用户名: 密码: 验证码:
溶剂萃取体系制备无机纳米材料及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于其特殊的光学、电学、光化学、电化学、力学及催化性能,纳米材料的制备及应用已经受到人们的广泛关注。探索简便、能耗低且环境友好的材料设计与合成的新途径、新方法,始终是纳米材料研究领域中的一个重要课题,实现纳米材料尺寸、分布和形貌控制,对纳米材料的表面改性和拓展纳米材料的应用领域仍然是化学、物理和材料学家关心的重要内容。
     溶剂萃取作为一种重要的、节能的分离技术,已广泛应用于湿法冶金、原子能工业、稀土元素分离等生产过程中。本论文除了利用常规的沉淀法、水热法和溶剂热法外,特别关注了从溶剂萃取体系或含有萃取剂的体系中制备合成不同性能、不同形貌的无机纳米材料和有机纳米流体。该研究不仅有助于丰富和发展溶剂萃取化学的理论、拓宽溶剂萃取化学在材料制备领域中应用,同时也为纳米材料的制备、组装、裁剪提供了一种新的思路,可实现材料的“分离-制备-应用”一体化,在研究成果的产业化方面也具有极其重要的意义。
     本论文的主要工作是在课题组前期研究Cyanex系列硫代磷(膦)酸和TOPO中性磷氧萃取剂界面性能和相行为的基础上,利用溶剂萃取技术和其它液相法制备无机纳米材料相结合,成功制备了多种不同形貌、不同表面特性的无机纳米材料、有机纳米流体和聚合物复合材料,探索了它们在摩擦学、传热学和电化学领域的应用,并讨论了材料的生长机理和应用机理。论文主要内容如下:
     (1)用Cyanex 301-加氢汽油/Na2MoO4-HCl萃取体系制备的负载有机相进行溶剂热反应(150℃),制备了表面修饰粒径约1-3μm的MoS2微球,研究了各种反应条件对产物大小、形貌的影响,讨论了微球形结构的形成机理。将表面修饰的MoS2微球分别分散到液体石蜡、500 SN和GL-4齿轮基础油中,分别用四球机和SRV微动摩擦磨损试验机对其进行了初步的摩擦学性能研究,并与商业级胶体MoS2进行了比较。结果表明,萃取剂Cyanex 301不但可以起到萃取作用、还原功能和提供硫源,而且本身对产物有很好的修饰作用。得到的MoS2微球很容易分散到液体石蜡等有机溶剂中,并且具有良好的分散稳定性能。由于制备的MoS2微球具有特殊的晶体结构、微观结构和表面吸附的有机基团,是一种很好的极压添加剂和润滑油添加剂。它们在摩擦过程中形成了由萃取剂长链烷基和活性元素S、P组成的化学吸附膜、摩擦化学产物组成的化学反应膜及化学沉积膜,从而有效地提高了润滑油的抗摩减磨性能。
     (2)由于MoS2特殊的晶体结构和较好的应用前景,本文探索了一种简单、低温、绿色的MoS2合成路线。以商业级Na2MoO4为钼源,CS2和乙二胺反应生成的H2S作为还原剂和硫源,通过原位水热合成法在150℃制备了由片状MoS2材料插成的粒径约400 nm的花形MoS2微球。实验比较了各种反应条件对生成MoS2样品结构和形貌的影响,如反应温度,反应时间,Mo和S元素的物量比,乙二胺用量,不同类型表面活性剂(PVP、CTAB、SDBS),外加硫源,外加还原剂和不同极性溶剂等,初步探讨了花形MoS2的形成机理。结果表明: 150℃下,当Mo和S元素的物质的量比为1:3时,即可制备出花形MoS2微球材料。整个反应过程可以分为还原和生长两个阶段,乙二胺的加入能大幅度提高H2S气体的产量,提供反应所需的硫源和还原剂,同时生成的前驱体-HN-CH2- CH2- NH- CS-和Mo有一定的配位作用,能够引导初始粒子的成形和生长。
     (3)用Cyanex 302-加氢汽油/Zn(CH3COO)2-H2O萃取体系采用沉淀法在加氢汽油溶剂中直接制备了白色、高负载量、含Cyanex 302表面修饰的ZnS粒子的有机纳米流体,实验详细分析了粒子的结构形貌特征、分散状态、表面特性以及在有机溶剂中的稳定性能和负载量,其中室温下汽油中的最大负载量可以达到24.4 g·L-1。由于Cyanex 302在整个反应中既作金属Zn2+的萃取剂,同时又作ZnS纳米粒子的表面修饰剂,所以得到的表面修饰的ZnS粒子很容易分散到液体石蜡和500 SN基础油等有机溶剂中并能稳定存在。实验还比较了不同基础油润滑体系中添加ZnS粒子前后极压性能和抗磨减摩性能的变化,初步探讨了其抗磨减摩机理,认为它们在液体石蜡和500 SN中的摩擦机理都可归因于边界润滑条件下的化学吸附膜、化学反应膜和化学沉积膜。在摩擦初期或载荷较小的情况下,主要是液体石蜡和500 SN基础油和修饰剂的减摩效果;随着时间的延长或者载荷的增大,ZnS粒子在摩擦副间起到了类似滚珠的作用,从而提高了基础油的抗磨减摩性能。
     (4)为了更加简单方便地制备较大量的非烷烃纳米流体并探索其导热性能,本文在PVP-Ag+-乙二醇体系中室温下采用直接还原得到了含PVP表面修饰、高负载量的纳米银-乙二醇流体。实验详细比较了各种反应条件对Ag纳米粒子结构、大小、形貌以及乙二醇纳米流体的稳定性、负载量的影响。结果显示由于PVP对银粒子有良好的表面修饰作用和纳米粒子自身的布朗运动,使得银粒子能稳定地分散于乙二醇流体中。其中当PVP含量为12.5 g·L-1时,Ag粒子最大负载量可以达到20.96 g·L-1。同时还用仿制的纳米流体导热系数测试装置测定了上述不同负载量流体的导热系数,结果表明纳米流体比纯乙二醇的导热系数明显提高,当银粒子的体积分数为0.06%时,纳米流体的导热系数提高了36%。通过与流体导热系数的理论模型比较,传统的Maxwell和Kumar模型不能够用于解释本文纳米流体导热系数的增大机理,还需要对纳米流体传热的机理进行更深入的研究。
     (5)在TOPO-汽油/盐酸-Zr(IV)萃取体系中采用中相沉淀法制备了介孔ZrO2纳米材料和SO42-/ZrO2固体超强酸,并以此为前驱体分别制备了聚苯胺、不同表面活性剂(PVP、CTAB、SDBS)修饰的ZrO2-聚苯胺、SO42-/ZrO2聚苯胺复合材料。实验研究了不同反应条件对复合材料结构、形貌、表面特性、导电率和电化学活性的影响。结果表明在PVP和苯胺盐酸盐共同作用下聚合生成了一种表面不光滑的球形“核-壳”结构的ZrO2-聚苯胺复合材料,该种材料具有良好的分散稳定性、较高的比表面积、较高的电导率和较为活泼的电化学性能。由于介孔ZrO2材料特殊的形貌结构,在一定的酸性条件下苯胺单体会有规律地吸附到这些粒子的表面,并沿一定的方向生长聚合,这样得到的聚苯胺复合材料具有较高的导电率和电化学活性。将得到的ZrO2-聚苯胺复合材料应用到DNA电化学传感器中,用3σ法计算PAT基因的检测限可达4.25×10-14 mol·L-1,为这种材料在电化学领域的应用提供了很好的条件。
     (6)本文还在不同萃取体系中用多种方法制备了多种金属硫化物、硒化物和氧化物,并对纳米材料的形成进行了机理分析。①用Cyanex 301-Zn2+萃取体系采用溶剂热法制备了ZnS无机纳米材料。②用Cyanex 302-金属离子萃取体系采用静界面反应法制备了CdS、CuS、MoS2和MoSe2纳米材料。首先利用萃取技术将一种金属离子反应物萃入到有机相中,另一种无机离子沉淀剂分散于水相,在室温静态条件下,通过界面反应制备了目标产物,化学反应发生在互不相容的水相和有机相的相界面上,有利于纳米材料的自由生长。③用Cyanex 301-Fe3+萃取体系采用萃取沉淀法制备了Fe(OH)3前驱体,再将前驱体进行煅烧、回流、溶剂热等热处理得到了不同形貌的Fe2O3纳米粒子。制备的Fe2O3纳米粒子可分散到有机溶剂中,形成稳定的铁磁流体。④将Cyanex 301直接作为表面活性剂采用微乳液法在醇-水混合溶剂中70℃制备了表面修饰、粒径约70 nm的片状MoSe2纳米材料,Cyanex 301的用量对于MoSe2的形成及形貌至关重要。
     我们认为,与典型表面活性剂相比,萃取剂不仅具有良好的表面活性,而且其优势在于它与金属的化学结合力较强,负载量较大,对扩大实验与拓展纳米材料的应用更加有利。
Due to the excellent optical, electrical, photochemical, electrochemical, mechanical and catalytic properties of nanomaterials, much more attention has been paid to their preparation and applications. It is still a great challenge to develop a new, facile, and convenient, low-energy and environment-friendly method for preparing and designing nanomaterials. Although there were many reports, many chemists, physicists and materials scientists are devoting themselves to the controllable size, morphology and distribution, surface-modification and expansion of their applied research.
