用户名: 密码: 验证码:
钯合金纳米线的制备及性能的表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,利用纳米线特殊的光、电、催化等性能及其比表面积大、粒径小等特点制备高效而稳定的传感材料得到越来越多的关注。本文概述了纳米线电沉积制备的进展,并对各种纳米氢传感材料进行了综述。合金纳米氢传感材料能降低纯钯吸氢膨胀引起的“氢脆现象”、减少中毒并得到更长的使用寿命,但目前研究最多的是合金纳米膜氢传感材料,其灵敏度受纳米膜的厚度、基底性质等影响很大。故制备灵敏度更高、易操作、稳定的合金纳米线氢传感材料,成为另一个的研究热点。
     本文通过单脉冲阶边精饰法在高定向石墨(HOPG)上制备出成分和形貌可控的钯银合金纳米线阵列;采用对称正弦交流电沉积法在金微电极上制备了钯银、钯金合金纳米线。应用扫描电子显微镜(SEM)、X-射线能谱仪(EDX)、X-射线衍射仪(XRD)和透射电子显微镜(TEM)等测试手段对沉积物的形貌、结构和合金成分进行表征,并详细探讨和描述了各制备方法的沉积条件和机理。将所制得的钯银、钯金合金纳米线分别组装成氢传感器,应用电化学工作站在传感器的两端施加5mV的恒定电压检测了其氢传感性能。
     研究结果表明:
     (1)在组分0.5mmol·dm-3Pd(NO3)2+0.033mmol·dm-3AgNO3+2.0mol·dm-3NH4NO3, pH2-3的电解液中,超电势120-150mV、沉积时间200-350s时能在HOPG台阶边上得到直径60-150nm的Pd-Ag合金纳米线阵列,其中Ag含量16-25wt.%。超电势100-150mV时,纳米线在HOPG上的沉积机理可以通过活性点上瞬时形核和扩散控制3-D生长模型来解释。
     (2)选择Pd(NO3)2(1mmol·dm-3)+AgNO3(1mmol·dm-3)pH2-3的混合溶液作为电解液,在金微电极间单频正弦交流电沉积得到枝状Pd-Ag合金纳米线。根据循环伏安法和交流伏安法可知,此反应是可逆过程,受扩散控制的影响。随着频率的增加,Ag含量增加,纳米结构由无定形变为枝状纳米线。频率高于3MHz时,获得纳米结构的成功率下降。XRD、TEM等数据说明,此纳米线是一种面心立方体(fcc)晶格,具有均匀合金结构,且整个合金枝状结构是单晶的,其主干优先沿着<111>的方向生长,而侧枝分别沿着<200>和<111>方向生长。
     (3)选择1mmol·dm-3AuCl3·HCl·4H2O+5mmol·dm-3PdCl2+10mmol·dm-3HEPES pH3-4的混合溶液中作为电解液,在金微电极上双频正弦交流电沉积得到不同形貌的Pd-Au合金纳米线。实验证明,每一次沉积都必须有一个最小的起动电势为纳米线生长的启动提供能量。选择低频范围200-300Hz进行瞬间形核,再急剧提高频率进行连续生长。随着高频的增加,枝状纳米线向少枝的纳米线转变。XRD主衍射峰是<111>位面,表明纳米线优先沿着<111>的方向生长。此纳米线是一种具有典型fcc晶型的合金结构,且合金单晶枝状结构的主干沿着<111>方向生长,而其分枝分别沿着<200>和<111>方向生长。
     (4)单频交流电沉积受到高负双向电泳(DEP)的影响,随着频率的升高,金属离子形核变少,会限制纳米线的形成。双频交流电沉积时,低频交流电场近似于直流电场,形核数目较高且多形核于电极边缘突出点;当频率急剧升高时,pd2+和AuCl4-在已沉积Pd-Au粒子上发生同相沉积,需要的吉布斯自由能更低,少枝的纳米线能够在更高频率的电场条件下得到。
     (5)微电极上得到的Pd-Ag、Pd-Au合金纳米线可成功组装成氢传感器。相同粒径、合金成分接近的情况下,Pd-Au合金纳米线传感器适用的氢气浓度范围更大,响应时间更短。传感器稳定性高,重现性好。钯合金吸氢后,一方面,纳米线膨胀导致电阻降低,导电性增强;另一方面,PdHx化合物的生成使得电阻增大。两方面共同影响着最终的输出响应电流。实验结果证明,Pd合金纳米材料体积膨胀占据了主导地位。
     本论文在如下方面有创新性研究工作:(i)采用单脉冲电沉积法在HOPG上得到直径60-150nm的光滑的平行纳米线阵列,该方法制备纳米线阵列的影响因素更少,方法简单。并对纳米线在HOPG台阶上的成核与生长的机理提出了独特的见解。(ii)在微电极上利用溶液金属离子双频交流电沉积组装钯合金纳米线是一种创新。单频交流电沉积纳米线时,频率过高时合成纳米线的成功率很低,而低频时又容易形成无定形沉积物。本文提出了先低频瞬间成核、再高频连续生长的双频正弦交流电沉积方法来解决合成成功率问题,合成的纳米线分枝少。该方法能同时解决纳米线两端与电极的连线问题,一次沉积就能将纳米线连接到电极边缘上,不需要转移和连接纳米线。(iii)首次采用该方法制备出新型结构的钯合金纳米线,能解决纯钯吸氢膨胀发生氢脆引起的传感性能下降的问题。(iv)对溶液中双频正弦交流电沉积纳米线机理的提出了自己的见解。
