用户名: 密码: 验证码:
多元氧族半导体纳米材料的液相合成、生长机理及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多元金属氧族化合物与二元化合物相比,具有组成和结构的多样性,从而体现出丰富的物理化学性质,如光学、电学、磁学、力学、压电性质等。因此多元金属化合物的合成是固体化学中一个十分活跃的领域。对于三元或多元金属纳米材料液相合成,涉及到两种或以上阳离子的反应,如果这些金属阳离子前驱物的反应活性差异很大,则很容易发生相分离,得到异质结构或二元化合物的混合物,尤其容易得到难溶的二元过渡金属氧化物、硫化物、硒化物等,使得含过渡金属的多元氧族化合物纳米材料非常有限。因此,纳米级多元金属氧族半导体材料的溶剂热反应合成和形貌控制合成不仅从合成新的纳米结构、丰富氧族纳米化合物、还是从探索新的无机纳米材料来说都具有理论意义,而且还可以开拓半导体纳米材料的新特性。本文在溶剂热/水热体系中探索和拓展了多元金属氧族纳米材料的化学合成新方法和新技术,为控制合成多元金属氧族纳米材料积累了一些宝贵的经验。通过调控反应前驱物的反应活性和反应环境合成多元氧族化合物,探究多元氧族化合物液相合成的关键问题;发展一种表面活性剂辅助的溶剂热合成高质量多元氧族化合物纳米晶的方法,揭示其形成机理。具体的研究内容包括:
     (1) ZnGa2O4等多元氧化物及其固溶体纳米晶的控制合成、形成机理和光学性质研究。通过苯甲醚溶剂热法制备了尺寸约为20 nm的缺角立方状ZnGa2O4纳米晶,该纳米晶在435nm处有较强的蓝光发射。通过控制前驱物中锌的量可以得到立方相γ-Ga2O3和立方相ZnGa2O4的固熔体系列纳米晶,即ZnχGa2O3+χ(0≤χ≤1)。它们的晶格参数基本符合维加定律,带隙宽可以在4.43到3.70 eV间调控。同时其发光波长也可在395到435 nm间进行调控。时间历程分析表明:首先生成介稳态的γ-Ga203,随后生成ZnO并逐渐离解出的锌离子扩散进γ-Ga2O3晶格中得到ZnχGa2O3+χ(0≤χ≤1)固熔体系列纳米晶,最终得到ZnGa2O4纳米晶。在这个Zn2+逐渐扩散到晶格的反应过程中,氧缺陷也逐渐被淬灭,使畸变的Ga-O八面体逐渐成为Ga-O正八面体得到发纯正蓝光的ZnGa2O4纳米晶。我们进一步在水热体系中,以十二烷基苯磺酸钠作表面活性剂成功制备了正八面体形的ZnGa2O4和ZnAl2O4纳米晶。并以发蓝光的ZnGa2O4八面体纳米晶为基底材料,实现了Mn2+和Cr3+的掺杂,分别得到到绿光和红光的荧光材料,实现了三原色纳米荧光材料的合成。
     (2)AgGaS2等三元及四元硫化物纳米晶的合成及其光学性质研究。以一些简单无机盐为前驱物,油胺为包覆剂,以环己烷和长链醇的混合溶剂作为反应介质,控制合成了尺寸形貌可控的3D纳米花和胶体状AgGaS2纳米材料。研究表明醇的浓度、醇的碳链长度、油胺的浓度等因素都能导致AgGaS2纳米晶形貌的转变。如果醇的浓度较大,碳链长度很长或油胺的浓度较大,可以充分保护AgGaS2而得到胶状粒子。反之则得到AgGaS2纳米花。通过对AgGaS2纳米花进行高分辨透射电镜和结构分析,AgGaS2纳米花的基本组装单元约为5 nm的小粒子,沿<112>方向取向生长组装成3D纳米结构。AgGaS2纳米花和胶体粒子的室温紫外可见吸收光谱基本相同,而胶体粒子的发光光谱红移了12 nm。AgGaS2纳米花的表面光电压性质与紫外吸收比较吻合,且光电压响应随着外加电场增强而增强,表明在自建电场内AgGaS2能够吸收光子和分离电子-空穴对。在同样的反应体系中,我们也得到了高温正交相的AgInS2纳米晶以及AgInχGa1-χS2(0≤x≤1)四元固熔体纳米晶。
     (3) CulnSe2, CuGaSe2, CuInχGa1-χSe2纳米六角片的液相控制合成及生成机理。首次采用两步法,以Vc为还原剂提出了一种全新的解决硒源的方法。并以一些简单的无机盐为前驱体、PVP为包覆剂、DMF为溶剂,通过简单的溶剂热法得到了三元或四元硒化物的纳米六角片。二维CulnSe2六角纳米片为四方晶相的黄铜矿结构,其尺寸约为200 nm,为p型半导体。通过对CulnSe2进行高分辨透射电镜分析,证明所得的三元硒化物为单晶结构,且二维的结构是由于{112}和{001}面的快速生长导致的。进一步的对比实验表明,CulnSe2纳米片的形成和形貌受到多种因素的影响:硒粉的前处理时间、PVP的量、Vc的量、反应时间、温度等。CulnSe2纳米片的乙醇分散性及稳定性测试表明CulnSe2的乙醇均匀分散体系不管是透射光还是背散射光经过7天的测试,此分散体系没有发生沉淀、乳化、絮凝、凝结、分相等现象,能作为丝网印刷的“墨水”,可用于柔性薄膜太阳能电池的吸收材料。同样的体系中也得到CuGaSe2六方纳米片;控制前驱物中In/Ga的比例得到CuInχGa1-χSe2四元纳米硒化物。CuInχGa1-χSe2的紫外吸收光谱图都是吸收介于900~1300 nm之间的连续谱线,它们的带隙宽Eg介于0.95~1.46之间。此两步法在合成硫属化合物方面具有一定的普适性:在乙醇-乙醇胺体系中采用两步法同样可以得到CuInSe2纳米球。利用CuInχGa1-χSe2作为吸收材料制备了Ag/CdS/CuInχGa1-χSe2/FTO结构的太阳能电池。
Comparing with binary compounds, multinary oxygen-group compounds exhibit useful physical and chemical properties such as optical, electronic, magnetic, mechanical, and piezoelectricity properties. Therefore, the synthesis of multinary oxygen-group compounds is becoming an active area of solid state chemistry. Solvothermal reaction is motivated by their potential to provide an access to multinary oxygen-group compounds in nanoscale with obvious quantum confinement effect and size- and/or shape-dependent properties. However, the synthesis such of multiple component nanocrystals has been limited by the reactivities of the precursors and the ease of phase separation of the alloyed constituents. In other words, if the reaction activities of two metal precursors differ from each other, a separated nucleus will be generated and grow into heterostructures or even two compounds, especially to form the less solubility of transition metal oxide, sulfide or selenide, which make the number of known synthetic multinary oxygen-group compounds with metal ions is limited. Thus, structure and/or shape controlled synthesis of multinary oxygen-group semiconductor nanomaterials will not bring the theoretically meanings, but also the application significance which extended the semiconductor materials. In this thesis, we have attempted and extended to synthesis multinary oxygen-group semiconductor nanomaterials with new chemical synthetic method and thought, which gathered experience for controlled synthesis of multinary oxygen-group semiconductor nanomaterials. Detailed rerearch contents are summarized as following:
     (1) Controlled synthesis and synthesis mechanism of ZnGa2O4 nanocrystals and their research of optical properties. Truncated cubic shape of ZnGa2O4 nanocrystals with 20 nm have been synthesized via a simple anisole solvothermal method. The as-prepared ZnGa2O4 nanocrystals emitted strong blue light at 435 nm. By adjusting zinc quantum of precursors, solid solutions serial nanocrystals of cubicγ-Ga2O3 and cubic ZnGa2O4 that also be expressed to ZnχGa2O3+χ(0≤χ≤1) could be obtained. The lattice parameters and band gap Eg of ZnχGa2O3+χ(0≤χ≤1) serial nanocrystals changed linearly which consistent with Vegard's law basically. The Eg of ZnχGa2O3+χ(0≤χ≤1) serial nanocrystals ranged from 4.43 to 3.70 eV and could be tuned their emission spectra from 395 to 435nm. The formation of ZnχGa2O3+χ(0<χ<1) and ZnGa2O4 resulted from Zn2+ (came from dissociated amorphous ZnO) diffusing into theγ-Ga2O3 nanocrystal lattice structure. In the process of Zn2+ diffusing into nanocrystal lattice, the oxygen vacancies were gradually extinguished making distorted Ga-O octahedron transforming to regular one which is the self-activated blue emission site. In the hydrothermal reaction system, ZnGa2O4 and ZnAl2O4 nanocrystals with regular octahedron were obtained. With the blue fluorescent material ZnGa2O4 regular octahedrona nanocrystals as basilar material doped with Mn2+ and Cr3+, we successfully gained green and red fluorescent respectively and achieved the three primary colors.
     (2) Shape-Controlled synthesis of AgGaS2 nanocrystals and their research of optical properties. Nearly monodispersed AgGaS2 nanocrystals with flower-like or colloidal shape were synthesized in a simple solution system, in which a mixture of 1-octyl alcohol and cyclohexane was used as reactive medium and oleylamine as surfactant. The shape and size of these as-prepared nanocrystals could be tuned effectively by controlling the reaction conditions, such as the ratio of octanol to cyclohexane, the length of carbon chain of fatty alcohol and the concentration of oleylamine. The results showed that fatty alcohol play key factor for the shape and size transformation of AgGaS2 from 3D nanoflowers (50 nm) to colloids (10-20 nm), and a plausible shape evolution and crystal growth mechanism have been suggested for the formation of 3D nanoflowers and colloids. The simple reaction system might provide a new approach to controlled synthesis ternary nanomaterials and understood the reaction mechanism along with the growth kinetics of nanocrystals. Oleylamine combined with alcohol to absorb the AgGaS2 nanocrystals which could reduce the total surface energy and protect the nanocrystals. From the HRTRM and crystal structure analysis, monodispersed AgGaS2 nanoflowers were built by primary spherical nanoparticles with 5nm which prefer to grow along<112> direction. There were no obvious difference in UV-vis spectra between AgGaS2 nanoflower-like particles and colloids and the room temperature photoluminescence spectra of AgGaS2 colloids red-shifted 12 nm compared to that of AgGaS2 nanoflowers. The surface photovoltage (SPV) properties of AgGaS2 nanoflower powders were consistent with their UV absorption and their photovoltage response became stronger when an extra electric field increased which implies that AgGaS2 can absorb photons and separate electron- hole pairs in the built-in electric field. In the same reaction system, we can also obtained orthorhombic AgInS2 nanocrystals and AgInχGa1-χS2 (O≤x≤1) quaternary solid state serial nanocrystals.
