用户名: 密码: 验证码:
纳米尺度颗粒与多孔介质热传递及通道内液体流动研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着对于多孔介质研究的深入以及高新技术领域不断提出的高要求,迫切需要了解微纳米多孔介质中的热质传递规律。本文采用分子动力学模拟并结合理论分析和实验研究对纳米颗粒热导率、纳米尺度接触热阻、纳米多孔结构热导率和纳米尺度流动四个方面的内容进行了研究。
     模拟计算了立方形和球形两种形状纳米氩颗粒的热导率,研究了颗粒形状对颗粒热导率的影响,拟合获得了能较好预测氩颗粒热导率的表达式;采用EAM势能模型对纳米镍颗粒因晶格振动产生的热导率进行了MD模拟研究,并结合电子导热对热导率的贡献得到纳米镍颗粒总的有效热导率,拟合获得了能较好预测镍颗粒热导率的表达式。
     对材料实际接触中有缝隙存在而导致的接触热阻建立了两个模型进行MD模拟,并考虑了近场辐射的影响,发现接触热阻随微接触面积增大而快速下降,随着微接触厚度增大而增大。通过拟合获得了预测纳米尺度接触热阻的表达式。
     结合微纳米尺度多孔结构中的热传递过程分析了已有宏观尺度多孔介质热导率模型应用在纳米尺度多孔材料上面临的问题,通过颗粒热导率和纳米尺度接触热阻的研究结果对已有模型进行了修正。通过Hot Disk测量了纳米镍颗粒堆积床及微米镍颗粒堆积床热导率,发现用修正后的模型计算结果与实验结果比较接近。
     采用MD模拟对纳米通道内液体流动进行了研究,发现壁面疏水/亲水程度仅影响紧靠壁面处液体的速度梯度和主流区抛物线型速度分布的“起点”速度,并未造成液体在壁面处速度不为0;当所加外力场较大时,通道内的流动不再属于Poiseuille流动;滑移长度体现了固壁和流体之间相互作用的内在特性;壁面突起可以影响壁面特性、改变滑移长度,但对液体粒子数密度分布基本没有影响,对流场的影响随着远离变截面位置而快速减弱。对水在纳米通道中流动进行了初步实验研究,得到去离子水在一种平均直径为240 nm亲水性圆孔里流动的滑移长度为-17.8~-19.1 nm。
The development of research on porous media and the continuing demand for porous media applications in high-tech industries are pushing the research of heat and mass transfer in micro- and nanoscale porous media. The present dissertation investigates the nanoparticle thermal conductivity, nanoscale thermal contact resistance, nanoscale porous media thermal conductivity and nanoscale flow using molecular dynamics (MD) analyses, theoretical analyses and experiments.
     Two thermal conduction models were constructed for cubical and spherical nanoparticles for non-equilibrium molecular dynamic (NEMD) simulations to investigate the variations of the nanoparticle thermal conductivity with particle size and shape. The simulation results accurately represent the thermal conductivity of argon nanoparticle. The EAM potential model was used to simulate the phonon heat conduction in nickel nanoparticles with the effective thermal conductivity of nickel nanoparticles was found by adding the electronic thermal transport. The simulation results also accurately represent the thermal conductivity of nickel nanoparticles.
     Two models were used to simulate the thermal conduction across micro contact points and the thermal contact resistance using NEMD simulations with consideration of the near field radiation. The MD results show that the thermal contact resistance quickly increases with decreasing area of the micro contact point and increases with increasing micro contact layer thickness. The simulation results can be used to predict the nanoscale thermal contact resistance as a function of the contact point area and thickness.
     To analyze the heat transfer in micro- and nanoscale porous media, the macroscale porous media thermal conductivity models were modified to account for the micro- and nanoscale effects in porous media based on the research results for the nanoparticle thermal conductivity and the nanoscale thermal contact resistance. Comparison of the effective thermal conductivities of two nickel nanoparticle packed beds and a microparticle packed bed were measured using the Hot Disk with the calculated results shows that the revised models can accurately predict the effective thermal conductivities of micro- and nanoparticle packed beds.
