Rew.Adhesion Adhesives,2013,1(1):114-174.
    [88] Jilin Zhang, Linlin Hou, Neil R. Smith, Larry Christy, Jason C. Heikenfeld.Toward the potential of electrowetting microprisms: High performance liquids, lowvoltage dielectrics, and3D lithography[C]//LEOS2008-21st Annual Meeting of theIEEE Lasers and Electro-Optics Society.2008:261-262.
    [89] Jan Lienemann, Andreas Greiner, Jan G. Korvink. Modeling, simulation, andoptimization of electrowetting[J]. IEEE Transactions on Computer-Aided Design ofIntegrated Circuits and Systems,2006,25(2):234-247.
    [90] Sung Kwon Cho, Hyejin Moon, Chang-Jin Kim. Creating, transporting,cutting,and merging liquid droplets by electrowetting-based actuation for digital microfluidiccircuits[J]. Microelectromechanical Systems, Journal of,2003,12(1):70-80.
    [91] Vallet M, Vallade M, Berge B. Limiting phenomena for the spreading of wateron polymer films by electrowetting[J]. The European Physical Journal B-CondensedMatter and Complex Systems,1999,11(4):583-591.
    [92] Bienia M, Quilliet C, Vallade M. Modification of drop shape controlled byelectrowetting[J]. Langmuir,2003,19(22):9328-9333.
    [93] Quilliet C, Berge B. Electrowetting: a recent outbreak[J]. Current Opinion inColloid&Interface Science,2001,6(1):34-39.
    [94] John D. Anderson, J.R.著,药朝晖,周强译.计算流体力学入门[M].北京:清华大学出版社,2010.
    [95]张宝岭.AMTEC多级毛细泵数值模拟研究[D]:[硕士学位论文].哈尔滨:哈尔滨工程大学,2010.
    [96]高一娟.微通道内两相流界面追踪的数值模拟[D]:[硕士学位论文].天津:天津大学,2009.
    [97] Bradut Eugen Ghidersa. Finite volume-based volume-of-fuid method for thesimulation of two-phase fows in small rectangular channels, Dissertation derUniversitat Karlsruhe Genehmigte:26June2003.
    [98]陶建华,谢伟松.用LEVEL SET方法计算溃坝波的传播过程[J].水利学报,1999,10:17-22
    [99]那景新.工程有限元方法讲义,长春:吉林大学.
    [100]章本照.流体力学中的有限元方法[M].北京:机械工业出版社,1986.
    [101]张凯.微器件中流体的流动与混合研究[D]:[博士学位论文].杭州:浙江大学,2007.
    [102] Jayati Sarkar, Ashutosh Sharma, Vijiay B. Shenoy. Electric-field inducedinstabilities and morphological phase transitions in soft elastic films[J]. PhysicalReview E,2008,77(3):031604.
    [103] Tonry C, K Patel M, Bailey C, et al. A method for the micro-encapsulation ofdielectric fluids in joined polymer shells[J]. Current Organic Chemistry,2013,17(1):65-71.
    [104] Landau L. D, Lif ic E M, Pitaevskii L P. Electrodynamics of continuousmedia[M]. Oxford: Pergamon press,1960.
    [105] Xin Li, Jinyou Shao, Yucheng Ding,Hongmiao Tian, Hongzhong Liu.Improving the height of replication in EHD patterning by optimizing the electricalproperties of the template[J]. Journal of Micromechanics and Microengineering,2011,21(11):115004.
    [106] Wenmin Qu, Christian Wenzel, Andreas Jahn, Dieter Zeidler. UV-LIGA: apromising and low-cost variant for microsystem technology[C]. Optoelectronic andMicroelectronic Materials Devices,1998. Proceedings.1998Conference on. IEEE,1999:380-383.
    [107]刘韧.基于UV-LIGA光刻技术的曝光及后烘过程仿真研究[D].中国科学技术大学,2010.
    [108] Jeong S J. UV-LIGA Micro-Fabrication of Inertia Type ElectrostaticTransducers and Their Application[D]. Louisiana State University,2006.
    [109] Popovic Z D, Sprague R A, Connell G A. Technique for monolithic fabricationof microlens arrays[J]. Applied optics,1988,27(7):1281-1284.
    [110] Mohammed Ashraf, Franck Chollet, Murukeshan Matham, Chun Yang.Fabrication of polymer-based reflowed microlenses on optical fibre with control offocal length using differential coating technique[J]. Sadhana,2009,34(4):607-613.
    [111]李健芳,赵海明,安守忠.氨基磺酸盐型低应力镀镍[J].防腐蚀工程,1996,12(3):55-57.
    [112]邹森,电镀工艺主要参数对氨基磺酸镍镀层的影响[J].电子工业专用设备,2011,40(8):44-46.
    [113]何家康.氨基磺酸盐电镀镍及其工艺控制[J].2005'(贵阳)表面工程技术创新研讨会论文集,2005.
    [114] SYLGARD184SILICONE ELASTOMER KIT[EB/OL].http://www.dowcorning.com.
    [115]何巧红,陈双.纳流控芯片的微加工技术及其应用[J].化学进展,2008,20(12):2061-2067.
    [116] Xiaogan Liang, Keith J. Morton, Robert H. Austin, Stephen Y. Chou. Singlesub-20nm wide, centimeter-long nanofluidic channel fabricated by novel nanoimprintmold fabrication and direct imprinting[J]. Nano letters,2007,7(12):3774-3780.
    [117] Bi-Yi Xu, Jing-Juan Xu, Xing-Hua Xia, Hong-Yuan Chen. Large scalelithography-free nano channel array on polystyrene[J]. Lab on a Chip,2010,10(21):2894-2901.
    [118] Sookyung Choi, Minjun Yan, Iiesanmi Adesida. Fabrication of triangularnanochannels using the collapse of hydrogen silsesquioxane resists[J]. AppliedPhysics Letters,2008,93(16):163113.
    [119] Shiyou Xu, Yi Zhao. Monolithic fabrication of nanochannels using core–sheathnanofibers as sacrificial mold[J]. Microfluidics and nanofluidics,2011,11(3):359-365.
    [120] Perry J L, Kandlikar S G. Review of fabrication of nanochannels for singlephase liquid flow[J]. Microfluidics and Nanofluidics,2006,2(3):185-193.
    [121] Mijatovic D, Eijkel J C T, Van Den Berg A. Technologies for nanofluidicsystems: top-down vs. bottom-up—a review[J]. Lab on a Chip,2005,5(5):492-500.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700