     (3) Solution-controlled synthesis of CulnSe2, CuGaSe2, CuInxGa1-χSe2 hexangular nanoplatelets. We first applied two-step and DMF solvothermal method to synthesize ternary or quaternary selenide hexangular nanoplatelets, which provided a new strategy to resolve selenic source with Vc as reduce regent. CulnSe2 hexangular nanoplatelets with two dimensions were tetragonal chalcopyrite structure and their size was about 200 nm. From the HRTEM and crystal structure analysis, it was proved that CulnSe2 hexangular nanoplatelets with monocrystalline structure originated the preferentially growth along<112> and<001> two directions and the growth of <101> direction was limited. Moreover, the formation and/or crystal phase of monodisperse CulnSe2 hexangular nanoplatelets were strongly influenced by many external factors, e.g., pre-treating time, PVP quantum, Vc quantum, temperature, reaction time, etc. The 7days stability analysis of CulnSe2 hexangular nanoplatelets dispersed in alcohol proved that there was no change from transmission light and backscattering light. In other words, there was no phenomenon such as precipitate, emulsification, flocculation, condense, phase seperation, edc. in the 7days and could be a good "ink" for screen painting that was applied to make soft film solar cell. In the same reaction system, we can also obtained CuGaSe2 hexangular nanoplatelets. By adjusting the proportion of In/Ga, CuInχGa1-χSe2 quaternary selenide hexangular nanoplatelets also could be obtained. UV-vis absorption spectra of CuInχGa1-χSe2 (0≤x≤1) serial nanocrystals ranged 900~1300 nm and their Eg value ranged 0.95-1.46. The two-step method was widespread application for synthesis of multinary chalcogenidometalates. Spherical CuInSe2 in nano scale was obtained in the reaction system of CH3CH2OH-HOCH2CH2NH2. Using of CuInχGa1-χSe2 as absorption material, Ag/CdS/CuInχGa1-χSe2/FTO solar cell has been completed.
引文
1. Gurav, A.; Kodas, T.; Pluym, T.; Xiong, Y., Aerosol processing of materials. Aerosol Sci. Technol.1993,19, (4),411-452.
    2. Kruis, F. E.; Fissan, H.; Peled, A., Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications. A review. J. Aerosol Sci.1998,29, (5-6),511-535.
    3. Strobel, R.; Pratsinis, S. E., Flame aerosol synthesis of smart nanostructure materials. J. Mater. Chem.2007,17, (45),4743-4756.
    4. Oh, J.; Jung, Y.; Lee, J.; Tak, Y, Nanoporous alumina formation using multi-step anodization and cathodic electrodeposition of metal oxides on its structure. Nanotechnology in Mesostructured Materials 2003,146,205-208.
    5. Matijevic, E., Production of monodispersed colloidal particles. Annu. Rev. Mater. Sci.1985,15, 483-516.
    6. Matijevic, E., Preparation and properties of uniform size colloids. Chem. Mater.1993,5, (4), 412-426.
    7. Whitesides, G. M., Nanoscience, nanotechnology, and chemistry. Small 2005,1, (2),172-179.
    8. Gates, B. D.; Xu, Q.; Stewart, M.; Ryan, D.; Willson, C. G.; Whitesides, G M., New approaches to nanofabrication:molding, printing, and other techniques. Chem. Rev.2005,105, (4), 1171-1196.
    9. Thompson, S. E.; Parthasarathy, S., Moore's law: the future of Si microelectronics. Materials Today 2006,9, (6),20-25.
    10. Geoffrey A. O., Panoscopic materials:synthesis over'all'length scales. Chem. Commun.2000, (6),419-432.
    11. Whitesides, G M.; Grzybowski, B., Self-assembly at all scales. Science 2002,295, (5564), 2418-2421.
    12. Lu, W.; Lieber, C. M., Nanoelectronics from the bottom up. Nature Mater.2007,6, (11), 841-850.
    13. Murray, C. B.; Kagan, C. R.; Bawendi, M. G, Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci.2000,30,545-610.
    14. Rogach, A.L.; Talapin, D. V.; Shevchenko, E. V.; Kornowski, A.; Haase, M;. Weller, H., Organization of matter on different size scales:monodisperse nanocrystals and their superstructures. Adv. Funct. Mater.2002,12, (8),653-664.
    15. Shevchenko, E. V.; Talapin, D. V.; Kotov, N. A.; O'Brien, S.; Murray, C. B., Structural diversity in binary nanoparticle superlattices. Nature 2006,439, (7072),55-59.
    16. Zhang, H.; Edwards, E. W.; Wang, D.; Mohwald, H., Directing the self-assembly of nanocrystals beyond colloidal crystallization. Phys. Chem. Chem. Phys.2006,8, (28),3288-3299.
    17. Lijima, S., Helical microtubules of graphitic carbon. Nature 1991,354,56-58.
    18. Murray, C. B.; Norris, D. J.; Bawendi, M. G, Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc.1993,115, (19),8706-8715.
    19. Peng, X. G; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P., Shape control of CdSe nanocrystals. Nature 2000,404, (6773),59-61.
    20. Henglein, A., Small particle research:Physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev.1989,89, (8),1861-1873.
    21. Alivisatos, A. P., Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem.1996,100, (13),226-239.
    22. Wang, Y.; Herron, N., Nanometer-sized semiconductor clusters:materials synthesis, quantum size effects, and photophysical properties. Journal of Physical Chemistry 1991,95, (2),525-532.
    23. Ekimov, A. I.; Onushchenko, A. A.; Tsekhomskii, V. A., Exciton absorption by copper (Ⅰ) chloride crystals in a glassy matrix. Fizikai Khimiya Stekla 1980,6,511-512.
    24. Kalyanasundaram, K.; Borgarello, E.; Duonghong, D.; Gratzel, M., Cleavage of water by visible-light irradiation of colloidal CdS solutions; inhibition of photocorrosion by RuO2. Angew. Chem. Int. Ed.1981,20,987-988.
    25. Henglein, A., Photo-degradation and fluorescence of colloidal cadmium sulfide in aqueous solution. Ber. Bunsenges. Phys. Chem.1982,86, (4),301-305.
    26. Efros, A. L.; Efros, A. L., Interband absorption of light in a semiconductor sphere. Sov. Phys. Semicond. 1982,16, (7),772-775.
    27. Rossetti, R.; Ellison, J. L.; Gibson, J. M.; Brus, L. E., Size selects in the excited electronic states of small colloidal CdS crystallites. J. Chem. Phys.1984,80, (9),4464-4469.
    28. Alivisatos, A. P., Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, (271), 933-937.
    29.张立德,纳米材料北京:化学工业出版社,2001.
    30. Ghezelbash, A.; Sigman, M. B.; Korgel, B. A., Solventless synthesis of nickel sulfide nanorods and triangular nanoprisms. Nano Letters 2004,4, (4),537-542.
    31. Pan, Z. W.; Dai, Z. R.; Wang, Z. L., Nanobelts of semiconducting oxides. Science 2001,291, (5510),1947-1949.
    32. Huo, Z. Y.; Chen, C.; Li, Y. D., Self-assembly of uniform hexagonal yttrium phosphate nanocrystals. Chem. Commun.2006,3522-3524.
    33. Sun, Y. G.; Xia, Y N., Shape-controlled synthesis of gold and silver nanoparticles. Science 2002,298, (5601),2176-2179.
    34. Wiley, B.; Sun, Y G; Chen, J. Y; Cang, H.; Li, Z. Y.; Li, X. D.; Xia, Y N., Shape-controlled synthesis of silver and gold nanostructures. Mrs Bulletin 2005,30, (5),356-361.
    35. Niederberger, M.; Bard, M. H.; Stucky, G D., Benzyl alcohol and transition metal chlorides as a versatile reaction system for the nonaqueous and low-temperature synthesis of crystalline nano-objects with controlled dimensionality. Journal of the American Chemical Society 2002,124, (46),13642-13643.
    36. Manna, L.; Scher, E. C.; Alivisatos, A. P., Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. Journal of the American Chemical Society 2000,122, (51),12700-12706.
    37. Cozzoli, P. D.; Manna, L.; Curri, M. L.; Kudera, S.; Giannini, C.; Striccoli, M.; Agostiano, A., Shape and phase control of colloidal ZnSe nanocrystals. Chemistry of Materials 2005,17, (6), 1296-1306.
    38. Cao, Y C., Synthesis of square gadolinium-oxide nanoplates. Journal of the American Chemical Society 2004,126, (24),7456-7457.
    39. Brus, L. E., Electron-electron and electron-hole interactions in small semiconductor crystallites:the size dependence of the lowest excited electronic state. The Journal of Chemical Physics 1984,80, (9),4403-4409.
    40. Brus, L., Electronic wave functions in semiconductor clusters:experiment and theory. Journal of Physical Chemistry 1986,90, (12),2555-2560.
    41. Klabunde, K. J.; Stark, J.; Koper,O.; Mohs, C.; Park, D. G.; Decker, S.; Jiang, Y.; Lagadic, I.; Zhang, D., Nanocrystals as stoichiometric reagents with unique surface chemistry. The Journal of Physical Chemistry 1996,100, (30),12142-12153.
    42. Bawendi, M. G.; Wilson, W. L.; Rothberg, L.; Carroll, P. J.; Jedju, T. M.; Steigerwald, M. L. Brus, L. E., Electronic structure and photoexcited-carrier dynamics in nanometer-size CdSe clusters. Physical Review Letters 1990,65, (13),1623-1626.
    43. Henglein, A., Small-particle research:physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev.1989,89, (8),1861.
    44. Weller, H., Eychmuler, A., Advances in Photochemistry. Vol.20, New York, John Wiley & Sons. Inc.1995.
    45. Chandler R. R.; Coffer, J. L., Antiquenching effect of lanthanide beta-diketonate complexes on the photoluminescence of quantum-confined cadmium sulfide clusters. J. Phys. Chem.1991,95, (1),4-6.
    46.倪星元,纳米材料理化特性与应用。北京:化学工业出版社,2006.
    47.夏建白,半导体纳米材料和物理,物理2003,32,(10),693-699.
    48. Mo, C. M.; Li, Y H.; Liu, Y S.; Zhang, Y.; Zhang, L. D., Enhancement effect of photoluminescence in assemblies of nano-ZnO particles/silica aerogels. J. Appl. Phys.1998,83, (8),4389-4391.
    49. Bhargagra, R. N.; Gallagher, D., Phys. Rev Lett.1994,75, (10),1234.
    50.倪星元,纳米材料制备技术,北京:化学工业出版社,2008
    51.丁士文,中国科学,2000,30,374.
    52. O'Regan, B.; Gratzel, M., Low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991,353, (6346),737-740.
    53. Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Mueller, E.; Liska, P.; Vlachopoulos, N.; Graetzel, M., Conversion of light to electricity by cis-X2 bis (2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium (Ⅱ) charge-transfer sensitizers (X=Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. Journal of the American Chemical Society 1993,115, (14),6382-6390.