     Liquid flow in nanoscale channels was also simulated using the MD method. The simulations show that the wettability between the liquid and the channel surface only affects the velocity gradient in the liquid close to the surface and the velocity where the steep wall velocity gradient transitions to the quadratic velocity profile in the main flow region. The liquid velocity near the channel surface is still zero for these conditions. When the driving force exceeds a critical value the liquid flow is no longer Poiseuille flow. The velocity profiles can be charactered by a slip length which is related to the force between the solid wall and the fluid. Solid wall surface bowing can affect the wall surface characteristic and change the slip length, but has very little effect on the liquid particle number density distribution. Finally, the effect of the cross-sectional variation on the fluid flow in nanochannels weakens rapidly with distance from the variable cross-sectional part of the nanochannel. A preliminary experimental study of water flow in nanopores gave a slip length for de-ionized water in a 240 nm average diameter hydrophilic pore of -17.8~-19.1 nm.
引文
[1] Tien C L, Chen G. Challenges in microscale conductive and radiative heat-transfer. Journal of Heat Transfer-Transactions of the ASME, 1994, 116(4):799-807.
    [2] Cahill D G, Ford W K, Goodson K E, et al. Nanoscale thermal transport. Journal of Applied Physics, 2003, 93(2):793-818.
    [3] Anderson C V D R, Tamma K K. An overview of advances in heat conduction models and approaches for prediction of thermal conductivity in thin dielectric films. International Journal of Numerical Methods for Heat & Fluid Flow, 2004, 14:12-65.
    [4] Liang X G. Some effects of interface on fluid flow and heat transfer on micro- and nanoscale. Chinese Science Bulletin, 2007, 52(18):2457-2472.
    [5] Kurganov V A, Zeigarnik Y A, Korabel′nikov A V, et al. The Thermochemical Principle of Cooling Based on Steam Conversion of Methane. Thermal Engineering, 1996, 143(3):198-210.
    [6] Zeigarnik Y A. Thermochemical method of cooling high-temperature surface as a way to enhance heat transfer, to accumulate and recover absorbed heat in hypersonic aircraft. 2001.
    [7]刘峰,姜培学.催化剂薄层内甲烷水蒸气重整反应强化管内对流换热的数值模拟.工程热物理学报, 2006, 27(6):987-989.
    [8] Glickstein M R, Spadaccini L J. Applications of endothermic reaction technology to the high speed civil transport, NASA Contractor Report 207404. 1998.
    [9] Koper O B, Lagadic I, Volodin A, et al. Alkaline-earth oxide nanoparticles obtained by aerogel methods. Characterization and rational for unexpectedly high surface chemical reactivities. Chemistry of Materials, 1997, 9(11):2468-2480.
    [10] SPCR. Desktop CPU Power Survey[EB/OL]. [2006-04-05]. http://www.silentpcreview.com/article313-page5.html.
    [11]张竹茜,于帆,张欣欣.质子交换膜燃料电池的多尺度传热传质.能源研究与利用, 2006, (01):29-33.
    [12] Tawfik A. Study of the Vacancy Jumps in Co-Zn Ferrite. Solid State Communications, 1995, 94(12):987-990.
    [13] Volokitin Y, Sinzig J, deJongh L J, et al. Quantum-size effects in the thermodynamic properties of metallic nanoparticles. Nature, 1996, 384(6610):621-623.
    [14] Chen G. Nonlocal and nonequilibrium heat conduction in the vicinity of nanoparticles. Journal of Heat Transfer-Transactions of the Asme, 1996, 118(3):539-545.
    [15] Caruso F. Nanoengineering of particle surfaces. Advanced Materials, 2001, 13(1):11-22.
    [16] Eckert J, Reger-Leonhard A, Weiss B, et al. Nanostructured materials in multicomponentalloy systems. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2001, 301(1):1-11.
    [17] Keblinski P, Phillpot S R, Choi S U S, et al. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). International Journal of Heat and Mass Transfer, 2002, 45(4):855-863.
    [18] Zeng T F, Liu W. Phonon heat conduction in micro- and nano-core-shell structures with cylindrical and spherical geometries. Journal of Applied Physics, 2003, 93(7):4163-4168.
    [19] Wen D S, Ding Y L. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. International Journal of Heat and Mass Transfer, 2004, 47(24):5181-5188.
    [20] Koo J, Kleinstreuer C. A new thermal conductivity model for nanofluids. Journal of Nanoparticle Research, 2004, 6(6):577-588.
    [21]王补宣,周乐平,彭晓峰.纳米颗粒悬浮液的粘度、热扩散系数与Pr数.自然科学进展, 2004, 14(7):799-803.