Recently the preparation of efficient and steady hydrogen sensing materials has gained more and more attentions, because of the small sizes, large specific surface characterisitics and unique properties of optics, electricity, catalysis of the nanowires. This dissertation mainly gives an overview of the development of metal nanowires electrodeposition and the applications of various nano-based hydrogen sensing materials. The alloy nanostructures could reduce the "hydrogen embrittlement" caused by hydrogen absorbing of pure palladium and prevent poisoning and lengthen the life. However, the most attention has been focused on alloy nanofilm materials right now, the sensitivity of alloy nanofilm was controlled by the thickness of nanofilm, character of fundus and so on. Thereby, the preparation of alloy nanowire-based sensor became a new hotspot.
     Pd-Ag alloy nanowires with controllable composition and morphology were fabricated via electrodeposition on highly oriented pyrolytic graphite. Pd-Ag and Pd-Au alloy nanowires were obtained by single or dual frequency sine alternating current electrodeposition between gold microelectrodes. Morphology, structure and composition of the alloy deposits were characterized by scanning electron microscope (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD) and transmission electron microscope (TEM). The processes of three electrodepositions were described. The Pd-based alloy nanostructures can be assembled into hydrogen sensor and their hydrogen sensing properties were measured. Through applying5mV controlled in electrochemical workstation, the hydrogen sensitive property was detected. The main results were gained as following:
     (1) In the electrolyte composed of0.5mmol-dm3Pd(NO3)2+0.033mmol·dm3AgNO3+2.0mol·dm-3NH4NO3, pH2-3, the alloy nanowire arrays with the diameters from60~150nm have been obtained under the optimum condition with the overpotential range of120-150mV and deposition time200~350s, the content of Ag is16~25wt.%The nucleation-growth mechanism of Pd-Ag alloy nanowires electrodeposited under overpotential100-150mV can be described by instantaneous nucleation on the active sites and diffusion-controlled3-D growth.