    54.李竟先,吴基球,鄢程,纳米颗粒的水热法制备,中国陶瓷,2002,38,5.
    55.董敏,苗鸿雁,谈国强,溶剂热合成纳米材料技术及其进展,材料导报,2005.19,28, 27-30.
    56. La Mer, V. K.; Dinegar, R. H., Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc.1950,72, (11),4847-4854.
    57. Kumar, S.; Nann, T., Shape control of Ⅱ-Ⅵ semiconductor nanomateriats. Small 2006,2, (3), 316-329.
    58. Burda, C.; Chen, X. B.; Narayanan, R.; El-Sayed, M. A., Chemistry and properties of nanocrystals of different shapes. Chem. Rev.,2005,105, (4),1025-1102.
    59.郝保红,黄俊华.晶体生长机理的研究综述.北京石油化工学院学报,2006,14,(2),58.
    60. Lee, S. M.; Cho, S. N.; Cheon, J. W., Anisotropic shape control of colloidal inorganic nanocrystals. Adv Mater 2003,15, (5),441-444.
    61. Roosen, A. R.; Carter, W. C., Simulations of microstructural evolution:anisotropic growth and coarsening. Physica A 1998,261, (1-2),232-247.
    62. Matijevic, E., Preparation and properties of uniform size colloids. Chem. Mater.1993,5, (4), 412-426.
    63. Sun, Y. G.; Yin, Y D.; Mayers, B. B.; Herricks, T.; Xia, Y N., Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem. Mater.2002,14, (11),4736-4745.
    64. Caswell, K. K.; Bender, C. M.; Murphy, C. J., Seedless, surfactantless wet chemical synthesis of silver nanowires. Nano Lett.2003,3, (5),667-669.
    65. Banfield, J. F.; Welch, S. A.; Zhang, H.; Ebert, T. T.; Penn, R. L., Aggregation-based crystal growth and micro structure development in natural iron oxyhydroxide biomineralization products. Scienc 2000,289, (5480),751-754.
    66. Penn, R. L.; Banfield, J. F., American Mineralogist 1998,83,1077.
    67. Chemseddine, A.; Moritz, T., Nanostructuring titania: control over nanocrystal structure, size, shape, and organization. Eur. J. Inorg. Chem.1999, (2),235-245.
    68. Lou, X. W.; Zeng, H. C., Complex alpha-MoO3 nanostructures with external bonding capacity for self-assembly. J. Am. Chem. Soc.2003,125, (9),2697-2704.
    69. Penn, R. L.; Stone, A. T.; Veblen, D. R., Defects and disorder:probing the surface chemistry of heterogenite (CoOOH) by dissolution using hydroquinone and iminodiacetic acid. J. Phys. Chem. B.2001,105, (20),4690-4697.
    70. Penn, R. L.; Banfield, J. F., Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science 1998,281, (5379),969-971.
    71. Jun, Y. W.; Lee, J. H.; Choi, J. S.; Cheon, J. W., Symmetry-controlled colloidal nanocrystals: nonhydrolytic chemical synthesis and shape determining parameters. J. Phys. Chem. B 2005,109, 14795-14806.
    72. Wulff, G.; Zeitschrift, F., Krystallogr 1901,34,449.
    73. Jun, Y.; Jung, Y.; Cheon, J., Architectural control of magnetic semiconductor nanocrystals. J. Am. Chem. Soc.2002,124, (4),615-619.
    74. Kim, Y, H.; Jun, Y.; Jun, B. H.; Lee, S. M.; Cheon, J., Sterically induced shape and crystalline phase control of GaP nanocrystals. J. Am. Chem. Soc.2002,124, (46),13656-13657.
    75. Peng, Z. A.; Peng, X., Nearly Monodisperse and shape-controlled CdSe nanocrystals via alternative routes:nucleation and growth. J. Am. Chem. Soc.2002,124, (13),3343-3353.
    76. Manna, L.; Scher, E. C.; Alivisatos, A. P., Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc.2000,122, (51), 12700-12706.
    77. Peng, Z. A.; Peng, X. G., Mechanisms of the shape evolution of CdSe nanocrystals. J. Am. Chem. Soc.2001,123, (7),1389-1395.
    78. Manna, L.; Million, D. J.; Miesel, A.; Scher, E. C.; Alivisatos, A. P., Controlled growth of tetrapod-branched inorganic nanocrystals. Nature Mater.2003,2, (6),382-385.
    79. Cozzoli, P. D.; Manna, L.; Curri, M. L.; Kudera, S.; Giannini, C.; Striccoli, M.; Agostiano, A., Shape and phase control of colloidal ZnSe nanocrystals. Chem. Mater.2005,17, (6),1296-1306.
    80. Lee, S. M.; Jun, Y.W.; Cho, S. N.; Cheon, J., Single-crystalline star-shaped nanocrystals and their evolution:programming the geometry of nano-building blocks. J. Am. Chem. Soc.2002, 124, (38),11244-11245.
    81. Manna, L.; Scher, E. C.; Alivisatos, A. P., Shape control of colloidal semiconductor nanocrystals. Journal of Cluster Science 2002,13, (4),521-532.
    82. Gorai, S.; Ganguli, D.; Chaudhuri, S., Morphological control in solvothermal synthesis of copper sulphides on copper foil. Mater. Res. Bull.2007,42, (2),345-353.
    83. Hyeon, T., Chemical synthesis of magnetic nanoparticles. Chemical Communications 2003, (8), 927-934.
    84. Jacobs, K.; Zaziski, D.; Scher, E. C.; Herhold, A. B.; Alivisatos, A. P., Activation volumes for solid-solid transformations in nanocrystals. Science 2001,293, (5536),1803-1806.
    85. Michler, P.; Imamoglu, A.; Mason, M. D.; Carson, P. J.; Strouse, G. F.; Buratto, S. K., Quantum correlation among photons from a single quantum dot at room temperature. Nature 2000,406, (6799),968-970.
    86. Hu, J. T.; Li, L. S.; Yang, W. D.; Manna, L.; Wang, L. W.; Alivisatos, A. P., Linearly polarized emission from colloidal semiconductor quantum rods. Science 2001,292, (5524), 2060-2063.
    87. Tessler, N.; Medvedev, V.; Kazes, M.; Kan, S. H.; Banin, U., Efficient near-infrared polymer nanocrystal light-emitting diodes. Science 2002,295, (5559),1506-1508.
    88. Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P., Semiconductor nanocrystals as fluorescent biological labels. Science 1998,281, (5385),2013-2016.
    89. Yin, Y; Alivisatos, A. P., Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 2005,437, (7059),664-670.
    90. Shevchenko, E. V.; Talapin, D. V.; Murray, C. B.; O'Brien, S., Structural characterization of self-assembled multifunctional binary nanoparticle superlattices. Journal of the American Chemical Society 2006,128, (11),3620-3637.
    91. Yu, T. Y.; Joo, J.; Park, Y. I.; Hyeon, T., Large-scale nonhydrolytic sol-gel synthesis of uniform-sized ceria nanocrystals with spherical, wire, and tadpole shapes. Angewandte Chemie-International Edition 2005,44, (45),7411-7414.
    92. Joo, J.; Na, H. B.; Yu, T.; Yu, J. H.; Kim, Y. W.; Wu, F. X.; Zhang, J. Z.; Hyeon, T., Generalized and facile synthesis of semiconducting metal sulfide nanocrystals. Journal of the American Chemical Society 2003,125, (36),11100-11105.
    93. Kazmerski, L. L.; Shieh, C. C., Photoconductivity effects in CuInS2, CuInSe2 and CuInTe2 thin films. Thin Solid Films 1977,41, (11),35-41
    94. Kazmerski, L. L.; Cooper, R. B.; White, F. R.; Merrill, A. J., Auger analysis of CdS-CuInSe2 thin film solar cells. IEEE Transactions on Electron Devices 1997,24, (4),496-498.
    95. Loferski, J. J., In New Materials and Concepts, Sixth E. C. Photovoltaic solar energy conference-proceedings of the international conference.; London, Engl; Code 9115,1985; Palz, W G.; Trebble, F. C., Ed. D. Reidel Publ Co, Dordrecht, Neth:1985,40-45.
    96. Cattarin, S.; Pagura, C.; Armelao, L.; Bertoncello, R.; Dietz, N., Surface characterization of CuInS2 with lamellar morphology. Journal of the Electrochemical Society 1995,142, (8), 2818-2823.
    97. Malyarevich, A. M.; Yumashev, K. V.; Posnov, N. N.; Mikhailov, V. P.; Gurin, V. S.; Prokopenko, V. B.; Alexeenko, A. A.; Melnichenko, I. M., Nonlinear optical properties of CuxS and CuInS2 nanoparticles in sol-gel glasses. Journal of Applied Physics 2000,87, (1),212-216.
    98. Tell, B.; Kasper, H. M., Electrical properties of AgInSe2. Journal of Applied Physics 1974,45, (12),5367-5370.
    99. Paorici, C.; Zanotti, L.; Romeo, N.; Sberveglieri, G; Tarricone, L., Crystal growth and properties of the AgIn5S8 compound. Materials Research Bulletin 1977,12, (12),1207-1211.
    100. Rao, C. N. R., Transition metal oxides. Annu. Rev. Phys. Chem.1989,40,291-326
    101. Rao, C. N. R.; Raveau, B., Transition metal oxides. VCH Publishers Inc., New York (1995)
    102. Xu, C. Y.; Zhang, Q.; Zhang, H.; Zhen, L.; Tang, J.; Qin, L. C., Synthesis and characterization of single-crystalline alkali titanate nanowires. J. Am. Chem. Soc.2005,127, (33), 11584-11585.
    103. Xu, C. Y.; Zhen, L.; Yang, L.; He, K.; Shao, W. Z.; Qin, L. C., Facile molten salt route to K2Nb8O21 nanoribbons. Ceram. Int.2008,34, (2),435-437.
    104. Xu, C. Y.; Zhen, L.; Yang, R.; Wang, Z. L., Synthesis of single-crystalline nobate nanorods via ion-exchange based on molten-salt reaction. J. Am. Chem. Soc.2007,129, (50),5444-15445.
    105. Kang, E.; Park, J.; Hwang, Y.; Kang, M.; Park, J. G.; Hyeon, T., Direct synthesis of highly crystalline and monodisperse manganese ferrite nanocrystals. J. Phys. Chem. B 2004,108, (13), 932-935.
    106. Zeng, H.; Rice, P. M.; Wang, S. X.; Sun, S. H., Shape-controlled synthesis and shape-induced texture of MnFe2O4 nanoparticles. J. Am. Chem. Soc.2004,126, (11),458-459.
    107. Peng, C.; Gao, L.; Yang, S. W., Synthesis and magnetic properties of Co-Sn-O nanorings. Chem. Commun.2007,4372-4374.