    [22]袁世平.纳米金属薄膜与纳米金属颗粒结构热导率的研究[博士学位论文].北京:清华大学热能工程系, 2005.
    [23] Yuan S P, Jiang P X. Thermal conductivity of small nickel particles. International Journal of Thermophysics, 2006, 27(2):581-595.
    [24]李泽梁,李俊明,王补宣.纳米悬浮液热导率测量及其预测模型的探讨.工程热物理学报, 2006, 27(1):112-114.
    [25]王补宣,盛文彦.纳米流体导热系数的团簇宏观分析模型.自然科学进展, 2007, 17(7):984-988.
    [26] Callaway J. Model for Lattice Thermal Conductivity at Low Temperatures. Physical Review, 1959, 113(4):1046.
    [27] Majumdar A. Microscale heat conduction in dielectric thin films. Journal of Heat Transfer-Transactions of the ASME, 1993, 115:7-16.
    [28] Lukes J R, Li D Y, Liang X G, et al. Molecular dynamics study of solid thin-film thermal conductivity. Journal of Heat Transfer-Transactions of the ASME, 2000, 122(3):536-543.
    [29] Feng X L, Li Z X, Liang X G, et al. Molecular dynamics study on thermal conductivity of nanoscale thin films. Chinese Science Bulletin, 2001, 46(7):604-607.
    [30] Feng X L, Li Z X, Guo Z Y. Molecular dynamics simulation of thermal conductivity of nanoscale thin silicon films. Microscale Thermophysical Engineering, 2003, 7(2):153-161.
    [31] Liu Q X, Jiang P X, Xiang H. Molecular dynamics study of the thermal conductivity of nanoscale argon films. Molecular Simulation, 2006, 32(8):645-649.
    [32] Volz S G, Chen G. Molecular dynamics simulation of thermal conductivity of silicon nanowires. Applied Physics Letters, 1999, 75(14):2056-2058.
    [33] Gu X K, Cao B Y. Thermal conductivity of dielectric nanowires with differentcross-section shapes. Chinese Physics, 2007, 16(12):3777-3782.
    [34] Bahrami M, Culham J R, Yananovich M M, et al. Review of thermal joint resistance models for nonconforming rough surfaces. Applied Mechanics Review, 2006, 59(1):1-12.
    [35] Abbott E J, Firestone F A. Specifying Surface Quality, A Method Based on Accurate Measurement and Comparison. Mechanical Engineering, 1933, 55:569-578.
    [36] Cooper M G, Mikic B B, Yovanovich M M. Thermal Contact Conductance. International Journal Heat Mass Transfer, 1969, 12:279-300.
    [37] Kitscha W. Thermal Resistance of the Sphere-Flat Contact[Master Thesis]. Waterloo, Canada: University of Waterloo, 1982.
    [38] Fisher N F. Thermal Constriction Resistance of Sphere/Layered Flat Contacts: Theory and Experiment[Master Thesis]. Waterloo, Canada: University of Waterloo, 1987.
    [39] Lambert M A, Fletcher L S. Thermal contact conductance of spherical rough metals. Journal of Heat Transfer-Transactions of the Asme, 1997, 119(4):684-690.
    [40] Wolff E G, Schneider D A. Prediction of thermal contact resistance between polished surfaces. International Journal of Heat and Mass Transfer, 1998, 41(22):3469-3482.
    [41] Liu G, Wang Q J, Lin C. A survey of current models for simulating the contact between rough surfaces. Tribology Transactions, 1999, 42(3):581-591.
    [42] Yovanovich M M, Marotta E E, Thermal Spreading and Contact Resistances, Heat Transfer Handbook, A. Bejan and A.D. Kraus, Editors. New York: Wiley, 2003.
    [43] Khalatnikov I M, Adamenko I N. Theory of the Kapitza temperature discontinuity at a solid body-liquid helium boundary. Soviet Physics JETP, 1973, 36:361-387.
    [44] Swartz E T, Pohl R O. Thermal resistance at interface. Applied Physics Letters, 1987, 51:2200-2202.
    [45] Maiti A, Mahan G D, Pantelides S T. Dynamical simulations of nonequilibrium processes - heat flow and the Kapitza resistance across grain boundaries. Solid State Communications, 1997, 102(7):517-521.
    [46] Liang X G, Shi B. Two-dimensional molecular dynamics simulation of the thermal conductance of superlattices. Materials Science and Engineering A, 2000, 292(2):198-202.