     As an important separation technology, the solvent extraction and separation were extensively applied in the field of hydrometallurgy, atomic energy industry and rare earth element purification. In this paper, the main attention has been paid to explore the preparation of inorganic nanomaterials and organic nanofluids from a solvent extraction system or a system containing an industrial extractant, then the application of the prepared materials or fluids in the field of tribology, heat transmit and electrochemical properties. In this study, the theory and experience of solvent extraction were both developed and enriched in the field of preparation materials, a new idea for the preparation of nanomaterials was also provided. Moreover, it has very important significance in industry to carrying out the“separation, preparation and modification”at the same time.
     The main purpose of this paper is, based on the interfacial properties of extractants and interfacial phenomenon appeared in the extraction systems, several kinds of inorganic nanomaterials and organic nanofluids are firstly synthesized from a solvent extraction system or a system containing an industrial extractant, then their related application and properties researches, such as the tribological properties, thermal conduction properties and preliminary electrochemical properties, are studied systematically, finally, the tribological, thermal conductivity and electrochemical mechanism are also discussed briefly. The main contents of this paper are as follows:
     (1) Mono-dispersed molybdenum disulfide micro-spheres with the diameter of 1~3μm have been successfully synthesized via extraction-solvothermal method at 150℃in the system of Cyanex 301(di- (2, 4, 4- trimethylpentyl) dithiophosphinic acid) -gasoline/Na2MoO4-HCl. The influences of reaction conditions were discussed while a mechanism was proposed to explain the formation of the micro-spherical structure. Moreover, the tribological properties (Extreme-pressure (EP) properties, anti-wear (AW) and friction-reducing properties) of liquid paraffin (LP), 500 SN and gear oil GL-4 containing the above surface-modified MoS2 micro-spheres (MS-MoS2) were also evaluated on a four-ball tester and an optimol SRV oscillating friction and wear tester and compared with those of commercial colloidal MoS2 (CC-MoS2). Results showed that the extractant Cyanex 301 acted as phase transferring agent, reductant, sulfur source and morphology-controlling agent in the whole procedure, and MS-MoS2 was a much better EP additive and AW and friction-reducing additive in the above base oils than CC-MoS2 because of the well modifying effect. The lubrication mechanism could be attributed to the chemical adsorption film, reaction film, deposition film and the existence of the rolling friction under the boundary lubricating conditions.
     (2) Due to the special crystal structure and good application potential of MoS2 materials, a facile, low-energy and green route to the preparation of molybdenum disulfide is explored in this dissertation. Flower-like molybdenum disulfide micro-spheres with the diameter of 400 nm were synthesized successfully by a simple in-suit hydrothermal method from the chemical reaction among the sulfur source of commercial reagents CS2, NH2(CH2)2NH2 and the molybdenum source of Na2MoO4?2H2O at 150℃for 24 h. The obtained MoS2 products were characterized by XPS, XRD, EDX, SEM and TEM technique, indicating that the flower-like spheres were built up of MoS2 thin flakes having a thickness of several nanometers. The influences of reaction conditions, such as the amount of ethylenediamine, reaction temperature, reaction time, the ratio of S to Mo, surfactant (PVP, CTAB and SDBS), etc, on the MoS2 formation process were studied to explain the evolution of flower-like spheres. The whole reaction could be divided into two parts, one is reductive stage and the other is growth stage. With the help of the formed (-HN-CH2-CH2-NH-CS-)n compound, the new formed MoS2 particles were induced to grow in all directions to form nano-sheets under the hydrothermal conditions. This facile synthesis method may provide an idea to produce other transition metal sulfides.
     (3) In this dissertation, stable organic nanofluids containing ZnS nano-particles modified by Cyanex 302 (di- (2, 4, 4-trimethylpentyl) monothiophosphinic acid) are prepared directly in gasoline via solvent extraction-precipitation method in the system of Cyanex 302-gasoline/Zn(CH3COO)2-H2O. The obtained organic fluids were so stable that ZnS nano-particles did not precipitate after keeping at room condition for more than six months when the loading concentration of ZnS was as high as 24.4 g?L-1. The influences of reaction conditions on the structure, morphology, dispersion properties and the loading concentration of nanoparticles in organic solvent were discussed briefly while a stabilization mechanism was proposed. Results indicated that because of well modifying effect, the obtained ZnS nano-particles could be well dispersed into organic solvents again and the new-formed nano-fluids were also very stable. Moreover, the tribological properties of base oil LP and 500 SN containing the above ZnS nano-particles were also studied with four ball machine and Optimol SRV oscillating friction and wear tester and compared with those of ZnS nano-particles obtained in ethanol-water mixed medium, showing that such a nanofluid containing modified ZnS particles has a lower friction coefficient and wear volume loss. The action mechanism could be deduced as the effective surface composite film composed of chemical adsorption film, chemical reaction film and deposition film under boundary lubrication conditions.
     (4) It is very important to prepare organic nanofluids at large scale simply for the application in the fields of the tribology and thermal conductivity. In this dissertation, ethylene glycol nanofluids containing high loading concentration of Ag nanoparticles modified with poly-(vinylpyrrolidone) (PVP) were obtained by a facile chemical reduction method at room temperature. The influences of reaction conditions on the size, morphology, dispersion and the loading concentration of Ag nanoparticles in organic solvent were discussed briefly while a stabilization mechanism was proposed. The results showed that the obtained Ag nanoparticles were well modified by PVP and the highest loading concentration of the corresponding nanofluid was about 21 g·L-1 when the additive amount of PVP is 1.25 g?L-1. Moreover, the thermal conductivity of the nanofluids containing the above Ag nanoparticles were also measured by the transient hot-wire method and compared with the traditional Maxwell and Kumar model, showing that such a nanofluid has a higher thermal conductivity coefficient, i.e., compared with pure ethylene glycol, the thermal conduction coefficient of 0.06% PVP-Ag ethylene glycol increased about 36%. It is expected that this method can be extended to synthesize other metallic nanofluids or nanoparticles.
     (5) On the basis of the studies about the phase behavior of TOPO (tri-alkyl phosphinic oxide)-gasoline/HCl-ZrOCl2 extraction system, crystals mesoporous ZrO2 and SO42-/ZrO2 with porous honeycomb-type structure are obtained using the third phase loading Zr(IV) by precipitation with ammonium solution under low temperature. Then the polyaniline, polyaniline-ZrO2 and polyaniline-SO42-/ZrO2 composite materials modified with different surfactants (PVP, CTAB and SDBS) are successfully synthesized, respectively. The influences of reaction conditions on the size, morphology, surface-modification, conductivity and electrochemical properties of polyaniline-ZrO2 composite materials were investigated respectively, while a stabilization and action mechanism were proposed to explain the change of chemical properties. Results indicated that the“core-shell”structure of polyaniline-ZrO2 composite materials were formed under the co-action of PVP and aniline hydrochloride, which has coarse surface, good dispersion, higher exterior area and sensitive conductivity and electrochemical properties. The aniline monomer would be well-regulated and adsorbed on the surface of ZrO2 and growth along the given direction, so the obtained composites are of higher conductivity and excellent electrochemical properties. The polyaniline-ZrO2 composites could be used for the detection the DNA hybridization. DNA specific-sequence related to PAT promoter gene with a detection limit ranging from 1.0×10-13 to 1.0×10-6 mol·L-1 and a detection limit of 4.25×10-14 mol·L-1 (3σ). It is expected that this polyaniline-ZrO2 composite materials can be applied in the electrochemical field in the future.