    108. Cao, M.; Djerdj, I.; Antonietti, M.; Niederberger, M., Non-aqueous synthesis of colloidal ZnGa2O4 nanocrystals and their photoluminescence properties. Chem. Mater.2007,19, (24), 5830-5832.
    109. Pan, D. C.; Ji, X. L.; An, L. J.; Lu, Y. F., Observation of nucleation and growth of CdS nanocrystals in a two-phase system. Chem. Mater.2008,20, (11),3560-3566.
    110. Wang, D. S.; Hao, C. H.; Zheng, W.; Peng, Q.; Wang, T. H.; Liao, Z. M.; Yu, D. P.; Li Y. D., Ultralong single-crystalline Ag2S nanowires:promising candidates for photoswitches and room-temperature oxygen sensors. Adv. Mater.2008,20, (13),2628-2632.
    111. Liu, Z. P.; Peng, S.; Xie, Q.; Hu, Z. K.; Yang, Y; Zhang, S. Y; Qian, Y T., Large-scale synthesis of ultralong Bi2S3 nanoribbons via a solvothermal process. Adv. Mater.2003,15, (11), 936-940.
    112. Du, W. M.; Zhu, J.; Li, S. X.; Qian, X. F., Ultrathin β-In2S3 Nanobelts:shape-controlled synthesis and optical and photocatalytic properties. Cryst. Growth Des.2008,8, (7),2130-2136.
    113. Du, W. M.; Qian, X. F. et al, Shape-controlled synthesis and self-assembly of hexagonal covellite CuS nanoplatelets, Chemistry-A European Journal 2007,13,3241.
    114. Gou, X. L.; Cheng, F. Y.; Shi, Y. H.; Zhang, L.; Peng, S. J.; Chen, J.; Shen, P. W., Shape-controlled synthesis of ternary chalcogenide ZnIn2S4 and CuIn(S,Se)2 nano-/microstructures via facile solution route. Journal of the American Chemical Society 2006, 128, (22),7222-7229.
    115. Wang, D. S.; Zheng, W.; Hao, C. H.; Peng, Q.; Li, Y., General synthesis of Ⅰ-Ⅲ-Ⅵ2 ternary semiconductor nanocrystals. Chem. Commun.,2008, (22),2556-2558.
    116. Hu, J. Q.; Lu, Q. Y.; Deng, B.; Tang, K. B.; Qian, Y T.; Li, Y Z.; Zhou, G E.; Liu, X. M., A hydrothermal reaction to synthesize CuFeS2 nanorods. Inorganic Chemistry Communications 1999,2, (12),569-571.
    117. Lu, J.; Xie, Y.; Du, G. A.; Jiang, X. C.; Zhu, L. Y.; Wang, X. J.; Qian, Y T., "Scission-template-transportation" route to controllably synthesize CdIn2S4 nanorods. J. Mater. Chem.2002,12, (1),103-106.
    118. Shen, G. Z.; Chen, D.; Tang, K. B.; Qian, Y T., Novel polyol route to AgBiS2 nanorods Journal of Crystal Growth 2003,252, (1-3),199-201.
    119. Chen, D.; Shen, G. Z.; Tang, K. B.; Liu, X. M.; Qian, Y T.; Zhou, G. E., The synthesis of Cu3BiS3 nanorods via a simple ethanol-thermal route. J. Cryst. Growth,2003,253, (1-4),512-516.
    120. Chen, X. Y; Zhang, Z. J.; Zhang, X. F.; Liu, J. W; Qian, Y T., Hydrothermal synthesis of porous FeIn2S4 microspheres and their electrochemical properties. J. Cryst. Growth,2005,277, (1-4),524-528.
    121. Hu, J.; Lu, Q. Y.; Tang, K. B.; Qian, Y. T., Zhou, G. E.; Liu, X. M., Solvothermal reaction route to nanocrystalline semiconductors AgMS2 (M=Ga, In), Chem. Commun.1999,1093-1094.
    122. Lu, Q. Y.; Hu, J. Q.; Tang, K. B.; Qian, Y. T.; Zhou, G. E.; Liu X. M., Synthesis of nanocrystalline CuMS2 (M=In or Ga) through a solvothermal process. Inorg. Chem.2000,39, (7), 1606-1607.
    123. Hu, J. Q.; Deng, B.; Tang, K. B.; Wang, C. R.; Qian. Y. T., Preparation and phase control of nanocrystalline silver indium sulfides via a hydrothermal route. J. Mater. Res.2001,16, (12), 3411-3415.
    124 Du, W. M.; Qian, X. F.; Yin, J.; Gong, Q., Shape and phase controlled synthesis of monodisperse, single-crystalline ternary chalcogenide colloids via a convenient solution synthetic strategy, Chem.-Eur. J.2007,13,8840-8846.
    125. Zeng, Y. P.; Li, H. X.; Xiang, B. Y.; Ma, H. Q.; Qu, B. H.; Xia, M. X.; Wang, Y. C.; Zhang, Q. L.; Wang,Y G, Synthesis and characterization of phase-purity Cu9BiS6 nanoplates. Materials Letters 2010,64,1091-1094.
    126. Li, H. X.; Zhang, Q. L.; Pan, A. L.; Wang,Y G; Zou, B. S.; Fan, H. J., Single-crystalline Cu4B14S9 nanoribbons:facile synthesis, growth mechanism, and surface photovoltaic properties. Chem. Mater.2011,23,1299-1305.
    127. Huynh, W U.; Dittmer, J. J.; Alivisatos, A. P., Hybrid nanorod-polymer solar cells. Science 2002,295, (5564),2425-2427.
    128. Lakshmikvmar, S. T.; Rastogi, A. C., Selenization of Cu and In thin films for the preparation of selenide photo-absorber layers in solar cells using Se vapour source. Sol. Energy. Mater. Sol. Cells,1994,32, (1),7-19.
    129.李焕勇,介万奇.一维ZnSe半导体纳米材料的制备与特性[J].半导体学报,2003,24,(1),58-62.
    130. Hu, Y.; Chen, J. F.; Chen, W M., Preparation of hollow CdSe nanospheres. Materials Letters 2004,58, (22-23),2911-2913.
    131.刘红梅,覃东欢,陶洪,等CdSe纳米晶/MEH-PPV复合型光电池研究[J].纳米器件与技术2009,6,(1),14-17.
    132. Liu, H. W.; Laskar, I. R.; Huang, C. P., Synthesis and applications of luminescent CdSe quantum dots for OLEDs. Chinese Journal of Luminescence 2005,26, (3),321-326.
    133.石志霞,王元凤,刘建军,等.水溶性荧光CdSe量子点的合成及其在指纹显现中的应用.无机化学学报,2008,24,(7),1186-1190.
    134.武红敏,韩鹤友,金梅林,等CdSe/ZnS量子点探针用于检测猪链球菌型溶菌酶释放蛋白(MRP)抗原的新方法研究.化学学报,2009,67,(10),1087-1092.
    135.杨华静,徐鹏,王坚苗,等.采用量子点标记的寡核苷酸探针检测Apo Eε4等位基因.华中科技大学学报(医学版),2008,37,(4),493-495.
    136.黄朝表,吴川六,张丹宁,等ZnSe量子点的水相合成及光诱导荧光增敏效应.浙江师范大学学报(自然科学版),2009,32,(1),91-96.
    137.侯博,刘拥军,袁波,等.半导体纳米晶在生物标记领域的应用.化学通报,2008,71,(4),272-280.
    138. Zhao, W. B.; Zhun, J. J.; Chen, H. Y., Photochemical preparation of rectangular PbSe and CdSe nanoparticles. J. Crystal. Growth.2003,252, (4),587-592.
    139.周凤玲,李效民,高相东,等PbSe纳米晶薄膜制备以及其光电特性研究.无机材料学报,2009,24,(4),778-782.
    140.苗晔,孙海燕CulnSe2纳米颗粒膜的磁控溅射制备和特性分析[J].真空电子技术,2004,(3),40-42.
    141.闫玉林,钱雪峰,印杰,柠檬酸钠辅助光化学合成Cu2-xSe纳米晶.无机化学学报,2003,19,(10),1133-1136.
    142. Zheng, X. W.; Xie, Y.; Zhu, L.Y; Yan, A. H., Formation of vesicle-templated CdSe hollow spheres in an ultrasound-induced anionic surfactant solution. Ultrasonics Sonochemistry 2002,9, (6),311-316.
    143. Gates, B.; Wu, Y Y; Yin, Y D., Single-crystalline nanowires of Ag2Se can be synthesized by templating against nanowires of trigonal Se.J.Am. Chem. Soc.2001,123, (46),11500-11501.
    144. Zhang, S. Y.; Fang, C. X.; Wei, W., Synthesis and electrochemical behavior of crystalline Ag2Se nanotubes. J. Phys. Chem. C 2007,111, (11),4168-4174.
    145. Su, H. L.; Xie, Y; Li, B., A simple, convenient, mild hydrothermal route to nanocrystalline CuSe and Ag2Se. Mater. Res. Bull.2000,35, (3),465-469.
    146. Li, Y D.; Liao, H. W.; Ding,Y.; Fan, Y; Zhang, Y,; Qian, Y T., Solvothermal elemental direct reaction to CdE (E=S, Se, Te) semiconductor nanorod. Inorg. Chem.1999.38., (7),1382-1387.
    147. Yu, S. H.; Han, Z. H.; Yang, J.; Zhao, H. Q.; Yang, R. Y; Xie, Y; Qian, Y T.; Zhang, Y H., Synthesis and formation mechanism of La2O2S via a novel solvothermal pressure-relief process. Chem. Mater.1999,11, (2),192-194.
    148. Wang, W. Z; Geng, Y.; Yan, P.; Liu; F. Y.; Xie, Y.; Qian, Y T., A novel mild route to nanocrystalline selenides at room temperature. J. Am. Chem. Soc.1999,121, (16),4062-4063.
    149. Katari, J. E. B.; Colvin, V. L.; Alivisatos, A. P., X-ray photoelectron spectroscopy of CdSe nanocrystals with applications to studies of the nanocrystal surface. J. Phys. Chem.1994,98, (15), 4109-4117.
    150. Yu, W. W.; Peng, X. G., Formation of high-quality CdS and other Ⅱ-Ⅵ semiconductor nanocrystals in noncoordinating solvents:tunable reactivity of monomers. Angew. Chem. Int. Ed. 2002,41, (13),2368-2371.
    151. Yu, W. W.; Wang, Y A.; Peng, X. G., Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals:ligand effects on monomers and nanocrystals. Chem. Mater.2003,15, (22),4300-4308.
    152. Bullen, C. R.; Mulvaney, P., Nano Letters 2004,4,2303.
    153. Protiere, M.; Reiss, P., Highly luminescent Cd1-xZnxSe/ZnS core shell nanocrystals emitting in the blue-green spectral range. Small 2007,3, (3),399-403.