    [47] Volz S, Saulnier J B, Chen G, et al. Computation of thermal conductivity of Si/Ge superlattices by molecular dynamics techniques. Microelectronics Journal, 2000, 31(9):815-819.
    [48] Lor W B, Chu H S. Effect of interface thermal resistance on heat transfer in a composite medium using the thermal wave model. International Journal of Heat and Mass Transfer, 2000, 43(5):653-663.
    [49] Abramson A R, Tien C-L, Majumdar A. Interface and Strain Effects on the Thermal Conductivity of Heterostructures: A Molecular Dynamics Study. Journal of Heat Transfer-Transactions of the ASME, 2002, 124(5):963-970.
    [50] Shi L, Majumdar A. Thermal transport mechanisms at nanoscale point contacts. Journal of Heat Transfer-Transactions of the Asme, 2002, 124(2):329-337.
    [51] Twu W C-J, Ho W J-R. Molecular-dynamics study of energy flow and the Kapitza conductance across an interface with imperfection formed by two dielectric thin films. Physical Review B, 2003, 67(20):205422-8.
    [52] Schelling P K, Phillpot S R, Keblinski P. Kapitza conductance and phonon scattering at grain boundaries by simulation. Journal of Applied Physics, 2004, 95(11):6082-6091.
    [53] Stevens R J, Norris P M, Zhigilei L V. Molecular-dynamics study of thermal boundary resistance: Evidence of strong inelastic scattering transport channels. American Society of Mechanical Engineers, Electronic and Photonic Packaging, EPP, 2004, 4:37-46.
    [54] Chen Y F, Li D Y, Yang J K, et al. Molecular dynamics study of the lattice thermal conductivity of Kr/Ar superlattice nanowires. Physica B, 2004, 349:270-280.
    [55] Choi S-H, Maruyama S. Thermal boundary resistance at an epitaxially perfect interface of thin films. International Journal of Thermal Sciences, 2005, 44(6):547-558.
    [56] Liang X G, Sun L. Interface structure influence on thermal resistance across double-layered nanofilms. Microscale Thermophysical Engineering, 2005, 9(3):295-304.
    [57] Hegedus P J, Abramson A R. A molecular dynamics study of interfacial thermal transport in heterogeneous systems. International Journal of Heat and Mass Transfer, 2006, 49:4921-4931.
    [58] Tang Q H, Yao Y G. The Kapitza resistance across grain boundary by molecular dynamics simulation. Nanoscale and Microscale Thermophysical Engineering, 2006, 10(4):387-398.
    [59] Hu M, Shenogin S, Keblinski P. Molecular dynamics simulation of interfacial thermal conductance between silicon and amorphous polyethylene. Applied Physics Letters, 2007, 91(24):241910-3.
    [60] Liang X G, Yue B, Maruyama S. Simulation of interface structure influence on in-fliane thermal conductivity of ar-like nano films by molecular dynamics. Journal of Enhanced Heat Transfer, 2007, 14(3):233-242.
    [61] Kaviany M. Principles of Heat Transfer in Porous Media. New York: Springer, 1995.
    [62] Zehner P, Schlunder E U. Thermal conductivity of granular materials at moderate temperature (in German). Chemie Ingenieur Technik - CIT, 1970, 42(14):933-941.
    [63] Hsu C T, Cheng P, Wong K W. Modified Zehner-Schlunder models for stagnant thermal conductivity of porous media. International Journal of Heat and Mass Transfer, 1994, 37(17):2751-2759.
    [64] Koplik J, Banavar J R, Willemsen J F. Molecular dynamics of fluid flow at solid surfaces. Physics of Fluids A: Fluid Dynamics, 1989, 1(5):781-794.
    [65] Thompson P A, Robbins M O. Shear flow near solids: Epitaxial order and flow boundary conditions. Physical Review A, 1990, 41(12):6830.
    [66] Thompson P A, Troian S M. A general boundary condition for liquid flow at solid surfaces. Nature, 1997, 389(6649):360-362.
    [67] Travis K P, Todd B D, Evans D J. Departure from Navier-Stokes hydrodynamics in confined liquids. Physical Review E, 1997, 55(4):4288-4295.
    [68] Travis K P, Gubbins K E. Poiseuille flow of Lennard-Jones fluids in narrow slit pores. Journal of Chemical Physics, 2000, 112(4):1984-1994.
