用户名: 密码: 验证码:
EVA/POE/EPDM/OMMT纳米复合发泡材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙烯-醋酸乙烯酯共聚物(EVA)发泡材料具有比重轻、柔软、减震、无毒、耐化学药品等优点,广泛用于运动鞋底、箱包内衬、保温材料、隔音材料等的制造。作为轻质材料的使用,EVA发泡材料依然存在易变形,抗撕裂性低,回弹性能不够高等缺陷,从而限制了它的使用。开发密度低,柔软抗震,同时具有高回弹性能和优异的压缩永久变形性能的新型EVA基复合发泡材料,具有重要意义。本文将纳米改性技术与聚合物共混改性技术结合起来,制备了综合性能优异的EVA基纳米复合发泡材料,主要包括以下三方面内容:
     (1)蒙脱土(MMT)的有机化改性及其对EVA发泡材料的影响研究。考察了未改性蒙脱土(MMT)在EVA基体中的分散性,研究了EVA/MMT复合发泡材料的泡孔结构及性能。采用不同阳离子季铵盐表面活性剂改性MMT,考察改性剂的碳链长度、碳链数目对MMT插层行为的影响,系统研究不同有机改性蒙脱土(OMMT)对EVA基发泡材料微观结构和综合性能的影响规律。通过有机化改性后,OMMT在EVA基体中的分散性和界面相容性得到提高,在发泡过程中起到异相成核的作用;阳离子季铵盐表面活性剂的碳链长度及碳链数目对EVA/OMMT纳米复合发泡材料的微观结构具有显著的影响,进而影响其物理性能。通过考察双十八烷基二甲基氯化铵改性的蒙脱土的官能团结构、分散状况对EVA/OMMT复合发泡材料的影响,分析了OMMT片层对于EVA发泡材料增强增韧的机理。结合EVA/OMMT纳米复合发泡材料的微观形貌和宏观性能,探索了EVA异相成核发泡过程中OMMT粒径的临界值。
     (2)乙烯-辛烯共聚物弹性体(POE)对EVA基发泡材料增强改性的研究。考察了POE与EVA之间的相容性及复合材料的储能模量。对POE/EVA体系进行发泡,考察了不同POE含量对复合发泡材料微观形貌的影响以及物理性能的影响。研究发现,POE的引入使复合发泡材料的回弹性能显著提高。对EVA/POE/OMMT三元发泡体系进行研究,考察复合发泡材料的泡孔形貌及综合性能,分析POE对EVA/OMMT两相体系的影响,并对POE改善复合发泡材料的回弹性能进行了理论分析。
     (3)三元乙丙橡胶(EPDM)对EVA发泡材料增强改性的研究。考察了EPDM与EVA基体之间的相容性。通过将EPDM加入EVA基体中进行共混发泡,分别考察了EPDM占基体不同比例对EVA/EPDM及EVA/POE/EPDM/OMMT复合发泡材料的微观结构及物理性能的影响。加入EPDM后,无论是EVA/EPDM发泡材料体系还是EVA/POE/EPDM/OMMT复合发泡体系,复合发泡材料的泡孔孔径均变小,泡孔壁厚增加,复合发泡材料的压缩永久变形性能得到明显改善。对比加入EPDM和未加EPDM的复合发泡材料的压缩实验,观察特定时间点两种发泡材料泡孔形貌的差异,研究EPDM对复合发泡材料的形变恢复能力的影响,并对其改善压缩永久变形性能的机理进行了分析。
Ethylene vinyl acetate copolymer (EVA) foams, because of their lightweight, softness, good shock absorption, non-toxicity and resistance to chemicals,have been widely used in the manufacture of soles of athletic shoes, luggagelining, thermo-insulating materials, and sound-proof materials. Nonetheless, aslightweight material, EVA foams are fraught with weaknesses such as pronenessto deform, low tear resistance, and low rebound resilience, which consequentlylimit its application. Thus, it is of great significance to develop new compositefoams based on EVA with properties such as low density, softness, high reboundresilience and excellent compression set. This paper discussed the preparation ofEVA-based nanocomposites with outstanding comprehensive properties, byintegrating nano modification and polymer blending modification. The followingthree aspects were highlighted:
     (1) Organic modification of montmorillonite (MMT) and its effect on theproperties of EVA foams. The dispersion of pre-modified MMT in the EVAmatrix was examined. The cell structure of EVA/MMT composite foams andtheir physical properties were discussed. MMT was modified by differentcationic quaternary ammonium surfactants. The effect of length and quantity ofcarbon chain in the surfactants on MMT intercalation was examined. The effectof different organic montmorillonite (OMMT) on the microstructure andcomprehensive properties of the EVA-based foams was investigated. After beingorganically modified, the dispersion of OMMT in the EVA matrix and theinterfacial compatibility between them was improved. OMMT played the role ofheterogeneous nucleation in the EVA foaming process. The length and quantityof carbon chain of cationic quaternary ammonium surfactant affected themicrostructure and further, affected the physical properties of the EVA/OMMTnanocomposite foams. Through the analysis of the effect of the functional groupstructure and the dispersion of the MMT modified by dioctadecyl dimethyl ammonium chloride on EVA/OMMT composite foams, the enhancing andtoughening mechanism of OMMT layers to EVA foams was analyzed. Byinvestigating the physical properties and microstructure properties of theEVA/OMMT nanocomposite foams, the threshold of OMMT particle size inEVA heterogeneous nuclearation foaming process was explored.
     (2) The reinforcing modification of ethylene octene copolymer (POE) onEVA foams was studied. The compatibility between POE and EVA and thestorage modulus of the composite were examined. POE/EVA foam was producedusing mixture and blending method. The impact of different POE content on themorphology and physical properties of the composite foams was investigated. Itwas found that the rebound resilience of the composite foams significantlyincreased with the addition of POE. The EVA/POE/OMMT foaming system wasthen studied. The cell morphology and comprehensive properties of thecomposite foams were investigated. The effect of POE on the EVA/OMMTfoaming system was analyzed. In addition, a theoretical analysis on the POEimproving the rebound resilience of the composite foams had been discussed.