     (6) Because of the high surface activity of extractant, it could not only increase the loading concentration of metal ions in solvent, but also has very important significance in industry to carrying out the“separation, preparation and modifying”simultaneously through the solvent extraction system.①ZnS inorganic nanoparticles are successfully synthesized via extraction solvothermal method, which is very simple and could be used for preparation of other sulfides in a large scale.②CdS, CuS, MoS2 and MoSe2 semiconductors are successfully synthesized at the aqueous-organic interfaces via the chemical synthesis method. The Cd2+, Cu2+ and MoO22+ ions were extracted into organic phase by the Cyanex 301, then organic phase containing complexes were reacted with S2- (Se2-) in the aqueous phase at the aqueous-organic interfaces to synthesize sulfide nanomaterials, respectively, and the possible formation mechanism is proposed.③Surface modified Fe2O3 nanoparticles were successfully synthesized via different thermal treatment of the Fe(OH)3–Cyanex 301 precursor, which was obtained by the extraction-precipitation route. The obtained Fe(OH)3–Cyanex 301 precursor was given different thermal treatment, such as solvothermal reaction at 180℃, an intense refluxing boiling tetralin and calcine at 600℃respectively. Results indicated that Fe2O3 products were well-modified by Cyanex 301 and could be dispersed well into organic solvents to form the stable fluids due to the high affinity with non-polar solvent.④As surface modifying agent, flake-like MoSe2 nanomaterials were successfully synthesized via a chemical reaction in the mixed medium of ethanol and water at 70oC using home-made NaHSe as Se source, Na2MoO4·2H2O as Mo source and NH2OH·HCl as reducing agent. Results indicated that the morphologies of MoSe2 nanomaterials could be well controlled by the different concentration of extractant in this system and well-dispersed, flake-like MoSe2 nanomaterials with diameter of about 70 nm were obtained when the addition amount of extractant was 0.75 g·L-1.
     Compared with other typical methods in extractant systems, the studied approach have the advantages of strong cooperation and high loading concentration for metal ions. The theory and experience of solvent extraction were both developed and enriched in the field of preparation materials and their related applications.
引文
[1]马荣骏编著,溶剂萃取在湿法冶金中的应用,冶金工业出版社,1979
    [2]吴谨光等,第二届全国溶剂萃取会议摘要集,上海,1991(11)
    [3]傅洵,胡正水,王德宝,等.萃取体系第三相的生成、微观结构与应用研究:三相萃取体系研究进展[J],化学通报,2000,63 (4) 13-17.
    [4] Pattero E., Eronla P., et al., Formation of microemulsion in solvent extraction systems containing Cyanex272, ISEC'88, 1988, 124-126.
    [5] Pattero E., Lantto T., Ernola P. The effect of trioctylphosphine oxide on phase and extraction equilibria in systems containing bis (2,4,4-trimethylpentyl)phosphinic acid [J], Solv. Extr. Ion Exch., 1990, 8 (3) 371-388
    [6]胡正水,辛惠蓁,潘莹,等.二烷基磷(膦)酸钠盐萃取剂体系的相行为[J],应用化学,1995,12 (5) 10-14.
    [7] Hu Z. S., Pan Y., Ma W. W., et al., Purification of organo-phosphorus acid extractants [J], Solv. Extr. Ion Exch., 1995, 13 (5) 965-976.
    [8] Fu X., Xiong Y. H., Xue S. Y., et al., Study on the thiophosphinic extractants I. The basic properties of the extractants and the phase behavior in their saponified systems [J], Solv. Extr. Ion Exch., 2002, 20 (3) 331-344.
    [9] Baldwin W. H., Higgins C. E., Organic thiophosphorous compound as ligands, U. S. Atomic Energy Commission Rep., 1962, 54~55
    [10] Fu X., Hu X. P., Zhang Z. H., et al., Three-phase extraction study I. Tri-butylphosphate-kerosene/H2SO4-H2O extraction system [J], Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 152, 335-343.
    [11] (a) Hu, Z. S., Hu, X. P., Cui W., et al., Three phase extraction study II. TBP-Kerosene/H2SO4- TiOSO4 system and the preparation of ultrafine powder of TiO2 [J], Colloids and Surfaces, 1999, 155: 383-393. (b)傅洵,朱海涛,蔺玉胜,林琳,胡正水,萃取沉淀法制备高表面ZrO2粉体[J],《稀有金属材料与工程》,2005,6,65-68. (c)白玉兰,孔德良,胡正水,傅洵,叶庆国,TBP-煤油/H2SO4-Ti(Ⅳ)萃取沉淀法制备纳米TiO2及其光催化活性[J].高校化学工程学报,2002,16(5):530-535. (d) Fu X., Lin L., Wang D. B., Hu Z. S., Song C. X., Preparation of CdS spheres using poly-(styrene-acrylic acid) latex particles as template[J], Colloids and Surfaces A, 2005, 262, 216-219. (e) Fu X., Yu L. L., Lin Y. S., Zhu H. T., Structure adjustment of mesoporous ZrO2 prepared with the middle phase formed in extraction systems [J], Solvent Extr. Ion Exch., 2004, 22 (5): 885-895.
    [12] Gu, G. H., Wu Y. S., Fu X., et al., Comparison between three-phase extraction system of TBP-Kerosene/HClO4-H2O and two-phase extraction system of TBP/HClO4-H2O [J], Solv. Extr, Ion Exch., 2000, 18 (5) 841-851.
    [13] Fu X., Hu Z. S., Wang D. B., Progress in the study of three-phase extraction system-the formation, microstructure and application of the third phase, Chem. J. Internet, 2000, 2 (3) 18-24.
    [14]傅洵,刘欢,薛美玲,等.三正辛胺-无机酸萃取体系的界面性质[J],化工冶金, 1999, 20 (1) 5-10.
    [15] Fu X., Liu H., Chen H., et al., Three-phase extraction study of TOA-alkane/HCl (Zn2+ or Fe3+) systems [J], Solv. Extr. Ion Exch., 1999, 17(5) 1281-1293.
    [16] Shi J. H., Gu G. H., Fu X., Extraction behavior of TOPO(orTRPO) -kerosene/Ti(IV)-H2SO4 systems and the preparation of TiO2 by predispersed–hydrolytic method, Colloids and Surfaces, 2001, 194(1-3), 207-212
    [17] Doyle F. M., Integrating solvent extraction with the processing of advanced ceramic materials [J], Hydrometallurgy, 1992, 29, 527-545
    [18] Demopoulos G. P., Pouskouleli G., Solvent extraction of iron from acid sulfate solution bu mono (2-ethylhexyl) phosphnic acid [J], Can. Metal. Q., 1989, 28 (1) 13-18
    [19] Song X Y., Sun S. X., Zhang W. L., Synthesis of Cu(OH)2 nanowires at aqueous organic interface, J. Phys. Chem. B, 2004, 108: 5200-5205
    [20] Yang C. F., Chen J. Y., Electron microscopy syudies on ultrafine zircona powers from solvent extraction with tributyl phosphate in kerosene [J], J. Mater. Sci. Technol., 1995, 11 (3) 217-221
    [21]张立德主编,超微粉体的制备与应用技术,中国石化出版社,2001
    [22] Cavicchi P. E., Silsbee R. H., Coulomb suppression of tunneling rate from small metal particles [J], Phys. Rev. Let., 1984, 52, 1453-1456.
    [23] Hu X. Z., Birringer R., Herr U., et al., X-ray difraction studies of the structure of nanometer sized crystalline materials [J], Phys. Rev. B., 1987, 35, 9085-9090.
    [24]杨柏,黄金满,郝恩才,沈家鳃,半导体纳米微粒在聚合物基体中的复合与组装[J],高等学校化学学报,1997, 7, 1219-12260
    [25] Ball P., Garwin L., Science in atmic Scale [J], Nature, 1992, 355, 761-766.
    [26] Brus L. E., Electronic wave functions in semiconductor clusters:experiment and Theory [J], J. Phys. Chem., 1986, 90, 2555-2560.
    [27] Natalia S. K., Andrey A. R., Frank Hergert, Andreas Magerl, Structural study of the initial growth of nanocrystalline CdS thin films in a chemical bath, Thin Solid Films, 2009, 517(8) 2586-2589
    [28] Hagfeidt A., Gratzel M., Light-induced redox reactions in nanocrystalline systems [J], Chem.Rev., 1995, 95, 49 -53.