    [69] Barrat J L, Bocquet L. Large slip effect at a nonwetting fluid-solid interface. Physical Review Letters, 1999, 82(23):4671-4674.
    [70] Cieplak M, Koplik J, Banavar J R. Boundary conditions at a fluid-solid interface. Physical Review Letters, 2001, 86(5):803-806.
    [71] Cottin-Bizonne C, Barrat J L, Bocquet L, et al. Low-friction flows of liquid at nanopatterned interfaces. Nature Materials, 2003, 2(4):237-240.
    [72] Nagayama G, Cheng P. Effects of interface wettability on microscale flow by molecular dynamics simulation. International Journal of Heat and Mass Transfer, 2004, 47(3):501-513.
    [73]曹炳阳.速度滑移及其对微纳尺度流动影响的分子动力学模拟[博士学位论文].北京:清华大学航天航空学院, 2005.
    [74]徐超,何雅玲,王勇.纳米通道滑移流动的分子动力学模拟研究.工程热物理学报, 2005, 26(6):912-914.
    [75] Li Y X, Xu J L. A new criterion number for the boundary conditions at the solid/liquid interface in nanoscale. Nanoscale and Microscale Thermophysical Engineering, 2006, 10(2):109-141.
    [76] Cao B Y, Chen M, Guo Z Y. Liquid flow in surface-nanostructured channels studied by molecular dynamics simulation. Physical Review E, 2006, 74(6).
    [77] Soong C Y, Yen T H, Tzeng P Y. Molecular dynamics simulation of nanochannel flows with effects of wall lattice-fluid interactions. Physical Review E, 2007, 76(3):036303-14.
    [78] Huang C, Choi P Y K, Nandakumar K, et al. Investigation of entrance and exit effects on liquid transport through a cylindrical nanopore. Physical Chemistry Chemical Physics, 2008, 10(1):186-192.
    [79] Pit R, Hervet H, Leger L. Direct experimental evidence of slip in hexadecane: Solid interfaces. Physical Review Letters, 2000, 85(5):980-983.
    [80] Tretheway D C, Meinharta C D. Apparent fluid slip at hydrophobic microchannel walls. Physics of Fluids, 2002, 14(3):L9-L12.
    [81] Joseph P, Tabeling P. Direct measurement of the apparent slip length. Physical Review E, 2005, 71(3):035303-4.
    [82] Majumder M, Chopra N, Andrews R, et al. Nanoscale hydrodynamics - Enhanced flow in carbon nanotubes. Nature, 2005, 438(7064):44-44.
    [83] Choi C H, Kim C J. Large slip of aqueous liquid flow over a nanoengineeredsuperhydrophobic surface. Physical Review Letters, 2006, 96(6).
    [84] Joseph P, Cottin-Bizonne C, Benoit J M, et al. Slippage of water past superhydrophobic carbon nanotube forests in microchannels. Physical Review Letters, 2006, 97(15).
    [85] Bouzigues C I, Tabeling P. NanoPIV: a new tool for the exploration of nanofluidic flows. 1st French-Chinese Symposium on Microfluidics. Beijing, China, 2007:45-46.
    [86] Maali A, Cohen-Bouhacina T, Kellay H. Measurement of the slip length of water flow on graphite surface. Applied Physics Letters, 2008, 92(5).
    [87]都志辉.高性能计算并行编程技术-MPI并行程序设计.北京:清华大学出版社, 2001:1-6.
    [88] Plimpton S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal of Computational Physics, 1995, 117(1):1-19.
    [89] Plimpton S. LAMMPS Molecular Dynamics Simulator[CP/OL]. [2008-01-22]. http://lammps.sandia.gov.
    [90] Allen M P, Tildesley D J. Computer Simulation of Liquids. Oxford: Clarendon Press, 1987.
    [91] Rapaport D C. The art of molecular dynamics simulation. Cambridge: Cambridge University Press, 1995.
    [92] Weins M J. Structure and energy of grain boundaries. Surface Science, 1972, 31:138-160.
    [93] Girifalco L A, Weizer V G. Application of the Morse Potential Function to Cubic Metals. Physical Review, 1959, 114(3):687.
    [94] Abrahamson A A. Born-Mayer-Type Interatomic Potential for Neutral Ground-State Atoms with Z=2 to Z=105. Physical Review, 1969, 178(1):76.
    [95] Daw M S, Baskes M I. Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals. Physical Review Letters, 1983, 50(17):1285.