     (3) The reinforcing modification of ethylene propylene diene monomer(EPDM) on EVA foam material was discussed. Firstly, EPDM was added to theEVA matrix and the compatibility between EPDM and EVA matrix wasexamined. The impact of different ratios of EPDM to the EVA matrix on themicrostructure and physical properties of foams were investigated. With theaddition of EPDM, the cell diameter of the composite foams became smaller andthe thickness of cell wall increased. The compression set of both EVA/EPDMfoams and EVA/POE/EPDM/OMMT composite foams was significantlyimproved. Then, composite foams with and without EPDM were compressed toobserve the difference of cell morphology at a specific time point. The effect ofEPDM on deformation reversal of the composite foams was investigated and themechanism of EPDM improving compression set was analyzed.
引文
[1]何继敏.新型聚合物发泡材料及技术[M].北京:化学工业出版社,2008.
    [2]齐贵亮.泡沫塑料成型新技术[M].北京:机械工业出版社,2011.
    [3]霍银磊.低密度泡沫塑料的结构及其力学行为研究[D].无锡:江南大学硕士论文,2008.
    [4]理查德·让德龙主编,王向东译.热塑性聚合物发泡成型[M].北京:化学工业出版社,2012.
    [5] Saltikov S. A. Stereometric Metallography[M]. Moscow: Metallurgizdat,1958.
    [6] Underwood E. E. Particle-and grain-size distributions, in Quantitative Stereology[M].New Jersey: Addison-Wesley,1970.
    [7] Bureau M. N., Gendron R. Mechanical-morphology relationship of PS foams[J]. Journal ofCellular Plastics,2003,39(5):353-367.
    [8]杨经涛,奚志刚.发泡塑料制品与加工[M].北京:化学工业出版社,2012.
    [9]李绍棠主编,张玉霞译.泡沫塑料-机理与材料[M].北京:化学工业出版社,2012.
    [10] Kumar V. Process Synthesis for Manufacturing Microcellular Thermoplastic Parts: ACase Study in Axiomatic Design[D]. Massachusetts: Mechanical Engineering of MIT,1988.
    [11] Blander M., Katz J. L. Bubble Nucleation in Liquids[J]. AIChE Journal,1975,21(5):833-848.
    [12] Uhlmann D. R. and Chalmers B. Nucleation phenomena[C]. ACS Symposium,1965:1-12.
    [13] Becker R. Die Keimbildung bei der Ausscheidung In Metallischen Mischkristallen[J].Annalen der Physik,1938,32(1):128-140.
    [14] Yang H., Han C. D. The effect of nucleating agents on the foam extrusioncharacteristics[J]. Journal of Applied Polymer Science,1984,29:4465-4470.
    [15] Colton J. S., Suh N. P. The nucleation of microcellular thermoplastic foam with additives.I. Theoretical considerations [J]. Polymer Engineering&Science,1987,27(7):485-492.
    [16] Cole R., Shulman H. L. Bubble departure diameters at subatmospheric pressures[J].Chemical Engineers Progress Symposium Series,1966,64:6-16.
    [17] Lee S. T. Foam Extrusion: Principles and Practice[M]. Florida: CRC Press,2000.
    [18] Ramesh N. S., Rasmussen, D. H., Campbell G. A. The Heterogeneous Nucleation ofMicrocellular[J], Chemical Engineering Science,1994,34:1685-1697.
    [19] Colton J. S., Suh N. P. Nucleation of Microcellular foam: theory and practice[J]. PolymerEngineering&Science,1987,27:500-503.
    [20] Colton J. S., Suh N. P. The nucleation of Microcellular thermoplastic foam with additives:Part II: Experimental results and discussion[J]. Polymer Engineering&Science,1987,27:493-499.
    [21] Blander M., Hengstenberg D., Katz J. L. Bubble Nucleation in n-Pentane, n-Hexane,n-Pentane+Hexadecane Mixtures, and Water[J]. The Journal of Physical Chemistry,1971,75:3613.
    [22] Rayleigh L. On the pressure developed in a liquid during the collapse of a sphericalcavity[J]. Philosophical Magazine.1917,34:94-98.
    [23] Epstein P. S., Plesset M. S. On the Stability of Gas Bubbles in Liquid Gas Solutions[J].Journal of Chemical Physics,1950,18:1505-1509.
    [24] Scriven L. E. On the Dynamics of Phase Growth[J]. Chemical Engineering Science,1959,10:1-13.
    [25] Street J. R., Fricke A. L., Reiss, L. P. Dynamics of Phase Growth in VISCOUS, Non-.Newtonian Liquids[J]. Industrial&Engineering Chemistry Fundamentals,1971,10:54-64.
    [26] Han C. D., Yoo J. J. Studies on structural foam processing: bubble growth during moldfilling[J]. Polymer Engineering Science,1981,21(9):518.
    [27] Upadhyay R. K. Study of bubble growth in foam injection molding[J]. Advances inPolymer Technology,1985,5:55-64.
    [28] Amon, M., Denson, C. D. A study of the dynamics of foam growth: Analysis of thegrowth of closely spaced spherical bubbles[J]. Polymer Engineering&Science,1984,24(13):1026-1034.
    [29] Amon M., Denson C. D. A study of the dynamics of foam growth: Simplified analysis andexperimental results for bulk density in structural foam molding[J]. Polymer Engineering&Science,1986,26(3):255-267.
    [30] Ramesh N. S. A Non-Isothermal Model to Study the Influence of Blowing AgentConcentration on Polymer Viscosity and Gas Diffusivity in Thermoplastic FoamExtrusion[J]. Journal of Cellular Plastics,1999,35(3):199-209.
    [31] Ramesh N. S., Rasmussen D. H., Campbell, G. A. Numerical and experimental studies ofbubble growth during the microcellular foaming process[J]. Polymer Engineering&Science,1991,31(23):1657-1664.