    154. Asokan, S.; Krueger, K. M.; Colvin, V. L.; Wong, M. S., Shape-controlled synthesis of CdSe tetrapods using cationic surfactant ligands. Small 2007,3, (7),1164-1169.
    155. Xing, B.; Li, W. W; Dou, H. J.; Zhang, P. F.; Sun, K., Phosphine-free fabrication of CdSe quantum dots with good thermal stability and promising application in multiplexed bioassay. Chemistry Letters 2007,36, (9),1144-1145.
    156. Li, B.; Xie, Y.; Huang, J. X.; Qian, Y T., Synthesis by a solvothermal route and characterization of CuInSe2 nanowhiskers and nanoparticles. Adv. Mater.1999,11, (17), 1456-1459.
    157. Jiang, Y.; Wu, Y.; Mo, X.; Yu, W C.; Xie, Y.; Qian, Y T., Elemental solvothermal reaction to produce ternary semiconductor CuInE2 (E=S, Se) nanorods. Inorganic Chemistry 2000,39, (14), 2964.
    158. Malik, M. A.; O'Brien, P.; Revaprasadu, N., A novel route for the preparation of CuSe and CuInSe2 nanoparticles. Adv. Mater.1999,11, (17),1441-1444.
    159. Zhong, H. Z.; Li, Y C.; Ye, M. F.; Zhu, Z. Z.; Zhou, Y.; Yang, C. H.; Li, Y F., A facile route to synthesize chalcopyrite CuInSe2 nanocrystals in non-coordinating solvent. Nanotechnology 2007, 18, (2),025602.
    160. Koo, B.; Patel, R. N.; Korgel, B. A., Synthesis of CuInSe2 nanocrystals with trigonal pyramidal shape. J. Am. Chem. Soc.2009,131, (9),3134-3135.
    161. Guo, Q. J.; Hillhouse, H. W.; Agrwal, R., Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells. J. Am. Chem. Soc.2009,131, (33),11672.
    162. Tang, J.; Hinds, S.; Kelley, S. O.; Sargent, E. H., Synthesis of colloidal CuGaSe2, CuInSe2, and Cu(InGa)Se2 nanoparticles. Chem. Mater.2008,20, (22),6906-6910.
    163. Panthani, M. G.; Akhavan, V.; Goodfellow, B.; Schmidthe, J. P.; Dunn, L.; Dodabalapur, A.; Barbara, P. F.; Korgel, B. A., Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) nanocrystal "inks" for printable photovoltaics. J. Am. Chem. Soc.2008,130, (49),16770-16777.
    164. Allen, P M.; Bawendi, M. G, Ternary Ⅰ-Ⅲ-Ⅵ quantum dots luminescent in the red to near-infrared. J. Am. Chem, Soc.2008,130, (29),9240-9241.
    1. Leskela, M.; Ritala, M., Atomic layer deposition (ALD):from precursors to thin film structures. Thin Solid Film,2002,409, (1),138-146.
    2. Makowski, P.; Rothe, R., A. T.; Niederberger, M.; Goettman, F., Chlorine borrowing:An efficient method for an easier use of alcohols as alkylation agents. Green Chem.2009,11,34-37.
    3. Niederberger, M.; Garnweitner, G., Organic reaction pathways in the nonaqueous synthesis of metal oxide nanoparticles. Chem. Eur. J.2006,12, (28),7282-7302.
    4. Pinna, N.; Niederberger, M., Surfactant-free nonaqueous synthesis of metal oxide nanostructures. Angew. Chem. Int. Ed.2008,47, (29),5292-5304.
    5 Djerdj, I.; Arcon, D.; Jaglicic, Z.; Niederberger, M., Nonaqueous synthesis of metal oxide nanoparticles:Short review and doped titanium dioxide as case study for the preparation of transition-metal doped oxide nanoparticles. J. Solid State Chem.2008,181, (7),1574-1584.
    6 Niederberger, M.; Bartl, M. H.; Stucky, G D., Benzyl alcohol and titanium tetrachloride:a versatile reaction system for the nonaqueous and low-temperature preparation of crystalline and luminescent titania nanoparticles. Chem. Mater.2002,14, (10),4364-4370.
    7. Andrianainarivelo, M.; Corriu, R.; Leclercq, D.; Mutin, P. H.; Vioux, A., Mixed oxides SiO2-ZrO2 and SiO2-TiO2 by a non-hydrolytic sol-gel route. J. Mater. Chem.1996,6, (10), 1665-1671.
    8. Ba, J.; Polleux, J.; Antonietti, M.; Niederberger, M., Nonaqueous synthesis of tin oxide nanocrystals and their assembly into ordered porous mesostructures. Adv. Mater.2005,17, (20), 2509-2512.
    9. Kominami, H.; Inoue, M.; Inui, T., Formation of niobium double oxides by the glycothermal method. Catal. Today 1993,16, (3-4),309-317.
    10. Inoue, M.; Kominami, H.; Inui, T., Thermal transformation of χ-alumina formed by thermal decomposition of aluminum alkoxide in organic media. J. Am. Ceram. Soc.1992,75, (9), 2597-2598.
    11. Choi, H. G; Jung, Y. H.; Kim, D. K., Solvothermal synthesis of tungsten oxide nanorod/nanowire/nanosheet. J. Am. Ceram. Soc.2005,88, (6),1684-1686.
    12. Niederberger, M.; Bartl, M. H.; Stucky, G. D., Benzyl alcohol and transition metal chlorides as a versatile reaction system for the nonaqueous and low-temperature synthesis of crystalline nano-objects with controlled dimensionality. J. Am. Chem. Soc.2002,124, (46),13,642-13,643.
    13. Niederberger, M.; Garnweitner, G.; Pinna, N.; Antonietti, M., Nonaqueous and halide-free route to crystalline BaTiO3, SrTiO3, and (Ba, Sr)TiO3 nanoparticles via a mechanism involving C-C bond formation. J. Am. Chem. Soc.2004,126, (24),9120-9126.
    14. Wang, C.; Deng, Z. X.; Zhang, G H.; Fan, S. S.; Li, Y. D., Synthesis of nanocrystalline TiO2 in alcohols. Powder Technol.2002,125, (1),39-44.
    15. Djerdj, I.; Arcon, D.; Jaglicic, Z.; Niederberger, M., Nonaqueous synthesis of manganese oxide nanoparticles, structural characterization, and magnetic properties. J. Phys. Chem. C 2007, 111,(9),3614-3623.
    16. Djerdj, I.; Garnweitner, G.; Su, D. S.; Niederberger, M., Morphology-controlled synthesis of anisotropic lanthanum hydroxide nanoparticles. J. Solid State Chem.2007,180, (7),2154-2165.
    17. Jones, A.; Aspinall, H. C.; Chalker, P. R.; Potter, R. J.; Manning, T. D.; Loo, Y. F.; O'Kane, R.; Gaskell, J. M.; Smith, L. M., MOCVD and ALD of high-κ dielectric oxides using alkoxide precursors. Chem. Vap. Deposition 2006,12, (2-3),83-98.
    18. Jeong, I. K.; Park, H. L; Mho, S. I., Photoluminescence of ZnGa2O4 mixed with InGaZnO4. Solid State Commun.1998,108, (11),823-826.
    19. Choi, S. K.; Moon, H. S.; Mho, S. I.; Kim, T. W.; Park, H. L, Tunable color emission in a Zn1-xCdxGa2O4 phosphor and solid solubility of CdGa2O4 in ZnGa2O4. Mater. Res. Bull.1998,33, 693-696.
    20. Tran, T. K.; Park, W.; Tomm, J. W.; Wagner, B. K.; Jacobsen, S. M.; Summers, C. J.; Yocom, P. N.; McClelland, S. K., Photoluminescence properties of ZnGa2O4:Mn powder phosphors. J. Appl. Phys.1995,78, (9),5691-5695.
    21. Vecht, A.; Smith, D. W.; Hadha, S. S. C.; Gibbans, C. S., New electron excited light emitting materials. J. Vac. Sci. Technol. B 1994,12, (2),781.
    22. Chakhovskali, A. G.; Kesling, W D.; Trujillo, J. T.; Hunt, C. E., Phosphor selection constraints in application of gated field-emission microcathodes to flat panel displays. J. Vac. Sci. Technol. B 1994,12, (2),785.
    23. Itoh, S.; Toki, H.; Sato, Y.; Morimoto, K.; Kishino, T., The ZnGa2O4 Phosphor for low-voltage blue cathodoluminesence. J. Electrochem. Soc.1991,138, (5),1509-1512.
    24. Shea, L. E.; Datta, R. K.; Brown, J., Low voltage cathodoluminescence of Mn2+-activated ZnGa2O4 J. Electrochem. Soc.1994,141, (8),2198.
    25. Minami, T.; Maeno, T.; Kuroi, Y; Takata, S., Preparation of ZnGa2O4:Mn phosphor thin films as emitting layers for electroluminescent devices. J. Vac. Sci. Technol. A 1996,14, (3),1736.
    26. Minami, T.; Maeno, T.; Kuroi, Y; Takata, S., High-luminance green-emitting thin-film electroluminescent devices using ZnGa2O4:Mn phosphor. Jpn. J. Appl. Phys.1995,34, L684-L687.
    27. Moon, J. W.; Moon, H. S.; Oh, E. S.; Kang, H. I.; Kim, J. S.; Park, H. L.; Kim, T. W., Dependence of the structural and the optical properties of ZnGa2O4 phosphors on the mixture molar ratio of ZnO and Ga2O3. Inernational Journal of Inorganic Material,2001,3, (6),575-578.
    28. Kima, J. S.; Parka, H. L.; Chonb, C. M.; Moonb, H. S.; Kim, T. W., The origin of emission color of reduced and oxidized ZnGa2O4 phosphors. Solid State Communication,.2004,129, (3), 163-167.
    29. Lee, Y. E.; Norta, D. P.; Park, C.; Roulean, C. M., Blue photoluminescence in ZnGa2O4 thin-film phosphors. J. Appl. Phys.2001,89,1653-1656.
    30. Kim, J. S.; Kang, H. I.; Kim, W. N.; Kim, J. I.; Choi, J. C.; Parka, H. L., Color variation of ZnGa2O4 phosphor by reduction-oxidation processes. Appl. Phys. Lett.,2003,82, (13),2029-1031.
    31. Jeong, I. K.; Parkb, H. L.; Mho, S. I., Two self-activated optical centers of blue emission in zinc gallate. Solid State Communications 1998,105, (3),179-183.
    32. Lee, Y. E.; Norton, D. P.; Park, C.; Rouleau, C. M., Blue photoluminescence in ZnGa2O4 thin-film phosphors. J. Appl. Phys.2001,89, (3),1653-1656.