    [29] Feldheim D. L., Keating C. D., Self-assembly of single electron transistors and related devices [J], Chem. Soc. Rev., 1998, 27 ( 1) 1-12
    [30] Awschalsom D. D., Mccord M. A., et al., Observation of macroscopic spin phenomena in nanometer-scale magnets [J], Phys. Rev. Lett., 1990, 65, 783-786.
    [31] Chen S., Liu W. M., Yu L. G., Preparation of DDP-coated PbS nano-particles and investigation of the antiwear ability of the prepared nano-particles as additive in liquid paraffin [J]. Wear, 1998; 218: 153~158
    [32] Anpo M., Shima T., Kodama S., et al., Photocatalytic hydrogenation of propyne with water on small-particle titania:size quantization effects and reaction intermediates [J], J. P hys. Chem., 1987, 16 ,4305-4310
    [33] Karch J., Bi rringer R., leiter H .G, Nanostructure ceramics [J], Nature, 1987, 330, 556-561.
    [34] Colvin V. L., Alivisatos A. P., et al., Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer [J], Nature, 1994, 370, 354-357
    [35] Tang S. C., Chen Y. K., et al., A simple chemical method of opening and filling carbon nanotubes [J], Nature, 1994, 372, 159-162.
    [36] (a) Burda C., Chen X., Narayanan R., Chemistry and prooerties of nanocrystals of different shapes, Chem. Rev., 2005, 105(4)1025-1102; (b) Xia Y., Yang P., Sun Y., One-dimensional nanostructures: synthesis, characterization, and applications, Adv. Mater., 2003, 15(5)353-389
    [37] Brun P. L., Gaffet E. F. L., et al., Structure and properties Cu, Ni and Fe powders milled in a planetaryball mill [J], Scripra. Metallurgicaet Mater., 1992, 26, 1742-1745.
    [38] Lu J. S., Bauermann L. P., Gerstel P., Synthesis and characterization of TiO2 nanopowders from peroxotitanium solutions, Materials Chemistry and Physics, 2009, 115(1) 142-146
    [39] Jiang Y., Meng X. M., Liu J., et al., Hydrogen-assisted thermal evaporation synthesis of ZnS nanoribbons on a large scale [J], Adv. Mater., 2003, 15, 323-327.
    [40] Wang X., Li Y. D., Selected-control hydrothermal synthesis of - and MnO2 single crystal nanowires [J], J. Am. Chem. Soc., 2002, 124, 2880-2881.
    [41] Yang Q., Tang K. B., Wang C. R., Qian Y. T., Zhang S. Y., PVA-assisted synthesis and characterization of CdSe and CdTe nanowires [J], J. Phys. Chem. B, 2002, 106, 9227-9230.
    [42] Dmitri B., et al., Ambient and high-temperature properties of titanium carbide- titanium boride composites fabricated by transient plastic phase processing [J], J.Am. Chem. Soc., 1999, 82 (3) 665-670
    [43] Zheng J., Lou Q. H., Dong J. X., et al., Synthesis of nanometer Nd glass particles by excimer laser ablation and research on its spectrum [J], Optics Communications, 1996, 132, 285-288.
    [44]郭永,巩雄,杨宏秀,纳米微粒制备方法与进展[J],化学通报,1996, 23, 1-4.
    [45] W. Chang, et al., Chemical vapor processing and applications for nanostructured ceramic powders and whiskers [J], Nanostructured Mater., 1994, 4, 507-520
    [46] Peng Z. A., Gang X. G., Mechanisms of the shape evolution of CdSe nanocry stals [J], J. Am. Chem. Soc., 2001, 123, 1389-1395.
    [47] Malikova N., Santos I. P., et al., Layer-by-layer assembled mixed spherical and planar gold nanoparticles: control of interparticle interactions [J], Langmuir, 2002, 18, 3694-3697
    [48] Yang X. F., He Q. Z., He X. G., et al., Characterization of lanthanum salicylate complex nanoparticles in situ synthesized in silica matrix [J], Mater. Lett., 2004, 58, 757-761.
    [49] Mdleleni M. M., Hyeon T., Sonochemical synthese of nanostructured molybdenum sulfide [J], J. Am. Chem. Soc., 1998, 120, 6189-6190
    [50] Mastai Y., Polsky R., Koltypin Y., Pulsed sono-electrochemical synthesis of cadmium selenide nanoparticles [J], J. Am. Chem. Soc.,1999, 121, 10047-10052
    [51] Yang J., Yu S. H., Yang X. L., Solvothermal-reduction pathway to nanocrystalline MTe (M=Zn, Pb) [J], Chem. Letters, 1999, 839~840
    [52] Xu J. F., Ji W., Shen Z. X., Preparation and characterization of CuO nanocrystals [J], J. Solid State Chem., 1999, 147(2) 516~519
    [53] Morales A. M., Lieber C. M., A Laserablation method for the synthesis of crystalline semiconductor nanowire [J], Science, 1998, 279(5348) 208~211
    [54] Zhang B. P., Wang W. X., Yasuda T., Self-assembled of Very LongⅡ-ⅥSemiconductor Quantum Wires [J], Materi, Sci, Engineering B, 1998, 51(1-3) 224~228
    [55] Trentler T. J., Hickman K. M., Goel S. C., Solution-liquid-solid growth of crystalline III-V semiconductors: an anology to vapor-liquid-solid growth [J], Science, 1995, 270, 1791-1795
    [56]施尔畏,夏长泰,王步国,水热法的应用与发展[J],无机材料学报,1996,11(2) 193-196.
    [57] Qian Y. T., Handbook of nanostructured materials and nanotechnology, Edited by Nalwa H. S., 424, vo1umel, Synthesis and Processing A, 424-437
    [58] Sun Y. G., Yin Y. D., Mayers B., et al., Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(Vinyl pyrrolidone [J], Chem. Mater., 2002, 14, 4736-4745.
    [59] J. Moon, T. Li, C. A. Randall, Adair J. H., Low temperature synthesis of lead titanate by ahydrothermal method [J], J. Mater.R es., 1997,12 (l), 189-197.
    [60] Li Y. D., Li X. L., He R. R., et al., Artificial lamellar mesostructures to WS2 nanotubes [J], J. Am. Chem. Soc., 2002, 124, 1411-1416.
    [61] Doeuf S. B., Sanchez C., Synthesis and characterization of titanium oxide-based Gelssynthesized from acetate modified titanium butoxide [J], Mater. Res. Bull., 2004, 29, 1-13
    [62] Li. Y., Qian. Y. T., Liao H. W., et al., A reductio pyrolysis catalysis synthesis of diamond [J], Science, 1998, 281, 246-247
    [63] Zhong Q. H., Liu C. H., Studies of Electronic Raman scattering in CdS/HgS cylindrical quantum dot quantum well structures, Thin Solid Films, 2008,516(10) 3405-3410
    [64] Bai Y., Shang W. L., Dang D. B., Synthesis, crystal structure and luminescent properties of a thiocyanato bridged two-dimensional heteronuclear polymeric complex of cadmium(II) and copper(II), Inorganic Chemistry Communications, 2008, 11(12) 1470-1473
    [65] Jiao X. L., et al., Solvothermal synthesis and charac-terization of silica-pillared titanium phosphate CA [J], J. Mater. Chem., 1998, 8:2831-2834
    [66] Mahlangu T., Gudyanga F. P., Simbi D. J., Reductive leaching of stibnite (Sb2S3) flotation concentrate using metallic iron in a hydrochloric acid medium I: Thermodynamics, Hydrometallurgy, 2006, 84 (3-4)192-203
    [67]Prasad M., Moulik S. P., Palepu R., Self-aggregation of binary mixtures of alkyltriphenylphosphonium bromides: a critical assessment in favor of more than one kind of micelle formation, Journal of Colloid and Interface Science, 2005, 284 (2) 658-666
    [68]张志颖,王传义,刘春艳,不同表面活性剂反胶束对AgCl纳米性能的影响[J],高等学校化学学报,1999 (3) 454~457
    [69] Song K. G., Jong H. H., Preparetion of nanosize tin oxide particles from water-in-oil microemulsions [J], J. Coll. Inter. Sci., 1999, 212, 193~196
    [70] Kazuhiko K. Kijirokon A., Formation of ionic water/oil microemulsion and their application in the preparation of CaCO3 particles [J], J. Coll. Inter. Sci., 1987, 122, 78~80
    [71] Qiu S. Q., Dong J. X., Preparation of Cu nanoparticles from water-in-Oil microemulsions [J], J. Coll. Inter. Sci., 1999, 216, 230~234
    [72]李雪梅,邵华,印志磊,萃取体系中的分子有序现象及其对萃取的影响,化学通报,2001,9, 559-563
    [73]吴瑾光主编,《近代傅里叶变换红外光谱技术及应用(上卷、下卷)》,科学技术文献出版社,994
    [74] Choi S. U. S., Enhancing thermal conductivity of fluid with nanoparticles [A]. In Siginer D. A., Wang H. P., eds. Developments and Applications of Non-Newton Flows. ASME FED-231[C]. New York, 1995, 99-105.