    [32] Lee S. T., Ramesh N. S., Campbell G. A. Temperature Effects on Thermoplastic FoamSheet Formation[C].51st ANTEC,1993:3033.
    [33] Ramesh N. S., Malwitz N. Where the equilibrium bubble and shell radii are?[C], SPEANTEC,1998,44:1907.
    [34] Shafi M. A., Joshi K., Flumerfelt R. W. Bubble size distributions in freely expandedpolymer foam[J]. Chemical Engineering Science,1997,52(4):635-644.
    [35]何继敏.聚丙烯挤出发泡过程的理论及实验研究[D].北京:北京化工大学,2002.
    [36]冯培杰.超临界二氧化碳发泡硅橡胶的研究[D].绵阳:西南科技大学,2011.
    [37] Pompe G., Potschke P., Pionteck J. Reactive melt blending of modified polyamide andpolypropylene: Assessment of compatibilization by fractionated crystallization and blendmorphology [J]. Journal of Applied Polymer Science,2002,86(13):3445-3453.
    [38] Kim J., Kim Y., Lee K. Effects of atmospheric plasma treatment on the interfacialcharacteristics of ethylene-vinyl acetate/polyurethane composites[J]. Journal of Colloidand Interface Science,2004,271:187-191.
    [39] Gao F., Beyer G., Yuan Q. A mechanistic study of fre retardancy of carbonnanotube/ethylene vinyl acetate copolymers and their clay composites[J]. PolymerDegradation and Stability,2005,89:559-564
    [40]马建中,邓富泉,薛朝华,等.发泡EVA轻质材料的研究进展[J].中国皮革,2011,20:117-120.
    [41]张先知.合成树脂和塑料牌号手册[M].北京:化学工业出版社,2006.
    [42]邓富泉,马建中,薛朝华,等. POE/OSEP复合发泡材料的形貌及性能研究[J].功能材料,2013,7(44):418-423.
    [43] Hilyard N. C., Cunningham A. Low Density Cellular Plastics: Physical Basis ofBehaviour[J]. Chapman and Hall,1995,36:300.
    [44] Liu I., Tsiang R. C. Tailoring viscoelastic and mechanical properties of the foamed blendsof EVA and various ethylene-styrene interpolymers[J]. Polymer Composites,2003,24(3):304-313.
    [45] Zheng Y., Zhang Y., Zhang L., et al. Preparation and characterization of starch/EVAcomposite foams with surface modified kaolin[J]. Starch-Strke,2013, DOI:10.1002/star.201200245.
    [46] Rodriguez-Perez M. A., Simoes R. D., Constantino C. J. L., et al. Structure and physicalproperties of EVA/starch precursor materials for foaming applications[J]. Journal ofApplied Polymer Science,2011,121(4):2324-2330.
    [47] Sunny M. C., Vincy P. V., Anil Kumar P. R., et al. Porous composites ofhydroxyapatite-filled poly[ethylene-co-(vinyl acetate)] for tissue engineering[J]. PolymerInternational,2011,60(1):51-58.
    [48] Riahinezhad M., Ghasemi I., Karrabi M., et al. Morphology and tensile properties ofcrosslinked nanocomposite foams of low-density polyethylene and poly(ethylene-co-vinyl acetate) blends[J]. Journal of Vinyl and Additive Technology,2010,16(4):229-237.
    [49] Dlamini D. S., Mishra A. K., Mamba B. B. Morphological, transport, and adsorptionproperties of ethylene vinyl acetate/polyurethane/bentonite clay composites[J]. Journal ofApplied Polymer Science,2012,124(6):4978-4985.
    [50]曹胜先,王刚.国内外EVA产品的开发现状及进展[J].中国塑料,2003,17(4):12-14.
    [51]马承银.发泡剂的类型及加工特性[J].现代塑料加工应用,1996,12(3):40-43.
    [52]杨清芝.实用橡胶工艺学[M].北京:化学工业出版社,2005.
    [53]时圣明. NBR/PVC及NR橡塑弹性体发泡材料的研究[D].青岛:青岛海洋大学,2002.
    [54]陈博,于杰,鲁圣军,等. DCP含量对EVA发泡行为和力学性能的影响[J].中国化工贸易,2012,15(4):172-173.
    [55]林增坤,涂思敏.注射型EVA低发泡鞋材的研制[J].塑料加工,2008,39(3):35-38.
    [56] Jacobs M. A., Kemmere M. F., Keurentjes J. T. F. Foam processing ofpoly(ethylene-co-vinyl acetate) rubber using supercritical carbon dioxide[J]. Polymer,2004,45(22):7539-7547.
    [57] Wang B., Wang M., Zhe X., et al. Preparation of radiation crosslinked foams fromlow-density polyethylene/ethylene-vinyl acetate (LDPE/EVA) copolymer blend with asupercritical carbon dioxide approach[J]. Journal of Applied Polymer Science,2013,127(2):912-918.
    [58]王波,吴国忠,王谋华,等.辐射改性LDPE/EVA共混物及其超临界CO2发泡行为的研究[J].辐射研究与辐射工艺学报.2010,28(4):220-224.
    [59] Iraj R., Jafari S. H., Zahedi P., et al. Improvements of physical and mechanical propertiesof electron beam irradiation-crosslinked EVA foams[J]. Polymers for AdvancedTechnologies,2009,20(5):487-492.
    [60]刘灿培,林金火.注射交联发泡成型EVA/EPDM高弹性材料的研究[J].中国塑料,2005,19(4):33-37.
    [61]刘灿培,林金火.超轻EVA发泡材料的研制与生产[J].中国塑料,2004,18(2):58-62.
    [62]刘仿军,宗荣峰,鄢国平,等.轻质EVA鞋底材料的研究[J].塑料工业,2009,37(7):65-69.
    [63]陈文韬.高弹EVA发泡材料的研制[J].福建轻纺,2005,11:9-13.