    [96] Daw M S, Baskes M I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Physical Review B, 1984, 29(12):6443.
    [97] Gupta R P. Lattice relaxation at a metal surface. Physical Review B, 1981, 23(12):6265.
    [98] Finnis M W, Sinclair J E. A simple empirical N-body potential for transition metals. Philosophical Magazine A, 1984, 50(1):45 - 55.
    [99] Jorgensen W L, Chandrasekhar J, Madura J D, et al. Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 1983, 79(2):926-935.
    [100]刘娟芳,曾丹苓,刘朝, et al.水导热系数的分子动力学模拟.工程热物理学报, 2007, (02).
    [101] Lin D T W, Chen C K. A molecular dynamics simulation of TIP4P and Lennard-Jones water in nanochannel. Acta Mechanica, 2004, 173(1-4):181-194.
    [102] Chen C K, Lin D T W. TIP4P potential for lid-driven cavity flow. Acta Mechanica, 2005, 178(3-4):223-237.
    [103]徐爱进,周哲玮,胡国辉.固体平板上超薄水膜去湿润过程的分子动力学模拟.应用数学和力学, 2007, (12).
    [104] Johnson R A. Analytic nearest-neighbor model for fcc metals. Physical Review B, 1988, 37(8):3924.
    [105] Mei J, Davenport J W, Fernando G W. Analytic embedded-atom potentials for fcc metals: Application to liquid and solid copper. Physical Review B, 1991, 43(6):4653.
    [106] Cai J, Ye Y Y. Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys. Physical Review B, 1996, 54(12):8398.
    [107] Tehver R, Toigo F, Koplik J, et al. Thermal walls in computer simulations. Physical Review E, 1998, 57(1):R17.
    [108] Kotake S, Wakuri S. Molecular-Dynamics Study of Heat-Conduction in Solid Materials. Jsme International Journal Series B-Fluids and Thermal Engineering, 1994, 37(1):103-108.
    [109] Mountain R D, MacDonald R A. Thermal conductivity of crystals: A molecular-dynamics study of heat flow in a two-dimensional crystal. Physical Review B, 1983, 28(6):3022.
    [110] Lundstrom M. Fundamentals of carrier transport (2ed). Cambridge: Cambridge University Press, 2000.
    [111] Tien C L, Majumdar A, Gerner F M. Microscale Energy Transport. Washington: Taylor&Francis, 1998.
    [112] Ziman J M. Principles of the Theory of Solids (2nd ed.). London: Cambridge University Press, 1979.
    [113] Clayton F, Batchelder D N. Temperature and volume dependence of the thermal conductivity of solid argon. Journal of Physics (C), 1973, 6:1213-1228.
    [114] Christen D K, Pollack G L. Thermal conductivity of solid argon. Physical Review B, 1975, 12:3380-3391.
    [115]冯晓利,李志信,梁新刚, et al.纳米薄膜导热系数的分子动力学模拟.科学通报, 2000, 45:2113-2117.
    [116] Chantrenne P, Barrat J-L. Finite Size Effects in Determination of Thermal Conductivities: Comparing Molecular Dynamics Results with Simple Models, Journal of Heat Transfer. 2004, ASME.577-585.
    [117] Dobbs E R, Jones G O. Theory and properties of solid argon. Reports on Progress in Physics, 1957, 20:516-564.
    [118]向恒,姜培学,刘其鑫.纳米氩颗粒导热性能的非平衡分子动力学模拟.清华学报, 2008, 48(2):248-251.
    [119]杨世铭,陶文铨.传热学(第三版).北京:高等教育出版社, 1998.
    [120] Bahrami M, Culham J R, Yananovich M M, et al. Review of thermal joint resistance models for nonconforming rough surfaces. Applied Mechanics Review, 2006, 59:1-12.
    [121] Roess L C, Theory of Spreading Conductance, Beacon Laboratories of Texas, Beacon, NY,Appendix A (unpublished paper), 1950.
    [122] Gibson R D. The Contact Resistance of a Semi-Infinite Cylinder in a Vacuum. Applied Energy, 1976, 2(1):57-65.
    [123] Bahrami M, Culham J R, Yananovich M M, et al. Review of thermal joint resistance models for nonconforming rough surfaces, Applied Mechanics Review. 2006.1 - 12.