    33. Gu, Z. J.; Liu, F.; Li, X. F.; Howe, J.; Xu, J.; Zhao, Y. L.; Pan, Z. W., Red, green, and blue luminescence from ZnGa2O4 nanowire arrays. J. Phys. Chem. Lett.2010,1,354-357.
    34. Minami, T.; Kuroi, Y; Miyata, T.; Yamada, H.; Takata, S., ZnGa2O4 as host material for multicolor-emitting phosphor layer of electroluminescent devices. J. Lumin.1997,72-74, 997-998.
    35. Shea, L. E.; Datta, R. K.; Brown, J. J., Photoluminescence of Mn2+-activated ZnGa2O4. J. Electrochem. Soc.1994,141,1950-1954.
    36. Rack, P. D.; Peterson, J. J.; Potter, M. D.; Park, W., Eu3+ and Cr3+ doping for red cathodoluminescence in ZnGa2O4. J. Mater. Res.2001,16, (5),1429-1433.
    37. Liu, B. D.; Bando, Y. S.; Dierre, B.; Sekiguchi, T.; Tang, C. C.; Mitome, M.; Wu, A. M.; Jiang, X.; Golberg, D., The synthesis, structure and cathodoluminescence of ellipsoid-shaped ZnGa2O4 nanorods. Nanotechnology 2009,20, (36),365705.
    38. Bae, S. Y.; Seo, H. W.; Na, C. W.; Park, J., Synthesis of blue-light-emitting ZnGa2O4 nanowires using chemical vapor deposition.. Chem. Commun.2004, (16),1834-1835.
    39. Hu, J. Q.; Bando, Y; Liu, Z. W., Synthesis of gallium-filled gallium oxide-zinc oxide composite coaxial nanotubes. Adv. Mater.2003,15, (12),1000-1003.
    40. Bae, S. Y; Lee, J.; Jung, H.; Park, J.; Ahn, J. P., Helical structure of single-crystalline ZnGa2O4 nanowires. J. Am. Chem. Soc.2005,127, (31),10802-10803.
    41. Gautam, U. K.; Bando, Y.; Zhan, J.; Costa, P M F J.; Fang, X.; Golberg, D., Ga-doped ZnS nanowires as precursors for ZnO/ZnGa2O4 nanotubes. Adv. Mater.2008,20, (4),810-814.
    42. Cao, M. H.; Djerdj, I.; Antonietti, M.; Niedererger, M., Nonaqueous synthesis of colloids ZnGa2O4 nanocrystals and their photoluminescence properties. Chem. Mater.2007,19, (24), 5830-5832.
    43. Swanson, H. E.; Fuyat, R. K.; Ugrinie, G M., Natl. Bur. Stand. Cric.1955,539Ⅳ,25.
    44. Geller, S. Crystal Structure of β-Ga2O3, J. Chem. Phys.1960,33, (3),676-684.
    45. Chen, T.; Tang, K., γ-Ga2O3 quantum dots with visible blue-green light emission property. Appl. Phys. Lett.2007,90, (5),053104.
    46. Schneider, S. J.; Waring, J. L., J. Res. Nat. Bur. Stand.1963, A67,19.
    47. Arean, C. O.; Bellan, A. L.; Mentruit, M. P.; Delgado, M. R.; Palomino, G T., Preparation and characterization of mesoporous γ-Ga2O3. Microporous and mesoporous Mater.2000,40,35-42.
    48. Delgado, M. R.; Morterra, C.; Cerrato, G.; Magnacca, G.; Arean, C. O., Surface characterization of γ-Ga2O3:a microcalorimetric and IR spectroscopic study of CO adsorption. Langmuir 2002,18, (26),10255-10260.
    49. Wang, T.; Farvid, S. S.; Abulikemu, M.; Radovanovic, P. V., Size-tunable photoluminescence in colloidal metastable γ-Ga2O3 nanocrystals. J. Am. Chem. Soc.2010,132, (27),9250-9252.
    50. Chen, C. C.; Herhold, A. B.; Johnson, C. C.; Alivisatos, A. P., Size dependence of structural metastability in semiconductor nanocrystals. Science 1997,276, (5311),398-401.
    51. Li, Q.; Ding, Y.; Li, F.; Xie, B.; Qian, Y. T., Solvothermal growth of vaterite in the presence of ethylene glycol,1,2-propanediol and glycerin. J. Crystal Growth 2002,236, (1-3),357.
    52. Vegard, L.; Dale, H., Untersuchungen ueber mischkristalle und Legierungen, Z. Krist.1928, 67,148-62.
    53. Furdyna, J. K., Diluted magnetic semiconductors. J. Appl. Phys.1988,64, (4), R29-R64.
    54. Wulff, G, Z. Krystallogr.1901,34,449-530.
    55. Zhong, X. H.; Han, M. Y; Dong, Z. L.; White, T. J.; Knoll, W. G, Composition-tunable ZnxCd1-xSe nanocrystals with high luminescence and stability. J. Am. Chem. Soc.2003,125, (28), 8589-8594.
    56. Bengtson, B.; Jagitsch, R.,Arkiv Kemi,Mineral. Geol.1947,24A,1.
    57. Navias, L., Preparation and properties of spinel made by vapor transport and diffusion in the system MgO-Al2O3. J. Am. Ceram. Soc.1961,44, (9),434.
    58. Branson, D. L., Kinetics and mechanism of the reaction between zinc oxide and aluminum oxide. J. Am. Ceram. Soc.1965,48, (11),591-595.
    59. Keller, J. T.; Agrawal, D. K.; McKinstry, A., Adv. Ceram. Mater.1988,3,420.
    60. Kubaschewski, O.; Alcock, C. B., International series on materials science and technology: metallurgical thermo-chemistry,5th ed., Pergamon Press, Oxford,1979.
    61. Qing, Y G.; Yu, S. K.; Sotaro, I.; Takao, N.; Atsushi, T.; Akihiro, I.; Hirokazu, T.,. Novel ultraviolet photoluminescence of ZnO/ZnGa2O4 composite layers Applied Surface Science 2010, 256, (22),6928-6931.
    62. Chang, K. W.; Wu, J. J., Formation of well-aligned ZnGa2O4 nanowires from Ga2O3/ZnO core-shell nanowires. J. Phys. Chem. B 2005,109, (28),13572-13577.
    63. Landes, C. F.; Braun, M.; El-Sayed, M. A., Observation of large changes in the band gap absorption energy of small CdSe nanoparticles induced by the adsorption of a strong hole acceptor. Nano Lett.2001,1, (11),667-670.
    64. Moulder, J. F.; Stick, W. F.; Sobol, P. E.; Bomben, K.D., Handbook of X-ray Photoelectron Spectroscopy, ed. J. Chanstain and R. C. King Jr., Physical Electronics, Inc., USA,1992.
    65. Phani, A. R.; Santucci, S.; DiNardo, S.; Lozzi, L.; Passacantando, M.; Picozzi, P.; Cantalni, P., Preparation and characterization of bulk ZnGa2O4. J. Mater. Sci.1998,33, (15),3969-3973.
    66. Zou, L.; Xiang, X.; Wei, M.; Li, F.; Evans, D. G, Single-crystalline ZnGa2O4 spinel phosphor via a single route. Inorg.Chem.2008,47, (4),1361-1369.
    67. Taguchi, H.; Shimada, M., X-Ray Photoelectron spectroscopy study of CaMnO3-δ. Phys. Status Solidi B 1985,131, (1), K59-K62,
    68. Blasse, G; Grabmaier, B. C., Luminescent Materials. Spring, Berlin,1994, p16.
    69. Alivisatos, A. P., Semiconductor clusters, nanocrystals, and quantum dots. Science,1996,271, (5480),933-937.
    70.关柏欧,等.光电子.激光,1998,9,(3),260.
    71. Bhargava, R. N.; Gallagher, D.; Hong, X., Optical properties of manganese-doped nanocrystals of ZnS. Phys. Rev. Lett.1994,72, (3),416-419.
    72. Davidson, M. R.; Stoupin, S.; DeVito, D.; Collingwood, J. F.; Segre, C.; Holloway, P. H., Local compositional environment of Er in ZnS:ErF3 thin film electroluminescent phosphors. J. Appl. Phys.2011,109, (5),074505.
    73. Vecht, A.; Smith, D. W.; Hadha, S. S. C.; Gibbans, C. S.; Koh, J.; Morton, D., New electron excited light emitting materials. J. Vac. Sci. Technol. B12,1994.781-784.
    74. Chakhovskali, A. G; Kesling, W. D.; Trujillo, J. T.; Hunt, C. E., Phosphor selection constraints in application of gated field-emission microcathodes to flat panel displays. J. Vac. Sci. Technol. B12,1994,12, (2),785-789.
    75. Vanheusden, K.; Warren, W. L.; Seager, C. H.; Tallant, D. R.; Voigt, J. A., Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys.1996,79, (10),7983-7990.
    76. Joseph, M.; Tabata, H.; Kawai, T., Ferroelectric behavior of Li-doped ZnO thin films on Si (100) by pulsed laser deposition. Appl. Phys. Lett.1999,74, (17),2534-2536.
    77. Yang, Y. C.; Song, C. X.; Wang, H.; Zeng F.; Pan, F., Giant piezoelectric d33 coefficient in ferroelectric vanadium doped ZnO films. Appl. Phys. Lett.2008,92,012907.
    78. Kaga, H.; Asahi, R.; Tani, T., Thermoelectric properties of highly textured Ca-doped (ZnO)mIn2O3 ceramics. Jap. J. Appl. Phys.2004,43, (10),7133-7136.
    79. Fan, H. J.; Knez, M.; Scholz, R.; Nielsch, K.; Pippel, E.; Hesse, D.; Zacharias, M.; Gosele, U., Monocrystalline spinel nanotube fabrication based on the Kirkendall effect. Nature Mater.2006,5, (8),627-631.
    80. Yang, Y.; Kim, D. S.; Scholz, R.; Knez, M.; Lee, S. M., Hierarchical three-dimensional ZnO and their shape-preserving transformation into hollow ZnAl2O4 nanostructures. Chem. Mater, 2008,20, (10),3487.
    81. Yang, Y.; Sun, X. W.; Tay, B. K.; Wang, J. X.; Dong Z. L.; Fan, H. M., Twinned Zn2TiO4 spinel nanowires using ZnO nanowires as a template. Adv. Mater.2007,19, (14),1839-1844.
    82. Wang,J. X.; Sun, X. W.; Xie, S. S.; Zhou W.; Yang, Y., Single-crystal and twinned Zn2SnO4 nanowires with axial periodical structures. Crystal Growth & Design 2008,8, (2),707.
    83. Feng, P.; Zhang, J. Y.; Wan, Q.; Wang, T. H., Photocurrent characteristics of individual ZnGa2O4 nanowires. J. Appl. Phys.2007,102,074309.