    [64]连荣炳,张卫勤,叶盛京. LDPE/EVA鞋底发泡材料的研究[J].塑料工业,2005,33(5):56-58.
    [65] He Y., Ma J., Zhang L., et al. Novel graft copolymer EVA-g-PU: preparation andproperties[J]. Plastics, Rubber and Composites,2008,37(7):319-324.
    [66] He Y., Ma J., Zhang L., et al. Preparation and Characterization of Graft CopolymerEVA-g-PU[J]. Polymer-Plastics Technology and Engineering,2008,47(12):1214-1219.
    [67] Kim M., Park C., Chowdhury S. R., et al. Physical properties of ethylene vinyl acetatecopolymer (EVA)/natural rubber (NR) blend based foam[J]. Journal of Applied PolymerScience,2004,94(5):2212-2216.
    [68]马建中,段洲洋,薛朝华,等.热塑性聚合物/蒙脱土对EVA发泡材料性能的影响[J].中国皮革,2011,40(18):116-119.
    [69] Madhuchhanda M., Raksh V. J., Suraj K., et al. Microcellular Foam from Ethylene VinylAcetatePolybutadiene Rubber (EVA/BR) Based Thermoplastic Elastomers for FootwearApplications[J]. Industrial&Engineering Chemistry Research,2012,51(32):10607-10612.
    [70]张丽,郭文博,马海强,等. EVA/SBR发泡材料的研究[J].广东化工,2010,37(3):87-89.
    [71]连永肖,张勇. PVC/共聚尼龙合金的性能研究[J].中国塑料,2000,14(8):30-35.
    [72]刘灿培.注射超轻EVA/Fusabond材料的交联发泡动力学[J].高分子材料科学与工程,2005,21(4):244-247.
    [73] Zhang B. S., Zhang Z. X., Lv X. F., et al. Properties of chlorinated polyethylenerubber/ethylene vinyl acetate copolymer blend-based foam[J]. Polymer Engineering andScience,2012,52(1):218-224.
    [74]韩利志,周涛,李飞,等. SEBS对EVA发泡材料性能影响的研究[J].塑料工业,2008,36(3):39-42.
    [75]叶盛京. LDPE/EVA鞋底发泡材料的研究[J].福建轻纺,2005,9:20-23.
    [76]王慧敏,寇亚志,倪士民. EVA/PE发泡材料的研制[J].化工时刊,1999,5:12-14.
    [77] Park K., Kim G., Chowdhury S. R. Improvement of compression set property of ethylenevinyl acetate copolymer/ethylene-1-butene copolymer/organoclay nanocomposite foams[J]. Polymer engineering and science,2008,48(6):1183-1190.
    [78] Park K., Kim G. Ethylene Vinyl Acetate Copolymer (EVA)/Multiwalled Carbon Nanotube(MWCNT) Nanocomposite Foams[J]. Journal of Applied Polymer Science,2009,24(13):1845-1849.
    [79] Yu D., Kim G. Improvement of Tensile Properties and Elastic Recovery in Ethylene VinylAcetate Copolymer/Multiwalled Carbon Nanotube Nanocomposite Foams[J]. Journal ofApplied Polymer Science,2011,121:3696-3701.
    [80] Riahinezhad M., Ghasemi I., Karrabi M., et al. An investigation on the correlationbetween rheology and morphology of nanocomposite foams based on low-densitypolyethylene and ethylene vinyl acetate blends[J]. Polymer Composites,2010,31(10):1808-1816.
    [81]邱凡珠,张华集,张雯,等.铝酸酯改性载银磷酸锆/EVA发泡材料的研究[J].现代塑料加工应用,2008,20(1):37-40.
    [82]周建,罗学刚.木质素/LDPE-EVA复合材料及其发泡材料的制备[J].化工学报,2007,58(7):1834-1839.
    [83]郑玉婴. EVA/植物纤维发泡复合鞋用材料的制备方法[P].中国专利: CN1865334,2008.
    [84]祁宗. EVA改性木粉/再生聚乙烯复合材料发泡过程的研究[D].北京:北京化工大学,2008.
    [85] Rodriguez-Perez M. A., Simoes R. D., Roman-Lorza S., et al. Foaming of EVA/starchblends: characterization of the structure, physical properties, and biodegradability[J].Polymer Engineering and Science,2012,52(1):62-70.
    [86] Fischer H. Polymer nanocomposites: from fundamental research to specificapplications[J]. Materials Science and Engineering: C,2003,23(6):763-772.
    [87] Lagaly G. Introduction: from clay mineral-polymer interactions to clay mineral-polymernanocomposites[J]. Applied Clay Science,1999,15(1):1-9.
    [88] Varlot1K., Reynaud E., Kloppfer M. H., et al. Clay-reinforced polyamide: preferentialorientation of the montmorillonite sheets and the polyamide crystalline lamellae[J].Journal of Polymer Science Part B: Polymer Physics,2001,39(12):1360-1370.
    [89] Roy R., Komarneni S., Roy D. M. Multi-Phasic Ceramic Composites Made by sol-gelTechnique[M]. Materials Research Society Symposium Proceedings,1984,32:347-359.
    [90] Giannelis E. P. Polymer layered silicate nanocomposites[J]. Advanced Materials,1996,8:29-35.
    [91] Alexandre M., Dubois P. Polymer-layered silicate nanocomposites: preparation, propertiesand uses of a new class of materials[J]. Materials Science and Engineering: R,2000,28(1-2):1-63.
    [92] Okada A., Kawasumi M., Kurauchi T., et al. Synthesis and characterization of a nylon6-clay hybrid[J]. Polymer Preprints,1987,28(2):447-448.
    [93] Samakande A., Hartmann P. C., Cloete V., et al. Use of Acrylic Based Surfmers for thePreparation of Exfoliated Polystyrene-Clay Nanocomposites[J]. Polymer,2007,48(6):1490-1499.