     (2) The dendritic Pd-Ag alloy nanowires was obtained between gold microelectrodes by single frequency AC electrodepositon in the electrolyte composed of1mmol-dm-3Pd(NO3)2+1mmol·dm3AgNO3,pH2~3. According to the results of cyclic voltammetry and AC voltammetry, it shows that the reaction was reversible and occurred in the form of diffusion contol. With the frequency increasing, the Ag content in Pd-Ag alloy nanowires was increased and the nanostructure became dendritic from amorphism. On the basis of the results of XRD and TEM, Pd-Ag alloy nanowires was single-crystalline with a face centered cubic (fcc) lattice. And the single-crystalline is with trunk grown along the<111> direction and two group of branches grown along the<200> and<111> directions, respectively.
     (3) Different Pd-Au alloy nanostructures were obtained between gold microelectrodes by dual frequencies AC electrodepositon in the electrolyte composed of1mmol·dm-3AuCl3·HCl·4H2O+5mmol·dm-3PdCl2+10mmol·dm-3HEPES pH3~4. The deposition of the nanowires was found to depend on the magnitude of the applied ac field, and we found that in each case a minimum threshold of electric field is necessary to initiate the process. The best range of low frequency for nucleation was200~300Hz. Along with the frequency increasing, the Pd-Au nanostructure grew in one dimensional direction. The main diffraction peak of XRD is<111> planes, which shows the growth direction of nanowires is<111>. Pd-Au alloy nanowires was single-crystalline with a face centered cubic (fcc) lattice. And this single-crystalline is with trunk grown along the<111> direction and two group of branches grown along the<200> and<111> directions, respectively.
     (4) The chances of nucleation from aqueous solution to gold microelectorde was lower because of the high n-DEP in the method of single frequency AC depsotion. In the two-step DEP process developed herein, the number of the nucleus would be high since the ac electric field is vibrated at a low frequency, approximately close to be a dc field. When the frequency was increased sharply at second-step, the continuous growth of the nanowires would be possible due to the lower activation energy barrier required for the second-step in-phase electrodepositions.
     (5) The Pd-Ag, Pd-Au alloy nanowires obtained between microelectrodes can be successfully assembled into a hydrogen sensor. In the same condition of Pd alloy hydrogen sensor, Pd-Au based sensor has wider response range of hydrogen concentration and shorter response time. The sensors showed excellent reproductionity and stability. The action of hydrogen with palladium alloy nanostructure is the mechanism of solution and diffusion, which is a process of surface chemical adsorption, surface infiltration diffusion and desorption. For the sensors assembled by nanowires between microelectrodes, the hydrogen sensing mechanism depends on Pd alloy volume expansion and formation of Pd-H.
     The innovations in the dissertation as bellow:(i) The smooth and parallel Pd-Ag alloy nanowires arrays with60~150nm diameter were obtained by single pulse electrodeposition on HOPG. There were less factors that affect this method, so it was very simple. The mechanisms of nucleation and growth were proposed to explame the deposition of nanowires on the step of HOPG.(ii) The fabrication of Pd alloy nanowires by dual frequency AC electrodepositon between microelectrodes from electrolyte was also an innovation. When single frequency AC electrodepositon was applied, the success ratio of nanowire assembly was low in the high frequency, but the amorphism depositions were obtained easily in the low frequency. The method of dual frequency AC electrodepositon with instantaneous nucleation in the low frequency at first, then progressive growth in the high frequency was suggested for the first time to solve the problem of low success ratio. Less-branch nanowires was obtained using this method. The problem of connection between nanowires with Cu wires was also resolved.(iii) The new pattern Pd alloy nanowires were fabricated by AC electrodeposition for the first time for sovling the lower hydrogen sensitivity due to "hydrogen embrittlement" caused by hydrogen absorbing of pure palladium.(iv) The mechanism of dual frequency AC electrodepositon was proposed to understand the growth low of alloy nanowires.
引文
[1]张志焜,崔作林.纳米技术与纳米材料.北京:国防工业出版社,2001.
    [2]冷发启.纳米科学与纳米材料.南华大学学报(理工版).2002,16(4):74-78.