    [124] Han M H, Liang X G. Comparison of heat conduction and radiation of nano-size gas gaps. First International Conference on Microchannels and Minichannels. Rochester, NewYork, 2003.
    [125]韩茂华.半导体薄膜热辐射干涉特性研究及近场辐射初步研究[博士学位论文].北京:清华大学航空航天学院, 2006.
    [126] Lukes J R, Tien C L. Molecular dynamics simulation of thermal conduction in nanoporous thin films. Microscale Thermophysical Engineering, 2004, 8(4):341-359.
    [127] Bauer T H. A General Analytical Approach toward the Thermal-Conductivity of Porous-Media. International Journal of Heat and Mass Transfer, 1993, 36(17):4181-4191.
    [128] Gibson L J, Ashby M F. Cellular Solids, Structures and Properties. Cambridge: Cambridge University Press, 1997.
    [129] Pawel R E, McElroy D L, Weaver F J, et al., High temperature thermal conductivity of a fibrous Alumina ceramic, Thermal Conductivity. New York: Plenum Press, 1985:301-313.
    [130] Daryabeigi K. Analysis and testing of high temperature fibrous insulation for reusable launch vehicles. 37th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, 1999.
    [131] Bhattacharya A, Calmidi V V, Mahajan R L. An analytical-experimental study for the determination of the effective thermal conductivity of high porosity fibrous foams. Application of Porous Media Methods for Engineered Materials, AMD ASME. Nashville, TN, 1999.
    [132] Sullins A D, Daryabeigi K. Effective thermal conductivity of high porosity open cell nickel foam. 35th AIAA Thermophysics Conference. Anaheim CA, 2001.
    [133] Daryabeigi K. Design of High Temperature Multilayer Insulation for Reusable Launch Vehicles[Ph.D. Thesis]. Virginia: University of Virginia, 2000.
    [134] Gustafsson S E. Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Review of Scientific Instruments, 1991, 62(3):797-804.
    [135] Gustavsson M, Karawacki E, Gustafsson S E. Thermal-Conductivity, Thermal-Diffusivity, and Specific-Heat of Thin Samples from Transient Measurements with Hot Disk Sensors. Review of Scientific Instruments, 1994, 65(12):3856-3859.
    [136] Travis K P, Todd B D, Evans D J. Poiseuille flow of molecular fluids. Physica A, 1997, 240(1-2):315-327.
    [137] DE Gennes P G. Wetting: statics and dynamics. Reviews of Modern Physics, 1985,57(3):827.
    [138] Freund J B. The atomic detail of a wetting/de-wetting flow. Physics of Fluids, 2003, 15(5):L33-L36.
    [139]曹炳阳,陈民,过增元.纳米通道内液体流动的滑移现象.物理学报, 2006, 55(10):5305-5310.
    [140] Yu C J, Richter A G, Datta A, et al. Molecular layering in a liquid on a solid substrate: an X-ray reflectivity study. Physica B, 2000, 283(1-3):27-31.
    [141]张兆顺,崔桂香.流体力学.北京:清华大学出版社, 1999.
    [142]孙桂玉.物理化学.北京:化学工业出版社, 1985.
    [143] NAVIER M. Memoire sur les Lois du Mouvement des Fluides. Vol. 6. Paris, France: Memoires de l'Academie Royale des Sciences, 1823:389-416.
    [144] Lauga E, Brenner M P, Stone H A, Microfluidics: The no-slip boundary condition, Handbook of Experimental Fluid Mechanics. New York: Springer, 2005.
    [145]丁慎训,张连芳.物理实验教程.北京:清华大学出版社, 2002:1-7.
    [146] Oconnell S T, Thompson P A. Molecular dynamics-continuum hybrid computations: A tool for studying complex fluid flows. Physical Review E, 1995, 52(6):R5792-R5795.
    [147] Nie X B, Chen S Y, E W N, et al. A continuum and molecular dynamics hybrid method for micro- and nano-fluid flow. Journal of Fluid Mechanics, 2004, 500:55-64.
    [148] Yen T H, Soong C Y, Tzeng P Y. Hybrid molecular dynamics-continuum simulation for nano/mesoscale channel flows. Microfluidics and Nanofluidics, 2007, 3(6):665-675.
    [149]陈懋章.粘性流体动力学基础.北京:高等教育出版社, 2002:78-84.
    [150] Holt J K, Park H G, Wang Y M, et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science, 2006, 312(5776):1034-1037.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700