    84. Czekalla, C.; Guinard, J.; Hanisch, C.; Cao, B Q.; Kaidashev, E. M.; Boukos, N.; Travlos, A.; Renard, J.; Gayral, B.; Le Si Dang, D.; Lorenz, M.; Grundmann, M., Spatial fluctuations of optical emission from single ZnO/MgZnO nanowire quantum wells. Nanotechnology 2008,19, (11), 115202.
    85. Kim, J. S.; Kim, J. S.; Kim, T. W.; Kim, Y. G.; Chang, S. K.; Do, H. S., Energy transfer among three luminescent centers in full-color emitting ZnGa2O4:Mn2+, Cr3+ phosphors Solid State Communications 2004,131, (8),493-497.
    86. Kim, J. S.; Kim, J. S.; Park, H. L., Optical and structural properties of nanosized ZnGa2O4: Cr3+ phosphor. Solid State Communications 2004,131, (12),735-738.
    87. Yu, M.; Zhou, Y. H.; Wang, S. B., Citrate-gel synthesis and luminescent properties of ZnGa2O4 doped with Mn2+ and Eu3+. Mater. Lett.2002,56, (6),1007-1013.
    88. Minami, T.; Kuroi, Y.; Miyata, T.; Yamada, H.; Takata, S., ZnGa2O4 as host material for multicolor-emitting phosphor layer of electroluminescent devices. Journal of Luminescence.1997, 72-74,997-998.
    89. Fan, H. J.; Yang, Y.; Zacharias, M, ZnO-based ternary compound nanotubes and nanowires. J. Mater. Chem.2009,19,885-900.
    90. Cha, J. H.; Kim, K. H.; Park, Y S.; Park, S. J.; Choi, H. W., Photoluminescence characteristics of nanocrystalline ZnGa2O4 phosphors obtained at different sintering temperatures. Mol. Cryst. Liq. Cryst.2009,499,85-91.
    1. Hyeon, T., Chemical synthesis of magnetic nanoparticles. Chemical Communications 2003, (8), 927-934.
    2. Jacobs, K.; Zaziski, D.; Scher, E. C.; Herhold, A. B.; Alivisatos, A. P., Activation volumes for solid-solid transformations in nanocrystals. Science 2001,293, (5536),1803-1806.
    3. Michler, P.; Imamoglu, A.; Mason, M. D.; Carson, P. J.; Strouse, G. F.; Buratto, S. K., Quantum correlation among photons from a single quantum dot at room temperature. Nature 2000,406, (6799),968-970.
    4. Murray, C. B.; Kagan, C. R.; Bawendi, M. G, Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annual Review of Materials Science 2000, 30,545-610.
    5. Manna, L.; Scher, E. C.; Alivisatos, A. P., Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. Journal of the American Chemical Society 2000,122, (51),12700-12706.
    6. Jun, Y. W.; Lee, J. H.; Choi, J. S.; Cheon, J., Symmetry-controlled colloidal nanocrystals: Nonhydrolytic chemical synthesis and shape determining parameters. Journal of Physical Chemistry B 2005,109, (31),14795-14806.
    7. Joo, J.; Na, H. B.; Yu, T.; Yu, J. H.; Kim, Y W.; Wu, F. X.; Zhang, J. Z.; Hyeon, T., Generalized and facile synthesis of semiconducting metal sulfide nanocrystals. Journal of the American Chemical Society 2003,125,(36),11100-11105.
    8. Ghezelbash, A.; Korgel, B. A., Nickel sulfide and copper sulfide nanocrystal synthesis and polymorphism. Langmuir 2005,21, (21),9451-9456.
    9. Yu, W. W.; Peng, X. G., Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents:tunable reactivity of monomers. Angewandte Chemie-International Edition 2002,41, (13),2368-2371.
    10. Sigman, M. B.; Ghezelbash, A.; Hanrath, T.; Saunders, A. E.; Lee, F.; Korgel, B. A., Solventless synthesis of monodisperse Cu2S nanorods, nanodisks, and nanoplatelets. Journal of the American Chemical Society 2003,125, (51),16050-16057.
    11. Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D., A general strategy for nanocrystal synthesis. Nature 2005,437, (7055),121-124.
    12. Panda, A. B.; Glaspell, G; El-Shall, M. S., Microwave synthesis of highly aligned ultra narrow semiconductor rods and wires. Journal of the American Chemical Society 2006,128, (9), 2790-2791.
    13. Sheldrick, W. S.; Wachhold, M., Solvothermal synthesis of solid-state chalcogenidometalates Angew Chem. Int Ed.1997,36, (3),207-224.
    14. Gur, I.; Fromer, N. A.; Geier, M. L.; Alivisatos, A. P., Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 2005,310, (5747),462-465.
    15. Panthani, M. G; Akhavan, V.; Goodfellow, B.; Schmidthe, J. P.; Dunn, L.; Dodabalapur, A.; Barbara, P. F.; Korgel, B. A., Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) nanocrystal "inks" for printable photovoltaics. J. Am. Chem. Soc.2008,130, (49),16770-16777.
    16. Li, D.; McCann, J. T.; Xia, Y. N., Use of electrospinning to directly fabricate hollow nanofibers with functionalized inner and outer surfaces Small 2005,1, (1) 83-86.
    17. Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P., Hybrid nanorod-polymer solar cells. Science 2002,295, (5564),2425-2427.
    18. Xia,Y N.; Yang, P. D.; Sun, Y G.; Wu, Y Y.; Mayers, B.; Gates, B.; Yin, Y D.; Kim, E; Yan, H. Q., One-dimensional nanostructures:synthesis, characterization, and applications. Adv. Mater. 2003,15, (5),353-389.
    19. Yin, Y; Alivisatos, A. P., Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 2005,437, (7059),664-670.
    20. Peng, A. Z.; Peng, X. G, Nearly Monodisperse and shape-controlled CdSe nanocrystals via alternative routes:nucleation and growth. J. Am. Chem. Soc.2002,124, (13),3343-3353.
    21. Yoshino, K.; Ikari, T.; Shirakata, S.; Miyake, H.; Hiramatsu, K., Sharp band edge photoluminescence of high-purity CuInS2 single crystals. Appl. Phys. Lett.2001,78, (6),742-744.
    22. Erwin, S. C.; Zutic, I., Tailoring ferromagnetic chalcopyrites. Nat. Mater.2004,3, (6), 410-414.
    23. Nanu, M.; Schoonman, J.; Goossens, A., Nanocomposite three-dimensional solar cells obtained by chemical spray deposition. Nano Letters 2005,5, (9),1716-1719.
    24. Peng, H. L.; Schoen, D. T.; Meister, S.; Zhang, X. F.; Cui, Y, Synthesis and phase transformation of In2Se3 and CuInSe2 nanowires. J. Am. Chem. Soc.2007,129, (1),34-35.
    25. Pan, D. C.; An, L. J; Sun, Z. M.; Hou, W.; Yang, Y.; Yang, Z. Z.; Lu, Y F., Synthesis of Cu-In-S ternary nanocrystals with tunable structure and composition. J. Am. Chem. Soc.2008, 130, (17),5620-5621.
    26. Zhong, H. Z.; Zhou, Y; Ye, M. F.; He, Y J.; Ye, J. P.; He, C.; Yang, C. H.; Li, Y F., Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals. Chem. Mater.2008,20, (20),6434-6443.
    27. Tian, L.; Elim, H. I.; Ji, W.; Vittal, J. J., One-pot synthesis and third-order nonlinear optical properties of AgInS2 nanocrystals. Chem. Commun.2006, (41),4276-4278.
    28. Wang, D. S.; Zheng, W.; Hao, C. H.; Peng, Q.; Li, Y D., General synthesis of Ⅰ-Ⅲ-Ⅵ2 ternary semiconductor nanocrystals. Chem. Commun.2008, (22),2556-2558.
    29. Gou, X. L.; Cheng, F. Y; Shi, Y H.; Zhang, L.; Peng, S. J.; Chen, J.; Shen, P. W., Shape-controlled synthesis of ternary chalcogenide ZnIn2S4 and CuIn(S,Se)2 nano-/microstructures via facile solution route. J. Am. Chem. Soc.2006,128, (22),7222-7229.
    30. Koo, B.; Patel, R. N.; Korgel, B. A., Synthesis of CuInSe2 nanocrystals with trigonal pyramidal shape. J. Am. Chem. Soc.2009,131, (9),3134-3135.
    31. Du, W. M.; Qian, X. F.; Yin, J.; Gong, Q., Shape and phase controlled synthesis of monodisperse, single-crystalline ternary chalcogenide colloids via a convenient solution synthetic strategy. Chem.-Eur. J.2007,13,8840-8846.
    32. Matthes, H.; Viehmann, R.; Marschall, N., Improved optical quality of AgGaS2. Appl. Phys. Lett.1975,26, (5),237-239.
    33. Boyd, G D.; Kasper, H. M.; McFee, J. H., Linear and nonlinear optical properties of LiInS2. J. Appl. Phys.1973,44, (6),2809-2812.
    34. Dmitriev, V. G; Gurzadyan, G G; Kosasyon, D. N., Handbook of nonlinear optical crystals, in A.E. Siegman (Eds.), vol.64, Springer series in optical science, Springer Verlag,1991, pp.82-83, 158-159,173-179,189-191.
    35. Gulay, L. D.; Parasyuk, O. V., Crystal structure of the Ag6Hg082GeS5.82 compound. J. Alloys Comp.2001,327 (1-2),100-103.
    36. Kurasawa, M.; Kobayashi, S.; Kaneko, F.; Oishi, K.; Ohta, S. I., Preparation and characterization of AgGaS2 thin films by vacuum evaporation. J. Cryst. Growth 1996,167, (1-2), 151-156.
    37. Hu, J. Q.; Deng, B.; Tang, K. B.; Lu, Q. Y.; Jiang, R. R.; Qian, Y. T., Hydrothermal preparation and characterization of nanocrystalline:silver gallium sulfides. Solid State Sci.2001,3 (3) 275-278.
    38. Hu, J. Q.; Lu, Q. Y.; Tang, K. B.; Qian, Y. T.; Zhou, G. E.; Liu, X. M., Solvothermal reaction route to nanocrystalline semiconductors AgMS2 (M=Ga, In). Chem. Commun.1999,1093-1094.
    39. Pan, D. C.; Wang, X. L.; Zhou, H.; Xu, C. L.; Lu, Y F., Synthesis of quaternary semiconductor nanocrystals with tunable band gaps. Chem. Mater.2009,21, (12),2489-2493.
    40. Lee, S. M.; Cho, S. N.; Cheon, J., Anisotropic shape control of colloidal inorganic nanocrystals. Advanced Materials 2003,15, (5),441-444.
    41. Jun, Y W.; Lee, J. H.; Choi, J. S.; Cheon, J., Symmetry-controlled colloidal nanocrystals: nonhydrolytic chemical synthesis and shape determining parameters. Journal of Physical Chemistry B 2005,109, (31),14795-14806.