    [94] Simons R., Qiao G. G., Powell C. E., et al. Effect of Surfactant Architecture on theProperties of Polystyrene-Montmorillonite Nanocomposites[J]. Langmuir,2010,26(11):9023-9031.
    [95] Simons R., Qiao G. G., Powell C. E., et al. Direct Observation of the IntergalleryExpansion of Polystyrene-Montmorillonite Nanocomposites[J]. Chemistry of Materials,2011,23(9):2303-2311.
    [96] Mravcakova M., Omastova M., Potschke P., et al. Poly(propylene)/Montmorillonite/Polypyrrole Composites: Structure and Conductivity[J]. Polymers forAdvanced Technologies,2006,17(9):715-726.
    [97] Stribeck N., Zeinolebadi A., Sari M. G., et al. Properties and Semicrystalline StructureEvolution of Polypropylene/Montmorillonite Nanocomposites under Mechanical Load[J].Macromolecules,2012,45(2):962-973.
    [98] Martín Z., Jiménez I., Gómez M. A., et al. Spectromicroscopy Study of Intercalation andExfoliation in Polypropylene/Montmorillonite Nanocomposites[J]. Journal of PhysicalChemistry B,2009,113(32):11160-11165.
    [99] Xu L., Nakajima H., Manias E., et al. Tailored Nanocomposites of Polypropylene withLayered Silicates[J]. Macromolecules,2009,42(11):3795-3803.
    [100] Zhang C., Cai H., Chen B., et al. Synthesis of Superhydrophobic Surface ofPolyethylene via In Situ Ziegler-Natta Polymerization[J]. Chinese Journal of Catalysis,2008,29(1):1-3.
    [101] Narang S., Mehta R., Upadhyay S. N. Polyethylene Glycol and Montmorillonite ClayAnchored Schiff Base Ligand-Metal Complexes[J]. Industrial and Engineering ChemistryResearch,2013,52(11):3967-3973.
    [102] Ren C., Jiang Z., Du X., et al. Microstructure and Deformation Behavior ofPolyethylene/Montmorillonite Nanocomposites with Strong Interfacial Interaction[J].Journal of Physical Chemistry B,2009,113(43):14118-14127.
    [103] Akat H., Tasdelen M. A., Prez F. D., et al. Synthesis and Characterization ofPolymer/Clay Nanocomposites by Intercalated Chain Transfer Agent[J]. EuropeanPolymer Journal,2008,44(7):1949-1954.
    [104] Nistor M., Vasile C. Influence of the nanoparticle type on the thermal decomposition ofthe green starch/poly(vinyl alcohol)/montmorillonite nanocomposites[J]. Journal ofThermal Analysis and Calorimetry,2013,111(3):1903-1919.
    [105] Dean K. M., Do M. D., Petinakis E., et al. Key interactions in biodegradablethermoplastic starch/poly(vinyl alcohol)/montmorillonite micro-and nanocomposites[J].Composites Science and Technology,2008,68(6):1453-1462.
    [106] Anandhan S., Pati H. G., Babu R. R., et al. Characterization of poly(ethylene-co-vinylacetate-co-carbon monoxide)/layered silicate clay hybrids obtained by melt mixing[J].Journal of Materials Science,2011,46(23):7423-7430.
    [107] Hwang T. Y., Lee S., Kang P., et al. The effect of electron beam irradiation on thedispersion and properties of poly(ethylene-co-vinyl acetate)/clay nanocomposites[J].Macromolecular Research,2011,19(11):1151-1156.
    [108] Pramanik M., Srivastava S. K., Samantaray B. K., et al. EVA/clay nanocomposite bysolution blending: Effect of aluminosilicate layers on mechanical and thermalproperties[J]. Macromolecular Research,2003,11(4):260-266.
    [109] Kim J., Kim Y., Lee K. Effects of atmospheric plasma treatment on the interfacialcharacteristics of ethylene-vinyl acetate/polyurethane composites[J]. Journal of Colloidand Interface Science,2004,271(1):187-191.
    [110] Balazs A. C., Singh C., Zhulina E., et al. Modeling the phase behavior of polymer/claynanocomposites[J]. Accounts of Chemical Research,1999,32:651-7.
    [111] Ginzburg V. V., Singh C., Balazs A. C. Theoretical phase diagrams of polymer/claycomposites: the role of grafted organic modifers[J]. Macromolecules,2000,33(3):1089-1099.
    [112] Osman M. A., Mittal V., Lusti H. R. The aspect ratio and gas permeation inpolymer-layered silicate nanocomposites[J]. Macromolecular Rapid Communications,2004,25(12):1145-1149.
    [113] Bhattacharyya K. G., Gupta S. S. Adsorption of a few heavy metals on natural andmodified kaolinite and montmorillonite: A review[J]. Advances in Colloid and InterfaceScience,140(2):114-131.
    [114] Ray S. S., Okamoto M. Polymer/layered silicate nanocomposites: a review frompreparation to processing[J]. Progress in Polymer Science,2003,28(11):1539-1549.
    [115] Mittal V. Polymer Layered Silicate Nanocomposites: A Review[J]. Materials: R,2009,2(3),992-1057.
    [116] LeBaron P. C., Wang Z., Pinnavaia T. J. Polymer-layered silicate nanocomposites: anoverview[J]. Applied Clay Science,1999,15(1-2):11-29.
    [117] Zhou L., Chen H., Jiang X. Modification of montmorillonite surfaces using a novel classof cationic gemini surfactants[J]. Journal of Colloid and Interface Science,2009,332(1):16-21.
    [118] Kim S., Park S. Interlayer spacing effect of alkylammonium-modified montmorilloniteon conducting and mechanical behaviors of polymer composite electrolytes[J]. Journal ofColloid and Interface Science,2009,332(1):145-150.
    [119] Sothornvit R., Rhim J., Hong S. Effect of nano-clay type on the physical andantimicrobial properties of whey protein isolate/clay composite films[J]. Journal of FoodEngineering,2009,91(3):468-473.