    [75]李化建,超细粉体在液体中的分散,硅铝化合物,2005,4,14-19
    [76] Choi S. U. S., Zhang Z. G., Yu W., et al., Grulke E. A. Anomalous thermal conductivity enhancement in nanotube suspensions [J], Appl. Phys. Lett., 2001, 79(14) 2252-2254
    [77] Lee S., Choi U. S. S., Li S., Eastman J.A., Measuring thermal conductitity of fluids containing oxide nanoparticles [J], ASME J. Heat Transfer, 1999, 12, 280-289
    [78] Xie H., Wang J., Xi T., et al., Thermal conductivity enhancement of suspension containing nanosized alumina particles [J], J. Appl. Phys., 2002, 91(7) 4568-4572
    [79]谢华清,王锦昌,奚同庚,SiC纳米粉体悬浮液导热系数研究[J],硅酸盐学报,2001,29,361-364
    [80] Xuan Y., Li Q., Hu W. F., Aggregation structure and thermal conductivity of nanofluids [J], AIChE J., 2003, 49(4) 1038-1043.
    [81] Choi S. U. S., Eastman J. A., Enhanced heat transfer using nanofluids, United Stated Patent, 6221275, 2001, 4, 24
    [82]朱海涛,纳米流体的制备、稳定及导热性能研究山东大学,2005年度山东大学博士论文
    [83] Rangrong Yoksan, Suwabun Chirachanchai, Silver nanoparticles dispersing in chitosan solution: Preparation byγ-ray irradiation and their antimicrobial activities, Materials Chemistry and Physics, 2009, 115(1) 296-302
    [84]刘仁德,梁敬辉,陶德华,表面修饰纳米铜粒子的制备及其摩擦学性能,润滑与密封,2007,32(3)161-164
    [85]黄徽,黄瑛,憎水性金属纳米粒子及其LB膜的制备与光谱表征[J],光谱学与光谱分析,2000,20(3)449-451
    [86]陈爽,刘维民,亲油性ZnS纳米微粒的合成[J],高等学校化学学报,2000,21(3) 472-474
    [87]陈爽,刘维民,DDP表面修饰PbS纳米微粒的合成及结构表征[J],化学物理学报,1999,12(1)103-106
    [88]陈爽,李楠,油酸修饰PbS纳米粒子的摩擦学性能剖析[J],润滑与密封,2003,2,23-24
    [89] Zhang C., Tao F., Liu G. Q. , Yao Li. Z. , Hydrothermal synthesis of oriented MnS nanorods on anodized aluminum oxide template, Materials Letters, 2008, 62(2)246-248
    [90] Ken'ichi Kimijima, Tadao Sugimoto,Growth Mechanism of AgCl Nanoparticles in a Reverse Micelle System, J. Phys. Chem. B,2004, 108 (12), 3735–3738
    [91]王九,润滑油中CuS纳米粒子的摩擦学性能研究[J],润滑与密封,2001(2) 42-43。
    [92]陶小军,吴志申,周静芳等,表面修饰Ag2S纳米微粒的热稳定性能及摩擦学行为研究[J],润滑与密封,2002(5)17-21
    [93]孙磊,周静芳,张治军等,DDP修饰Ag纳米微粒的制备及结构表征[J],河南大学学报(自然科学版),2002,30(3),24-27
    [94] Yu L. H., Zangmeister C. D., Kushmerick J. G.,Structural Contributions to Charge Transport across Ni-Octanedithiol Multilayer Junctions, Nano. Lett., 2006, 6 (11), 2515–2519
    [95]阎玺庆,吴志申,周静芳等,油溶性金属Ni纳米微粒的制备与表征[J],无机化学学报,2002,18(2)193-196
    [96] Brust M., Fink J., Schiffrin D. J., Synthesis and reaction of functionalised gold nanoparticles [J], Chem. Commun., 1995, 8:1655-1656
    [97] Song X. Y., Sun S. X., Zhang W. L., A method for the synthesis of spherical copper nano-particles in the organic phase [J], J. Coll. Inter. Sci., 2004, 273: 463-468
    [98] Vorobyova S. A., Lesnikovich A. I., Sobal N. S., Preparation of silver nanoparticles by interpahse reduction [J], Colloids and Surfaces A, 1999, 152, 375-379
    [99] Fu X., Yu W., Lin Y. S., Wang D. B., Preparation of concentrated stable fluids containing silver nano-particles in non-polar organic solvent [J], J. Disp. Sci. Tech.,2005, 26, 575-580
    [100]于伟,贺金红,纳米银有机流体的制备,应用化工[J],2004,33(4)28-29,43
    [101]张绍玲,石华强,傅洵,胡正水,含萃取剂修饰的纳米Bi2S3有机流体的制备与表征[J],稀有金属材料与工程,2005,6,192-195
    [102] Shi H. Q., Fu X., Zhou X. D., Hu Z. S.,Preparation of organic fluid containing Ag nanoparticles with extractant Cyanex 301 [J], J. Disp. Sci. Tech., 2005, 26, 315-318
    [103]石华强,张绍玲,蔺玉胜,傅洵,胡正水,含萃取剂修饰的纳米硫化铅有机流体的制备与表征[J],稀有金属材料与工程,2005,6,188-191
    [104]石华强,傅洵,胡正水,金雪玲,Cyanex 301修饰Ag2S纳米粒子的制备及表征[J],青岛科技大学学报, 2006, 27(1) 5-8.
    [105]戴雄杰编著,摩擦学基础,上海科学技术出版社,1984.
    [106] Jost H. P., Lubrication (tribology) education and research-A report on the present position an industry’s needs, London: Her Majesty’s Stationery Office, 1966.
    [107]金锡志编著,机器磨损及其对策,北京机械工业出版社,1997.
    [108]董浚修编著,润滑原理及润滑油,北京中国石化出版社,1992.
    [109] D.泰伯编著,固体的摩擦于润滑[M],北京机械工业出版社,1982.
    [110]董浚修编著,润滑原理及润滑油[M],北京中国石化出版社,1998
    [111]温诗铸,纳米摩擦学(Nanotribology)研究现状和展望[J],仪器仪表学报,1995,16(1)32-37.
    [112]薛群基,徐康,纳米化学[J],化学进展,2000,12(4)431-444.
    [113]夏延秋,金寿日,孙维明,纳米级金属粉对润滑油摩擦磨损性能的影响[J],润滑与密封,1999,(3)33-34.
    [114] Xu T., Zhao J. Z., Xu K., et al., Study on tribological properties of ultra-dispersed diamond containing soot as an oil additive [J], STLE Tribology Transaction, 1997, 40(3) 178-189.
    [115] Dong J. X., Hu Z. S., A study of the anti-wear and friction-reducing properties of the lubricant additive, nanometer zinc borate [J], Tribology International, 1998, 31(5): 219-223.
    [116] Hu Z. S., Dong, J. X., Study on anti-wear an reducing friction additive of nanometer of titanium oxide [J], Wear, 1998, 216, 87-91.
    [117]胡泽善,欧忠文,陈国需,董浚修,油溶性烷氧基硼酸钠的制备及其抗磨减摩性能研究[J],摩擦学学报,2001,20(4)279-282.
    [118] Hu Z. S., Dong J. X., Chen G. X., et al., Preparation and tribological properties of nanopartical lanthanum borate [J], Wear, 2000, 243, 43-47.
    [119]周静芳,张治军,王晓波,等.油溶性铜纳米微粒作为液体石蜡添加剂的摩擦学性能研究[J],摩擦学学报,2000,20(2)123-126.
    [120] Xue, Q. J., Liu W. M., Zhang, Z. J., Friction and wear properties of a surface-modified TiO2 nanoparticle as an additive in liquid paraffin [J], Wear, 1997, 213, 29-32.