    [3]曹茂盛,关长斌,等.纳米材料导论.哈尔滨:哈尔滨工业大学出版社,2002.
    [4]杨剑,滕风恩.纳米材料综述.材料导报,1997,11(2):6-10.
    [5]朱心昆,张修庆等.纳米材料及其技术的评述.云南冶金,2001,30(4):40-44.
    [6]代淑芬.纳米材料的特性和发展.无锡南洋学院学报.2008,7(4):49-53.
    [7]孙玉绣,张大伟,金政伟等.纳米材料的制备方法及其应用.中国纺织出版社,2010.
    [8]曹立礼.纳米材料表面电子结构分析.清华大学出版社,2010.
    [9]马青.纳米材料的奇异宏观量子隧道效应.有色金属,2001,53(3):51.
    [10]宓一鸣.纳米科技研究现状及发展趋势.上海工程技术大学学报,2002,16(3):172-185.
    [11]Choi H J, Johnson J C, Lee R, et al. Self-organized GaN quantum wire UV lasers. Journal of Physical Chemistry B,2003,107(34):8721-8725.
    [12]夏玉静,秦洪春,管自生,李伟英,贺涛.氧化锌纳米材料及其在能源与环境中的应用.物理,2011,40(9):580-587.
    [13]李天保.纳米电子材料的特性及应用前景.电子工艺技术.2002,23(4):149-154.
    [14]Duan X F, Huang Y, Agarwal R, Liebe C M. Single-nanowire electrically driven lasers. Nature,2003,421(6920):241-245.
    [15]陈香生.纳米材料及其在石油化工催化剂和添加剂中的应用前景.炼油设计,2001,3:58-61.
    [16]姜会庆,陈一飞.纳米材料在医学中的应用.中国修复重建外科杂志,2002,16(6):435-437.
    [17]王文亮,李东升,巩育军等.21世纪最有前途的材料Ⅰ——纳米材料的结构与化学特性.延安大学学报(自然科学版),2000,19(4):56-60.
    [18]潘劲松,黄学辉,顾少轩.纳米材料的类别划分及其依据.材料导报,2000,14(11):28-29.
    [19]Bangar M A, Shirale D J, Chen Wilfred, et al. Single conducting polymer nanowire chemiresisitive label-free immunosensor for cancer biomarker. Anal. Chem.,2009,81:2168-2175.
    [20]Fang C, Agarwal A, Widjaja E, et al. Metallization of silicon nanowires and SERS response from a single metallized nanowire. Chemistry Meterials,2009, 21:3542-3548.
    [21]Cai L T, Skulason H, Kushmerick J G, et al. Nanowire-based molecular monolayer junctions:synthesis, assembly, and electrical characterization Journal of Physical Chemistry B,2004,108:2827-2832.
    [22]Sarkar S, Sinha A K, Pradhan M, et al. Redox transmetalation of prickly nickel nanowires for morphology controlled hierarchical synthesis of nickel/gold nanostructures for enhanced catalytic activity and SERS responsive functional material. Journal of Physical Chemistry C,2011,115:1659-1673.
    [23]Jung Y, Ko D K, Agarwal R. Synthesis and structural characterization of single-crystalline branched nanowire heterostructures. Nano Letters,2007,7(2): 264-268.
    [24]Xue D S, Shi H G. The fabrication and characteristic properties of amorphous Fel-xPx alloy nanowire arrays. Nanotechnology,2004,15:1752-1755.