    [120] Sengwa R. J., Choudhary S., Sankhla S. Dielectric spectroscopy of hydrophilicpolymers–montmorillonite clay nanocomposite aqueous colloidal suspension[J]. Colloidsand Surfaces A: Physicochemical and Engineering Aspects,2009,336(1):79-87.
    [121] Cao F., Bai P., Li H. Preparation of polyethersulfone organophilic montmorillonitehybrid particles for the removal of bisphenol A[J]. Journal of Hazardous Materials,2009,162(2):791-198.
    [122] Wang S., Long C., Wang X. Synt hesis and properties of silicone rubber/organomontmoril lonite hybrid nanocomposites[J]. Journal of Applied Polymer Science,1998,69(10):1557-1562.
    [123] Ray S. S., Bousmina M. Biodegradable polymers and their layered silicatenanocomposites: in greening the21st century materials world[J]. Progress in MaterialsScience,2005,50(8):962-1079.
    [124] Krikorian V., Pochan D. Poly(l-lactide acid)/layered silicate nanocomposite: fabrication,characterization, and properties[J]. Chemistry of Materials,2003,15(22):4317-4324.
    [125] Chang J., An Y., Sur G. S. Poly(lactic acid) nanocomposites with various organoclays. I.thermomechanical properties, morphology, and gas permeability[J]. Journal of PolymerScience Part B: Polymer Physics,2003,41(1):94-103.
    [126] Yano K., Usuki A., Okada A., et al. Synthesis and properties of polyimide/clay hybrid[J].Journal of Polymer Science Part A: Polymer Chemistry,1993,31(10):2493-2498.
    [127] Finnigan B., Martin D., Halley P., et al. Morphology and properties of thermoplasticpolyurethane nanocomposites incorporating hydrophilic layered silicates[J]. Polymer2004,45(7):2249-2260.
    [128] Manias E., Chen E., Krishnamoorti R., et al. Intercalation kinetics of long polymers innanometer confinement[J]. Macromolecules,2000,33(21):7955-7966.
    [129] Sur G. S., Sun H. L., Lyu S. G., et al. Synthesis, structure, mechanical properties, andthermal stability of some polysulfone/organoclay nanocomposites[J]. Polymer,2001,42(24):9783-9789.
    [130] Ginzburg V. V., Balazs A. C. Calculating phase diagrams for nanocomposites: the effectof adding end-functionalized chains to polymer/clay mixture[J]. Advanced Materials2000,12(23):1805-1809.
    [131] Ruiz-Hitzky E., Aranda P., Casal B., et al. Nanocomposite materials with controlled ionmobility [J]. Advanced Materials,1995,7(2):180-184.
    [132] Winkler E. R., Bdai L., Mau A. Electropolymerization of anilline intercalated inmontmorillonite[J]. Journal of Materials Science Let-ters,1999,18:1539-1547.
    [133]马晓燕,梁国正,鹿海军.聚合物/天然硅酸盐粘土纳米复合材料[M].北京:科学出版社,2009.
    [134] Tang Y., Hu Y., Zong R., et al. Influence of organophilic clay and preparation methodson EVA/montmorillonite nanocomposites[J]. Journal of Applied Polymer Science,2004,91(4):216-221.
    [135] Gianelli W., Camino G., Dintcheva N. T., et al. EVA-Montmorillonite Nanocomposites:Effect of Processing Conditions[J]. Macromolecular Materials and Engineering,2004,289(3):238-244.
    [136] Marini J. Branciforti M. C., Lotti C. Effect of matrix viscosity on the extent ofexfoliation in EVA/organoclay nanocomposites[J]. Polymers for Advanced Technologies,2010,21(6):408-417.
    [137]刘攀博,焦剑,黄英,等. EP/有机化蒙脱土纳米复合材料的制备与性能研究[J].中国胶粘剂,2012,21(4):29-52.
    [148]黄安民,王小萍,贾德民.氢化丁腈橡胶/聚甲基丙烯酸镁/有机蒙脱土纳米复合材料制备及其耐介质老化性能[J].高分子学报,2012,6:660-665.
    [139]王雷,陈俊伟,任凤梅,等. PVA/高直链淀粉/蒙脱土纳米复合材料性能研究[J].中国塑料,2012,40(10):105-109.
    [140]赵伟,宋国君,李培耀,等.天然橡胶/有机蒙脱土纳米复合材料的耐磨耗性能研究[J].弹性体,2012,22(2):71-75.
    [141]徐旭,陆绍荣,余传柏.环氧树脂/环氧液晶/蒙脱土纳米复合材料研究[J].热固性树脂,2013,28(1):34-37.
    [142]周坤豪,戈明亮,胡小芳.季磷盐对蒙脱土/PA6纳米复合材料冲击性能的影响[J].塑料工业,2012,40(2):64-68.
    [143]宗小平,林起浪.蒙脱土/BMI树脂纳米复合材料的力学性能[J].塑料工业,2012,40(11):32-34.
    [144] Arroyo O. H., Huneault M. A., Favis B. D., et al. Processing and properties ofPLA/thermoplastic starch/montmorillonite nanocomposites[J]. Polymer Composites,2010,31(1):114-127.
    [145] Bensason S., Nazarenko S., Stepano E., et a1. Deformation of ElastomericEthylene-Octene Copolymers[J]. Macromolecules,1997,30(8):2436-2444.
    [146] Esneault C. P., Edmonson M. S., Cheung Y. W. Blends of elastomer block copolymerand aliphatic alpha-olefin/monovinylidene aromatic monomer and/or hindered aliphaticvinylidene monomer interpolymer[P]. US:5741857,1999-10-27.
    [147]邓富泉,马建中,薛朝华,等. POE/EVA复合发泡材料的研究[J].功能材料,2012,43(4):508-511.
    [148]夏琳,邱桂学,吴波震. POE的性能及在聚丙烯中的应用[J].上海塑料,2007,137(1):33-36.
    [149]曹湘洪,张爱民.乙丙橡胶及聚烯烃类热塑性弹性体[M].北京:中国石化出版社,2011.