    [121] Eastman J. A., Choi S. U. S., Li S., Yu W., Thompson L. J., Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles [J], Appl. Phys. Lett., 2001, 78(6) 718-720
    [122] Choi S.U.S, Zhang Z.G, Yu W., Lockwood F., Grulke E. A., Anomalous thermal conductivity enhancement in nanotube suspensions Appl. Phys. Lett., 2001, 79(14)2252-2254
    [123] Lee S., Choi U. S., Application of metallic nanoparticle suspensions in advanced cooling systems [J], ASME, J. Heat Transfer, 1996, 342, 27-234
    [124] Masuda H., Ebata A., Teramae K., Hishinuma N., Alternation of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion ofγ-Al2O3, SiO2 and TiO2 ultra-fine particles), Netsu Bussei (Japan), 1993, 4(4)227-233
    [125] Zhou L..P., Wang B. X., Experimental research on the thermophysical properties of nanoparticle suspension using the quasi-steady method Annu [J], Proc. Chin. Eng. Thermophys. 2002,889-92
    [126] Wen D. S, Ding Y. L., Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions [J], Int. J. Heat Mass Trans, 2004,47, 5181-88
    [127]谢华清,吴清仁,王锦昌,氧化铝纳米粉体悬浮液强化传热研究[J],硅酸盐学报,2002,30(3)272-276
    [128] Zak A., Feldman Y., Lyakhovitskaya V., et al., Alkali metal intercalated fullerene Like MS2 (M = W, Mo) nanoparticles and their properties [J], J. Am. Chem. Soc., 2002, 124 (17) 4747-4758
    [129] Asudevan P. T., Fierro J. L. G., A review of hydrodesulfurization catalysis [J], Catal. Rev., 1996, 38, 161-188.
    [130] Chusid O., Gofer Y., Gizbar H., et al., Solid-state rechargeable magnesium batteries [J], Adv. Mater., 2003, 1, 627-630
    [123]邓建新,钮平章,王景海,等,―软‖涂层刀具的发展与应用[J],工具技术,2005, 39(3)10-12
    [131] Rastog R. B., Yadav M., Suspension of molybenum-sulphur complexes in paraffin oil as extreme pressure lubricants [J], Tribology Intemational, 2003, 36, 511-516
    [132]张泽抚,刘维民,薛群基,等,钼化合物润滑材料的摩擦学应用与应用研究发展状[J],摩擦学学报, 1998, 18(4) 377-382
    [133] Chhowalla M., Amaratunga G. A. J., Thin films of fullerence-like MoS2 nanoparticles with ultra-low friction and wear [J], Nature, 2000, 407, 164-167.
    [134]吕晋军,梁宏勋,薛群基,Y-TZP/MoS2自润滑材料的摩擦学性能研究[J],摩擦学学报,2003,23(6)490-494.
    [135]张治军,马同森,张天莉,表面修饰MoS2纳米微粒的XPS研究[J],河南大学学报(自然科学版),1995,25(4)41-45.
    [136]张文钲,面向21世纪的钼润滑技术[J],中国钼业,1998,22(5)10-13.
    [137] Gooding J. J., Nanoscale biosensors [J], Significant Advantages over Larger Devices, 2006, 2, 313-315
    [138] Wang Y., Caruso. F., Mesoporous silica spheres as supports for enzyme immobilization and encapsulation [J], Chem. Mater., 2005, 17, 953-961
    [139] Xiao Y., Patolsky F., Katz E., Hainfeld J. F., Willner I., Plugging into enzymes‖:nanowiring of redox enzymes by a gold nanoparticle [J], Science, 2003, 299, 1877-1881.
    [140] Singh R., Pantarotto D., McCarthy D., Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors [J], J. Am. Chem. Soc., 2005, 127, 4388-4396.
    [141] Grancharov S. G.., Zeng H., Sun S., Bio-functionalization of monodisperse magnetic nanoparticles and their use as biomolecular labels in a magnetic tunnel junction based sensor [J], J. Phys. Chem. B., 2005, 109, 13030-13035
    [142] Taton T. A., Mirkin C. A., Letsinger R. L., Scanometric DNA array detection with nanoparticle probes [J], Science, 2000, 289, 1757-1760.
    [143] Ozsoz M., Erdem A., Kerman K., et al . Electrochemical genosensor based on colloidal Gold nanoparticles for the detection of factor V leiden mutaltion using disposable pencil graphite electrodes [J], Anal. Chem., 2003, 75(9) 2181 - 2187
    [144] Authier L., Grossiord C., Berssier P., et al . Gold nanoparticle–based quantitative electrochemical detection of amplified human cytomegalovirus DNA using disposable microband electrodes [J], Anal. Chem., 2001, 73(18) 4450 - 4456
    [145] Wang J., Rincon O., Polsky R., et al., Electrochemical detection of DNA hybridization based on DNA-templated assembly of silver cluster [J], Electrochem. Commun., 2003, 5(1) 83 - 86
    [146] Cai H., Wang Y. Q., Fang Y. Z., et al., Electrochemical detection of DNA hybridizationbased on silver-enhanced gold nanoparticle label [J], Anal. Chim. Acta., 2002, 469 (2) 165– 172
    [147] Wang J., Liu G. D., Merko A., Particle-based detection of DNA hybridization using electrochemical stripping measurements [J], Anal. Chim. Acta., 2003, 482, 149 - 155
    [148] Cai H., Zhu N. N., Fang Y. Z., Cu@Au alloy nanoparticle as oligonucleotides labels for electrochemical stripping detection of DNA hybridization [J], Biosens. Bioelectron, 2003, 18(11) 1311– 1319
    [149] Cheng G. F., Zhao J., Tu Y. H., He P. G., A sensitive DNA electrochemical biosensor based on magnetite with a glassy carbon electrode modified by muti - walled carbon nanotubes in polypyrrole [J], Anal. Chim. Acta., 2005, 533 (1) 11-16
    [150]李静,秦晓民,丁焕平,磁性纳米微粒分离中药蛋白质的实验研究[J] .生物磁学,2005,5(2) 1-4
    [151]王明华,磁性纳米材料[J],生物磁学,2002, 2(2) 12
    [152] Wang J., Liu G. D., Jan M. R., Electrochemical detection of DNA hybridization based on carbon-nanotubes loaded with CdS tags [J], Electrochem. Commun., 2003, 5(12) 1000-1004
    [153]李永肪,导电聚合物[J],化学进展,2002, 14 (3) 207-211
    [154]万梅香,导电高分子[J],高分子通报, 1999, (3) 47-53
    [155]景遐斌,王献红,耿延候,导电高分子研究二十年-成功与希望,高分子科学的近代论题[M],复旦大学出版社,1995
    [156]刘家和著,纳米聚苯胺的合成与性能研究[M],重庆大学,2004,4~5
    [157] Macdiarmid A. G., Chiang J. C., Richter A. F., Polyaniline: A new concept in conducting polymers [J], Synthetic Metals, 1987, 18, 285-290
    [158] Chen Y. J., Kang E. T., Neoh K. G., et al., Intrinsic redox states of polyaniline studied by high-resolution X-ray photoelectron spectroscopy [J], Colloid and Polymer Sci., 2001, 279, 73-76
    [159]王利祥,王佛松,导电聚合-聚苯胺的研究进展:电子现象、导电机理、性质和应用[J],应用化学,1990,7(6) 1-8.
    [160] Javadi H. S., laversanne R., A. Epstein J., et al., Conduction mechanism of polyaniline:effect of moisture [J], Synth. Met., 1998, 29, 439-445.