    42. Wulff, G; Zeitschrift, F., Krystallogr 1901,34,449.
    43. Donnay, J. D. H.; Harker, D., A new law of crystal morphology extending the law of Bravais. American Mineralogist 1937,22,446-447.
    44. Govender, K.; Boyle, D. S.; Kenway, P. B.; O'Brien, P., Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution. Journal of Materials Chemistry 2004,14, (16),2575-2591.
    45. Dean, J. A. (Eds), Lange's Handbook of chemistry, fifteenth edition.8.10,8.15.
    46. He, R.; Qian, X. F.; Yin, J.; Zhu, Z. K., Preparation of polychrome silver nanoparticles in different solvents. J. Mater. Chem.2002,12,3783-3786.
    7. Caruntu, D.; Yao, K.; Zhang, Z. X.; Austin, T.; Zhou, W. L.; O'Connor, C. J., One-step synthesis of nearly monodisperse, variable-shaped In2O3 nanocrystals in long chain alcohol solutions. J. Phys. Chem. C. 2010,114, (11),4875-4886.
    48. Narayanaswamy, A.; Xu, H. F.; Pradhan, N.; Kim, M. S.; Peng, X. G., Formation of nearly monodisperse In2O3 nanodots and oriented-attached nanoflowers:Hydrolysis and alcoholysis vs pyrolysis. J. Am. Chem. Soc.2006,128, (31),10310-10319.
    49. Cheng, Z.; Huang, L.; He, J.; Zhu, Y.; O'Brien, S., New nonhydrolytic route to synthesize crystalline BaTiO3 nanocrystals with surface capping ligands. J. Mater. Res.2006,21, (12) 3187-3195.
    50. VanPoppel, L. H.; Groy, T. L.; Caudle, M. T., Carbon-sulfur bond cleavage in Bis(N-alkyldithiocarbamato)cadmium(II) complexes:heterolytic desulfurization coupled to topochemical proton transfer. Inorganic Chemistry 2004,43, (10),3180-3188.
    51. Liu, B.; Zeng, H. C., Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. Journal of the American Chemical Society2003,125, (15),4430-4431.
    52. Marceddu, M.; Anedda, A.; Carbonaro, C. M.; Chiriu, D.; Corpino, R.; Ricci, P. C., Donor-acceptor pairs and excitons recombinations in AgGaS2. Appl. Sur. Sci.2006,253 (1) 300-305.
    53. Choi, H. I.; Eom, S. H.; Yu, P. Y., Soft phonon mode and the anomalous temperature dependence of band gap in AgGaS2. Phys. Status Solidi B.1999,215, (1),99-104.
    54. Frank, L.; Jessica, K.; Shelly, B.; Keith, B.; Michael, G.; Doron, G.; Sven, R.; David, C., Using density functional theory to design DNA base analogues with low oxidation potentials. J. Phys. Chem. B 2001,105, (27),6347-6352.
    55. Wei, X.; Xie, T. F.; Xu, D.; Zhao, Q.; Pang, S.; Wang, D. J., A study of the dynamic properties of photo-induced charge carriers at nanoporous TiO2/conductive substrate interfaces by the transient photovoltage technique. Nanotechnology 2008,19, (27),275707.
    56. Yoshino, K.; Komaki, H.; Kakeno, T.; Akaki, Y; Ikari, T. Growth and characterization of p-type AgInS2 crystals. J., Phy. Chem. Solids.2003,64, (9-10),1839-1844.
    57. Zhao, B. J.; Zhu, S.F.; Fu, S. S.; Li, Q. F.; Jin, Y R.; Li, Z. H.,New way of preparation and orientation processing of AgGaSe2 crystals. Mater. Res. Bull.2000,35, (9),1525-1532.
    58. Roth, R. S.; Parker, H. S.; Brower, Y S.,Mat. Res. Bull. Comments on the system Ag2S-In2S3. 1973,8, (3),333-335.
    1. Hillhouse, H. W.; Beard, M. C., Solar cells from colloidal nanocrystals:Fundamentals, materials, devices, and economics, Curr. Opin. Colloid Interface Sci.2009,14,245-259.
    2. Azzopardi, B.; Mutale, J., Life cycle analysis for future photovoltaic systems using hybrid solar cells, Renew. Sustain. Energ. Rev.2010,14,1130-1134.
    3. Fthenakis, V., Sustainability of photo voltaics:The case for thin-film solar cells, Renew. Sustain. Energ. Rev.2009,13,2746-2750.
    4. Lin, H.; Wang, W. L.; Liu, Y. Z.; Li, X.; Li, J. B., New trends for solar cell development and recent progress of dye sensitized solar cells, Front. Mater. Sci. China 2009,3,345-352.
    5. Wohrle, D.; Meissner, D., Organic solar-cells. Adv. Mat.1991,3, (3),129-138.
    6. Sayama, K., Sugihara, H.; Arakawa, H., Photoelectro-chemical properties of a porous Nb205 electrode sensitized by a ruthenium dye. Chem. Mater.1998,10, (12),3825-3832.
    7. Wurfel, P., Basic principles of solar ceils and the possible impact of nano-structures[C]// Photovoltaic Energy Conversion. Proceedings of 3rd World Conference,2003:2672-2675
    8. Melzer, C.; Koop, E. J.; Mihailetchi, V. D.; Blom, P. W. M., Advanced Functional Mater.2004, 14,(9),865-870.
    8. O'Regan, B.; Gratzel, M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991,353, (6346),737-740.
    9. Hara, K.; Sayama, K.; Arakwa, H., Semiconductor-sensitized solar cells based on nanocrystalline In2S3/In2O3 thin film electrodes. Solar Energy Mater. Solar Cells.2000.62, (4), 441-447.
    10. Huynh, W U.; Dittmer, J. J.; Alivisatos, A. P., Hybrid nanorod-polymer solar cells. Science 2002,295, (5564),2425-2427.
    11. Kushiya, K.; Tachiyuki, M.; Nagoya, Y., Fujimaki, A.; Sang, B. S.; Okumura, D.; Satoh, M.; Yamase, O., Progress in large-area Cu(InGa)Se2-based thin-film modules with a Zn(O,S,OH)x buffer layer. Solar Energy Materials&Solar Cells 2001,67, (1-4),11-20.
    12.李景琼,黄其煜,纳米薄膜太阳能电池,微电子技术,2006,(11),515-519.
    13. Gratzel, M., Perspectives for dye-sensitized nanocrystalline solar cells. Prog. Photovoltaics. 2000,8,(1),171-185.
    14.郑史烈,吴年强,李志章,太阳能电池材料Cu-In-Se的研究现状.材料导报,1997,11.(3),14-16.
    15. Panthani, M. G; Akhavan, V.; Goodfellow, B.; Schmidtke, J. P.; Dunn, L.; Dodabalapur, A.; Barbabra, P. F.; Korgel, B. A., Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) nanocrystal "inks" for printable photovoltaics. J. Am. Chem. Soc.2008,130, (49),16770-16777.
    16.庄大明,张弓,CIGS薄膜太阳能电池国内外研究形状以及发展前景.中国国际新材料产业研讨会,北京,2004.
    17. Bhattacharya, R. N.; Wiesner, H.; Berens, T. A.; Matson, R. J.; Keane, J.; Ramanathan, K.; Swartzlander, A.; Mason, A.; Noufi, R. N., Journal of the Electrochemical Society.1997,144, (4), 1376-1379.
    18. Francis, J.; DiSalvo, A., Solid-state chemistry:a rediscovered chemical frontier. Science 1991, 247, (4943),649-655.
    19. Sheldrick, W. S.; Wachhold, M.; Jobic, S.; Brec, R.; Canadell, E., New low-dimensional solids: tellurium-rich alkali metal tellurides. Adv. Mater.1997,9, (8),669-675.
    20. Samanta, L. K.; Ghosh D. K.; Bhar, G C., Some potential mixed chalcopyrite crystals for nonlinear laser devices. Phys. Stat. Sol. A 1986,93, (1), K51-K54.
    21. Shenoy, G K.; Dunlap, B. D.; Fradin, F. Y., Ternary superconductor, elservier pulishing, New York,1981.
    22. Friend, R. H.; Yoffe, A. D., Electronic properties of intercalation complexes of the transition metal dichalcogenides.Adv Phys.1987,36,1-94.
    23. Chianelli, R. R.; Siadati, M. H.; De la Rosa, M. P.; Berhault, G; Wilcoxon, J. P.; Bearden, R.; Abrams, B. L., Catalytic properties of single layers of transition metal sulfide catalytic materials. Catal. Rev-Sci. Eng.1984,48, (1),1-41.
    24. Berger, L. I.; Prochukhan, V. D., Ternary diamond like semiconductors, consultanta. Bureau, New York,1969.
    25. Elliott, E.; Tomlinson, R. D.; Parkes, J.; Hampshire, M. J., Some properties of flash evaporated CuInSe2 thin films. Thin Solid Film 1974; 20, (1), S25-S26.
    26. Koo, B.; Patel, R. N.; Korgel, B. A., Synthesis of CulnSe2 nanocrystals with trigonal pyramidal shape. J. Am. Chem. Soc.2008,131, (9),3134-3135.
    27. Ueng, H. Y.; Hwang, H. L., Defect structure of non-stoichiometric Cu-Ⅰ-Ⅲ-Ⅵ2 chalcopyrite semiconductors. Materials Science & Engineering B (Solid-State Materials for Advanced Technology 1992, B12, (3),261-267.
    28. Groenink, J. A.; Janse P. H., A generalized approach to the defect chemistry of ternary compounds. Zeitschrift fur Physikalische Chemie. Neue Folge.1978,110, (1),17-28.
    29.小长井诚,薄膜太阳能电池的基础应用,第五章,Cu(InGa)Se2系薄膜太阳能电池太阳光接技术研究组合2001.
    30. Du, W. M.; Qian, X. F.; Yin, J.; Gong, Q., Shape- and phase-controlled synthesis of monodisperse, single-crystalline ternary chalcogenide colloids through a convenient solution synthesis strategy. Chem.-Eur. J.2007,13,8840-8846.
    31. Donnay, J. D. H.; Harker, D., A new law of crystal morphology extending the law of Bravais. American Mineralogist 1937,22,446-447.
    32. Sigman, M. B.; Ghezelbash, A.; Hanrath, T.; Saunders, A. E.; Lee, F.; Korgel, B. A., Solventless synthesis of monodisperse Cu2S nanorods, nanodisks, and nanoplatelets. J. Am.Chem. Soc.2003,125, (51),16050-16057.
    33. Ghezelbash, A.; Korgel, B. A., Nickel sulfide and copper sulfide nanocrystal synthesis and polymorphism. Langmuir 2005,21, (21),9451-9456.
    34. Yin, Y.; Alivisatos, A. P., Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 2005,437, (7059),664-670.
    35. Tuebiscan Lab User Guide 1-1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700