    [150]唐斌,李晓强,王进文.乙丙橡胶应用技术[M].北京:化学工业出版社,2005.
    [151] Seol S., Kim G. Effect of organoclay content on the mechanical properties ofethylene-vinyl acetate copolymer/multi-walled carbon nanotube/organoclay foams[J].Polymer Composites,2013,34(5):665-670.
    [152] Xu Z. R., Park H. Y., Kim H. Y., et al. Effects of Modified MMT on MechanicalProperties of EVA/MMT Nanocomposites and Their Foams[J]. MacromolecularSymposia,2008,264(1):18-25.
    [153] Porter D., Metcalfe E., Thomas M. J. K. Nanocomposite fre retardants-a review[J]. Fireand Materials,2000,24(1):45-52.
    [154] Okamoto M., Nam P. H., Maiti P. Biaxial flow-induced alignment of silicate layers inpolypropylene/clay nanocomposite foam[J]. Nano Letters,2001,1(9):503-505.
    [155] Ema Y., Ikeya M., Okamoto M. Foam processing and cellular structure ofpolylactide-based nanocomposites[J]. Polymer,2006,47(15):5350-5359.
    [156] Sung Y. T., Kum C. K., Lee H. S. Effects of crystallinity and crosslinking on the thermaland rheological properties of ethylene vinyl acetate copolymer[J]. Polymer,2005,46(25):11844-11848.
    [157] Chien I. Kan T., Chen B. Dynamic simulation and operation of a high pressureethylene-vinyl acetate (EVA) copolymerization autoclave reactor[J]. Computers&Chemical Engineering,2007,31(3):233-245.
    [158] Kim D., Park K., Chowdhury S. R., et al. Effect of compatibilizer and silane couplingagent on physical properties of ethylene vinyl acetate copolymer/ethylene-1-butenecopolymer/clay nanocomposite Foams[J]. Journal of Applied Polymer Science,2006,102(4):3259-3265.
    [159] Park K., Chowdhury S. R., Park C., et al. Effect of dispersion state of organoclay oncellular foam structure and mechanical properties of ethylene vinyl acetatecopolymer/ethylene-1-butene copolymer/organoclay nanocomposite foams[J]. Journal ofApplied Polymer Science,2007,104(6):3879-3885.
    [160] Hwang S., Liu S., Hsu P. P., et al. Morphology, mechanical, and rheological behavior ofmicrocellular injection molded EVA-clay nanocomposites[J]. InternationalCommunications in Heat and Mass Transfer,2012,39(3):383-389.
    [161]马建中,段洲洋,薛朝华,等.热塑性聚合物/蒙脱土对EVA发泡材料性能的影响[J].中国皮革,2011,40(18):116-119.
    [162] Olad A., Rashidzadeh A., Amini M. Preparation of Polypyrrole Nanocomposites withOrganophilic and Hydrophilic Montmorillonite and Investigation of Their CorrosionProtection on Iron[J]. Advances in Polymer Technology,2013,32(2):1-10.
    [163] Manias E., Touny A., Wu L., et al. Polypropylene/montmorillonite nanocomposites.Review of the synthetic routes and materials properties[J], Chemistry of Materials,2001,13(10):3516-3523.
    [164] Labuschagne P. W., Moolman S., Maity A. Polymer/Layered Silicates Nanocompositesfor Barrier Technology[J]. Intelligent Nanomaterials: Processes, Properties, andApplications,2012,21:533-569.
    [165] Grigoriadi K., Giannakas A., Ladavos A., et al. Thermomechanical behavior ofpolymer/layered silicate clay nanocomposites based on unmodified low densitypolyethylene[J]. Polymer Engineering&Science,2013,53(2):301-308.
    [166] Wu G., Xie Y., Ou E., et al. Preparation, characterization, and properties of sodiummontmorillonite clay/poly(styrene-butadiene-styrene) containing quaternary ammoniumcations and photoinitiator nanocomposites via ultraviolet exposure[J]. Journal of AppliedPolymer Science,2010,118(3):1675-1682.
    [167]鞠维刚,龙平,张晓宏,等.利用荧光探针溶致变色效应研究有机改性蒙脱土的层间环境性质[J].感光科学与光化学,2003,21(2):101-106.
    [168] Bee S., Hassan A., Ratnam C. T., et al. Effects of montmorillonite on the electron beamirradiated alumina trihydrate added polyethylene and ethylene vinyl acetatenanocomposite[J]. Polymer Composites,2012,33(11):1883-1892.
    [169] Pistor V., Lizot A., Fiorio R., et al. Infuence of physical interaction between organoclayand poly (ethylene-co-vinyl acetate) matrix and effect of clay content on rheological meltstate[J]. Polymer,2010,51(22):5165-5171.
    [170] Huang X., Su H., Wang X., et al. Effect of oligomeric-modified montmorillonite onmorphology and properties of polycarbonate/montmorillonite nanocomposites[J].Polymer Composites,2013,34(5):722-731.
    [171] Riva A., Zanetti M., Bragliab M. Thermal degradation and rheological behaviour ofEVA/montmorillonite nanocomposites[J]. Polymer Degradation and Stability,2002,77(2):299-304.
    [172] Chen-Yang Y. W., Lee Y. K., Chen Y. T. High improvement in the properties ofexfoliated PU/clay nanocomposites by the alternative swelling process[J]. Polymer,2007,48(10):2969-2979.
    [173]沈效峰,钱钟钟,张伟安,等.熔融法制备EVA/OMMT纳米复合材料及其热性能和动态力学性能[J].应用化学,2004,21(10):1042.
    [174] Mohomane S. M., Djokovic V., Thomas S., et al. Polychloroprene nanocomposites flledwith different organically modifed clays: Morphology, thermal degradation and stressrelaxation behavior[J]. Polymer Testing,2011,30(5):585-593.
    [175] Kornmann X., Lindberg H., Berglund L. A. Synthesis of epoxy-clay nanocomposites:infuence of the nature of the clay on structure[J]. Polymer,2001,42(10):4493-4499.