    [161]钟起铃,昊文,李五湖,电催化甲酸氧化中把微粒与聚苯胺的相互作用[J],物理化学学报,1994, 10 (9) 813-817
    [162]吴伯荣,田艳红,马志亲,乙炔黑吸附聚合法制取聚苯胺的研究[J],高分子材料科学与工程,,1 996,12(4) 41-44
    [163] Ago H., Petritsh K., Shafer S. P., Composites of carbon nanotubes and conjugated polymers for pH otovoltaicdevices [J], Adv. Mater., 1999, 11 (15) 1281-1284
    [164]黄大庆,丁鹤雁,刘俊能,碳纳米誉导电聚苯胺纳米复合纤维的合成与表征[J],功能材料, 2003, 34( 2) 164-166
    [165]刘平桂,龚克成,聚苯胺嵌入氧化石墨复合物的合成及表征[J],高分子学报,2000, (4) 492-495
    [166]吴秋菊,薛志坚,漆宗能.具有伸展链构象聚苯胺/蒙脱土混杂纳米复合物的合成与表征[J],高分子学报,1999,5,551-556
    [167]蒋殿录,翁永良,童汝亭,聚苯胺/膨润土纳米复合材料的合成与表征[J],物理化学学报,1999,15(1) 69-72
    [168]范颖,刘丽敏,李长江,胶体分散的聚苯胺-氧化钇纳米复合物的合成和表征,高分子材料科学与工程[J],2005,21,70-72,
    [169] Zhang X. Q., Yan G. L., Ding H. M., Shan Y. K., Fabrication and photovoltaic properties of self-assembled sulfonated polyaniline/TiO2 nanocomposite ultrathin films [J], Mater. Chem. Phys., 2007, 102, 249-254
    [170] Wan M. X., Li W. G., A composite of polyanifne with both conducting and ferromagnetic functions [J], Appl. Polym. Sci., 1997, 35(11) 2129-2136
    [171] Wan M. X.,Li J., Glectrical and ferromagnetic behavior of polyaniline composites [J], Synth. Metals., 1999,101(1-3):844-845
    [172] Wan M. X., Zhou W. X., Li J. C., Composite of polyaniline containing iron oxides with nanometersize [J], Synth. Metals., 1996,78,2731-2735
    [173] Tang B. Z., Geng Y. H., Processible nanostructured materials with electrical conductivity and magnetic susceptibility: preparation and properties of maghemite -polyaniline nanocomposite films [J], Chem. Metals., 1999 (11) 1851-1589
    [174] Li W. J., Shi E. W., Ko J. M., Chen Z. Z., Ogino H., Hydrothermal synthesis of MoS2 nanowires [J], J. Crystal Growth, 2003, 250 (3-4) 418-422.
    [175] Peng Y. Y., Meng Z. Y., Zhong C., Lu J., Hydrothermal synthesis of MoS2 and its pressure-related crystallization [J], J. Solid State Chem., 2001, 159 (1) 170-173.
    [176] Devers E., Afanasiev P., Jouguet B., Vrinat M., Hydrothermal syntheses and catalytic properties of dispersed molybdenum sulfides [J], Catalysis Letters, 2002, 82 (1-2) 13-17.
    [177] Chen J., Li S. L., Xu Q., Tanaka K. J., Synthesis of open-ended MoS2 nanotubes and the application as the catalyst of methanation [J], Chem. Commun,, 2002, 1722-1723.
    [178] Zhang Z J., Zhang J., Xue Q. J., Synthesis and characterization of a molybdenum disulfide nanocluster [J], J. Phys. Chem., 1994, 98, 12973-12977.
    [179]曹义鸣,中盐文行,用二烷基膦酸Cyanex 272萃取钼的萃取平衡研究,膜科学与技术,1989,4:8-12
    [180] Li X. L., Li Y. D., MoS2 nanostructures: synthesis and electrochemical Mg2+ intercalation [J],J. Phys. Chem. B., 2004, 108, 13893-13900
    [181]傅洵,胡正水,石华强,等.萃取溶剂热法制取二硫化钼减摩材料的方法[P].发明专利申请号: 200510104306.2
    [182] Wu D. M., Zhou X. D., Fu X., Shi H. Q., Wang D. B., Synthesis and characterization of molybdenum disulfide micro-sized spheres [J], J. Mater. Sci., 2006, 41(17) 5682-5686
    [183]史佩京,徐滨士,马世宁,等.油溶性有机钼添加剂的摩擦学性能及其摩擦化学作用机制[J].摩擦学学报, 2004, 24(2)128-133
    [184] Cizaire L., Vacher B., Le Mogne T., et al. Mechanisms of ultra-low friction by hollow inorganic fullerene-like MoS2 nanoparticles [J], Surf. Coat. Tech., 2002, 160, 282-287.
    [185]周静芳,油溶性纳米微粒的制备及作为润滑油添加剂的摩擦学特性研究,中科院兰州化学物理研究所博士学位论文,2000,11
    [186] Liu W. M., Gong G. Y., He W. R., A study of the tribological behaviour and action mechanism of thiophosphates in rape seed oil [J], J. Synthetic Lubrication, 2004, 21, 67-78.
    [187] Afanasiev P., Xia G. F., Berhault G., Surfactant-assisted synthesis of highly dispersed molybdenum sulfide [J], Chem. Mater., 1999, 11 (11) 3216~3219
    [188] Wang H. W., Skeldon P., Thompson G. E., Thermogravimetric–differential thermal analysis of the solid-state decomposition of ammonium tetrathiomolybdate during heating in argon [J], J. Mater. Sci., 1998, 33 (12) 3079~3083
    [189] Ponomarev E. A., Neumann-Spallart M., Hodes G., Electrochemical deposition of MoS2 thin films by reduction of tetrathiomolybdate [J], Thin Solid Films, 1996, 280 (1 - 2) 86~89
    [190] Ray S. C., Karanjai M. K., DasGupta D., Tin dioxide based transparent semiconducting films deposited by the dip-coating technique [J], Surf. Coatings Tech., 1998, 102 (1 - 2) 73~80.
    [191] Muijsers J. C., Weber T., Vanhardeveld R. M., Zandbergen H. W., Sulfidation study of molybdenum oxide using MoO3/SiO2/Si(100) model catalysts and Mo-IV3-Sulfur Cluster Compounds [J], J. Catalysis, 1995, 157 (2) 698-705.
    [192] Michael E. G.., David A. C., Philip M., A new and versatile diamide–diamine donor ligand set in early transition metal chemistry [J], Chem. Commun., 2000, 13, 1167-1168.
    [193] Huang J., Xie Y., Li B., Liu Y., Qian Y., In-situ source-template-interface reaction route to semiconductor CdS submicrometer hollow spheres [J], Advanced Materials, 2003, 12 (11) 808-811.
    [194] Xue Q. J., Liu W. M., Zhang Z. J., Friction and wear properties of a surface-modified TiO2 nanoparticle as an additive in liquid paraffin [J], Wear, 1997, 213, 29-32.
    [195]于伟,傅洵,含纳米银有机流体的制备及其摩擦学性能研究[J],摩擦学学报,2004, 24(5)425-428
    [196] Zhou X. D., Fu X., Shi H. Q., et al. Lubricating properties of Cyanex 302-modified MoS2micro-spheres in Base Oil 500 SN [J], Lubrication Science, 2007, 19(1) 71-79.
    [197]石华强,萃取法制备有机纳米流体及萃取溶剂热合成纳米材料,青岛科技大学硕士研究生学位论文,2005
    [198] Liu W. M., Chen S., Study on the tribological behaviour of the surface-modified ZnS nanoparticles in liquid paraffin [J], Wear, 2000, 238, 120-124.
    [199] http://srdata.nist.gov/xps/
    [200] Liu W. M., Gong G. Y., He W. R., A study of the tribological behaviour and action mechanism of thiophosphates in rape seed oil [J], J. Synth. Lubr. 2004, 93(21) 67–78.
    [201] John F. M., William F. S., Handbook of X-ray photoelectroscopy, Physical Electronics, Inc.,
    [202] Chen S., Liu W. M., Characterization and antiwear ability of non-coated ZnS nanoparticles and DDP-coated ZnS nanoparticles [J], Mater. Res. Bull., 2001, 36 (1-2) 137-143.
    [203] Liu W. M., Chen S., An investigation of the tribological behaviour of surface-modified ZnS nanoparticles in liquid paraffin [J], Wear, 2000, 238 (2) 120-124.
    [204] Hirai H, Toshima N., In Iwasawa Y., Catalysis by Metal Comolexes, "Tailored Metal Catalysts" [M]. Dordrecht: D Reidel Publishing Company, 1986
    [205]毋伟陈,建峰卢,寿慈,超细粉体表面修饰[A],北京化学工业出版社,2004
    [206]邹勇,刘吉平,Ag/CNTs催化剂的载银量分析[J],贵州化工,2004,29(4) 35~38
    [207] Zhang Z. T., Zhao B., Hu L. M., PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes [J], J. Solid State Chem., 1996, 121, 105–110
    [208] Wang D. B., Song C. X., Hu Z, S., Zhou X. D., Synthesis of silver nanoparticles with flake-like shapes, Materials Lettere, 2005, 59, 1760-1763
    [209]夏延秋,刘维民,薛群基,几种有机胺化合物在液体石蜡中对钢-钢和钢-铝合金体系摩擦磨损行为的影响,摩擦学学报,2002,1,40-45.
    [210] Zhou L. P., Wang F X., Experimental research on the thermophysieal properties of nanoparticles spension using the quasisteady method [J], Annu. Proc. Chin. Eng. Thermophys, 2002, 889, 92.
    [211] Xie H., Lee H., Youn W., Nanofluids containing multiwalled carbon nanotubes and the ir enhanced the rmalconductivities [J], Appl. Lett., 2003,95, 4967-71
    [212] Choi S. U. S., Eastman1A., Enhanced heat transfer using nanofluids, United Stated Patent, 62212752001, 4, 24.
    [213] Xuan Y, Li Q. Heat transfer enhancement of nanofuids [J], Inter. J. Heat Fluid Flow 2000, 21:58-64
    [214] Zhu H., Lin Y. S., Yin Y. S., A novel one-step chemical method for preparation of copper nanofluids [J], J. Coll. Inter. Sci., 2004, 277 (1) 100-103
    [215] Liu K, Choi S .U. S., Kasza K. E., Measurements of pressured rop and heat transfer in turbulent pipe flows of particulates lurries, Argonne National Laboratory Report,1988 ANL-88-15.
    [216] Masa da H., Ebata A., Teramae K., Hishinuma N., Alternation of thermal conductivity and viscosity of liquid dispersing ultra-fine particles, Netsu Bussei, Japan, 1993, 4 (4 ), 227-233.
    [217] Yu W., Choi S. U. S., The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model [J], J. Nanopart. Res., 2003, 5, 167-171
    [218] Kumar D. H., Patel H. E., Kumar V. R. R., Model for heat conduction in nanofluids [J], Phys. Rev. Lett., 2004, 93(14) 144301-144304
    [219] Zarbin A. J. G., De Paoli M. A., Atves O. L., Nanocomposites glass/conductive polymers [J], Synth. Met., 1999, 99, 227
    [220] Yu L. L., Gu G. H., Yang J. Y., Zhu H. Y., Preparation of mesoporous ZrO2 with the middle phase formed in a trioctyl (or alkyl) phosphinic oxide-kerosene/HCl-kerosene extraction system [J], J. of Colloid and Interface Science, 2003, 265(1), 101-105
    [221] Kim Y. S.,Jung H. S.,Matsuura T., Electrochemical detection of 17β-estradiol using DNA aptamer immobilized gold electrode chip, Biosens. Bioelectron., 2007, 22, 2525-2531.
    [222] Peng H.,Soeller C.,Travas, J. S.,Novel conducting polymers for DNA sensing, Macromolecules, 2007, 40, 909-914.
    [223] Sheng Y. J., Shuang X. X., Synthesis and characterization of Ag-polyaniline core–shell nanocomposites based on silver nanoparticles colloid [J], Materals letters, 2007, 61, 2794-2797
    [224] Genies E. M., Lapkowski M., Polyaniline films: Electrochemical redox mechanisms [J], Synthetic Metals, 1988, 24, 61-68
    [225] (a) Zhang, W.; Yang, T.; Jiang, C.; DNA hybridization and phosphinothricin acetyltransferase gene sequence detection based on zirconia/nanogold film modified electrode, Appl. Surf. Sci., 2008, 254(15): 4750-4756; (b) Yang, J., Jiao, K.; Yang, T., A DNA electrochemical sensor prepared by electrodepositing zirconia on composite films of single-walled carbon nanotubes and poly(2,6-pyridinedicarboxylic acid), and its application to detection of the PAT gene fragment, Anal. Bioanal. Chem., 2007, 389(3): 913-921.
    [226] Ye X. Y., Zhuang W. D., Fang Y., Hu Y. S., A facile two-phase approach to nearly monodisperse ZnS nanocrystals, Materials Chemistry and Physics, 2008, 112(3) 730-733
    [227] Qian Y. T., Su Y., Xie Y., et.al, Hydrothermal preparation and characterization of nancrystalline powder of sphalerite [J], Mater. Res. Bulletin, 1995, 30(5) 601-605
    [228] Huang F., Zhang H. Z., Banfield J. F., The role of oriented attachment crystal growth in hydrothermal coarsening of nanocrystalline ZnS [J], J Phy. Chem. B, 2003, 107 (38) 10470-10475.
    [229]李兰英,郭峰,古国华,等,水热法制备均分散的硫化锌纳米晶聚集体,青岛科技大学学报[J],2005,25 (6) 211-214
    [230] Fu X., Chen L., Wang J., Lin Y. S., Shi H. Q., Synthesis of CdS nanocrystals templating against liquid crystal formed by acidic extractants [J], Colloids and Surfaces A, 2004, 233, 189-192
    [231] Sarkar, S.G., Dhadke, P. M., Solvent extraction separation of antimony (III) and bismuth(III) with bis(2,4,4-trimethylpentyl) monothiophosphinic acid (Cyanex 302) [J], Separation Purification Technology, 1999, 15 (2) 131-138.
    [232] Kathryn, C. S., J. Brent H., Solvent extraction of copper by Cyanex 272, Cyanex 302 and Cyanex 301 [J], Hydrometallurgy, 1995, 37(2) 129-147.
    [233] Almela, A., Elizalde, M. P., Solvent extraction of cadmium (II) from acidic media by Cyanex 302 [J], Hydrometallurgy, 1995, 37(1) 47-57.
    [234] Sastre, A. M., Cahner, S., Alguacil F. J., Extraction of molybdenum (VI) from sulfate solutions by LIX 622 [J], J. Chem. Tech. Biotechnology, 2000, 75 (1) 54-58.
    [235] Wormuth, K., Superparamagnetic latex via inverse emulsion polymerization [J], J. Coll. Inter. Sci., 2001,241,( 2) 366-377.
    [236] Ivan Baldychev, John M. V., The effect of thermodynamic properties of zirconia-supported Fe3O4 on water-gas shift activity, Applied Catalysis A: General, 2009, 356 (2) 225-230
    [237] Hiroyuki I., Sugimoto T., Systematic control of size, shape, structure, and magnetic properties of uniform magnetite and maghemite particles [J], J. Coll. Inter. Sci., 2003, 265 (2) 283-295.
    [238] Volume 63, Issue 2, 31 January Xiaoqi Fu, Fengli Bei, Xin Wang, Xujie Yang, Lude Lu, Two-dimensional monolayers of single-crystalline -Fe2O3 nanospheres: Preparation, characterization and SERS effect, Materials Letters, 2009, 63(2)185-187
    [239] Bourlinos, A. B., Simopoulos, A., Petridis, D., Synthesis of capped ultrafine -Fe2O3 particles from Iron (III) hydroxide caprylate: A novel starting material for readily attainable organosols [J], Chem. Mater., 2002, 14(2) 899-903.
    [240] Deacon G. B., Phillips R., Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination [J], Coordination Chem. Reviews, 1980, 33 (3)227-250.
    [241] Vuthichai Ervithayasuporn, Yusuke Kawakami, Synthesis and characterization of core–shell type Fe3O4 nanoparticles in poly(organosilsesquioxane), Journal of Colloid and Interface Science, 2009, 332(2)389-393
    [242] Hu S.Y., Lee Y. C., Shen J. L., Chen K. W., Tiong K. K., Huang Y. S., Temperature dependence of absorption edge anisotropy in 2H- MoSe2 layered semiconductors, Solid State Communications, 2006, 139(4)176-180
    [243] Kubart T., Polcar T., Kopecky L., Novák R., Temperature dependence of tribological properties of MoS2 and MoSe2 coatings, Surface and Coatings Technology, 2005,193(1-3)230-233
    [244] Hu S. Y., Liang C. H., Tiong K. K., Lee Y. C., Huang Y. S., Preparation and characterization of large niobium-doped MoSe2 single crystals, Journal of Crystal Growth, 2005, 285(3) 408-414
    [245] Kristl M., Drofenik M., Synthesis of nanocrystalline MoSe2 by sonochemical reaction of Se with Mo(CO)6 [J], Inorg. Chem. Commun., 2003, 6, 68-70
    [246] Zhan J. H., Zhang Z. D., Qian X. F., Synthesis of MoSe2 nanocrystallites by a solvothermal conversion from MoO3 [J], Mater. Res. Bull., 1999, 34 (4) 497-501
    [247] Bonneau P. R., Jarvis R. F., Rapid solid-state synthesis of materials from molybdenum disulphide to refractories [J], Nature, 1991, 349, 510-512
    [248] Klayman D. L., Griffin T. C., Reaction of selnium with sodium borohydride in protic solvents: A facile method for the introduction of selenium into organic molecules [J], J. Am. Chem. Soc., 1973, 95 (1) 197~199

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700