    [176] Ma J., Deng F., Xue C., et al. Effect of Modification of Montmorillonite on the CellularStructure and Mechanical Properties of EVA/Clay Nanocomposite Foams[J]. Journal ofReinforced Plastics and Composites,2012,31(17):1170-1179.
    [177] Yang J., Wu M., Chen F., et al. Preparation, characterization, and supercritical carbondioxide foaming of polystyrene/graphene oxide composites[J]. The Journal ofSupercritical Fluids,2011,56(2):201-207.
    [178] Mello D., Pezzin S. H., Amico S. C. The effect of post-consumer PET particles on theperformance of fexible polyurethane foams[J]. Polymer Testing,2009,28(7):702-708.
    [179] Klempner D., Frisch K. C. Handbook of polymeric foams and foam technology[M].Munich: Hanser Publishers,1991.
    [180] Wu S., Wang F., Ma C., et al. Mechanical, thermal and morphological properties of glassfber and carbon fber reinforced polyamide-6and polyamide-6/clay nanocomposites [J].Materials Letters,2001,49(6):327-333.
    [181]徐祖耀.相变原理[M].北京:科学出版社,1998.
    [182] Martini-Vvedensky J. E., Shu N. P., Waldman F. A. Mieroeellular elosed cell foams andtheir mothed of manufacture [P]. USA:4473665,1984.
    [183] Kennedy A. R. Effect of foaming configuration on expansion[J]. Journal of MaterialsScience.2004,39(3):1143-1145.
    [184] Amsterdam E., Onck P. R., De Hosson J. T. M.. Fracture and microstructure of open cellaluminum foam[J]. Journal of Materials Science.2005,40(22):5813-5819.
    [185]刘程,张万福,陈长明.表面活性剂应用手册(第二版)[M].北京:化学工业出版社,1995.
    [186]蒋雪璋. PET/PP共混合金结晶动力学研究[J].合成技术及应用,2003,18(4):13-16.
    [187]王炼石.塑料/橡胶共混物的相结构与增韧作用[J].塑料助剂,2005,53(5):45-49.
    [188]夏琳,邱桂学涛,吴波震,等.白炭黑补强POE硫化胶性能的研究[J].弹性体,2007,17(3):42-43.
    [189] Zhai W., Leung S. N., Wang L., et al. Preparation of microcellularpoly(ethylene-co-octene) rubber foam with supercritical carbon dioxide[J]. Journal ofApplied Polymer Science,2010,116(4):1994-2004.
    [190] Zhang Y., Kontopoulou M., Ansari M., et al. Effect of molecular structure and rheologyon the compression foam molding of ethylene-olefin copolymers[J]. PolymerEngineering&Science,2011,51(6):1145-1154.
    [191] Zhai W., Wang J., Chen N., et al. The orientation of carbon nanotubes inpoly(ethylene-co-octene) microcellular foaming and its suppression effect on cellcoalescence[J]. Polymer Engineering&Science,2012,52(10):2078-2089.
    [192]张留进,陈广义,魏志勇,等.不同增容剂对POE增韧聚乳酸性能的影响[J].高分子材料科学与工程,2012,28(6):57-60.
    [193]张彩霞,徐秀兵,王芳焕. POE、EPDM增韧尼龙66产品的制备与研究[J].广东化工,2012,237(39):16-17.
    [194]杜仕国.聚合物共混相容性研究进展[J].现代化工,1994,5:20-24.
    [195]王国全,王秀芬.聚合物改性[M].中国轻工业出版社,2009.
    [196]赵枫,杨琪,杨云波. PP/POE/PE共混改性的研究[J].石化技术与应用,2002,20(4):239-241.
    [197]金关泰,金日光,汤宗汤,等.热塑性弹性体[M].北京:中国轻工业出版社,1998.
    [198]符若文,李谷,冯开才.高分子物理[M].化学工业出版社,2005.
    [199]齐藤孝臣,王作龄译.氯醚橡胶加工技术[J].橡胶译丛,1997,5:46-60.
    [200]刘毓真,郭勇,李振明,等.丁腈橡胶高温下压缩永久变形的研究[J].橡胶工业,1996,43(2):67-71.
    [201] Dijkhuis K. A. J., Noordermeer J. W. M., Dierkes W. K. The relationship betweencrosslink system, network structure and material properties of carbon black reinforcedEPDM[J]. European Polymer Journal,2009,45(11):3302-3312.
    [202] Mcpherson A. T. Electricalproperties of elastomers andrelatedpolymers[J]. RubberChemistry&Technology,1963,36(5):1230-1302.
    [203] Xu D., Karger-Kocsis J., Schlarb A. K. Rolling wear of EPDM and SBR rubbers as afunction of carbon black contents: correlation with microhardness[J]. Journal of MaterialsScience,2008,43(12):4330-4339.
    [204] Wang B., Peng Z., Zhang Y., et al. Compressive response and energy absorption offoam EPDM[J]. Journal of Applied Polymer Science,2011,105(16):3462-3469.
    [205] Jestin F. D., Lacoste J., Barrois-Oudin N., et al. Photo-, thermal and natural ageing ofethylene-propylene-diene monomer (EPDM) rubber used in automotive applications.Infuence of carbon black, crosslinking and stabilizing agents[J]. Polymer Degradationand Stability,2000,67(3):469-477.
    [206] Martínez L., Nevshupa R., Felh s D., et al. Infuence of friction on the surfacecharacteristics of EPDM elastomers with Different carbon black contents[J]. TribologyInternational,2011,44(9):996-1003.
    [207] Guriya K. C., Tripathy D. K. Deformation and Energy-Absorption Characteristics ofMicrocell-ular EPDM Rubber[J]. Journal of Applied Polymer Science,1998,68(2):263-269.
    [208]徐苏华,罗权焜.三元乙丙橡胶共混研究进展[J].特种橡胶制品,2007,28(4):63-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700