    [25]Pang Y T, Meng G W, Zhang L D, et al. Arrays of ordered Pb nanowires and their optical properties for laminated polarizers. Advanced Functional Materials,2002,12(10):719-722
    [26]Pang Y T, Meng G W, Fang Q, et al. Silver nanowire array infrared polarizers. Nanotechnology,2003,14(1):20-24
    [27]Pang Y T, Meng G W, Zhang Y, et al. Copper nanowire arrays for infrared polarizer. Applied Physics A,2003,76(4):533-536
    [28]Pang Y T, Meng G W, Shan W J, et al. Micropolarizer of ordered Ni nanowire arrays embedded in porous anodic alumina membrane. Chinese Physics Letters, 2003,20(1):144-147
    [29]Fan S S, Chapline M G, Franklin N R, et al. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science,1999,283(5401): 512-514
    [30]Lee N S, Chung D S, Han I T, et al. Application of carbon nanotubes to field emission displays. Diamond and related materials,2001,10(2):265-270
    [31]Beeli C. Electro holography of ferromagnetic nanowires. NanoStructured Materials,1999,11(6):697-707
    [32]Kato S, Shinagawa H, Okada H, et al. Application of ferromagnetic nanowires in porous alumina arrays for mangnetic force generator. Science and Technology of Advanced Materials,2005,6(3-4):341-343
    [33]Muraoka H, Nakamura Y. Overview of read/write scheme for perpendicular magnetic recording utilizing single-pole and double layer media. Journal of Magnetism and Magnetic Materials,2001,235(1-3):10-19
    [34]Huang Y, Duan X F, Wei Qing Q, et al. Directed assembly of one-dimentional nanostructures into functional network. Science,2001,291(5504):630-633
    [35]Huang Y, Duan X F, Cui Y, et al. Logic gates and computation from assembled nanowire building blocks. Science,2001,294(5545):1313-1316
    [36]Skucha K, Fan Z, Jeon K, et al. Palladium/silicon nanowire schottky barrier-based hydrogen sensors. Sensors and Actuators B,2010,145(1): 232-238
    [37]McAlpine M C, Ahmad H, Wang D, et al. Highly orderd nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nature Materials, 2007,6:379-384
    [38]Massood Z A, Srikaanth S. Room temperature gas sensor based on metallic nanowires. Sensors and Actuators B,2005,111-112:13-21
    [39]Pung S Y, Hou X H, Dinsdale K, et al. In situ doping of ZnO nanowires using aerosol-assisted chemical vapour deposition. Nanotechnology,2010,21(34): 345602-345607
    [40]Kim F, Song J H, Yang P. Photochemical synthesis of gold nanorods. Journal of the American Chemical Society,2002,124:14316-14317
    [41]Zheng H J, Wang X D, Gu Z H. Preparation and characterization of highly ordered WO3 nanorod arrays. Acta Physico-Chimica Sinica,2009,25(8): 1650-1654
    [42]Yang Z, Huang Y, Dong B, et al. Template induced sol-gel synthesis of highly ordered LaNiO3 nanowires. Journal of Solid State Chemistry,2005,178(4): 1157-1164
    [43]Liu L F, Xie S S, Song L, et al. Electrochemical fabrication and structure of NixZn1-x alloy nanowires. Nanotechnology,2006,17:19-24
    [44]Yu S, Han Z, Yang J, et al. Synthesis and formation mechanism of La2O2S via a novel solvothermal pressure-relief process. Chemistry of Materials,1999, 11(2):192-194
    [45]Wang Z L. Nanowires and Nanobelts- Materials, properties, and devices.清华大学出版社,北京,2004,6-17
    [46]Wang J, Gao L. Hydrothermal synthesis and photoluminescence properties of ZnO nanowires. Solid State Communications,2004,132(3-4):269-271
    [47]杨防祖,姚士冰,周绍民.电化学沉积研究.厦门大学学报(自然科学版),2001,40(2):418-425
    [48]周迪,佘希林,宋国君.铜金属纳米线的制备及其图案化.现代化工,2007,27(12):42-44
    [49]王博,黄剑锋,夏常奎.电化学沉积法制备薄膜、涂层材料研究进展.陶瓷,2010.1:57-61
    [50]Han Y C, Liu S H, Han M, et al. Fabrication of hierarchical nanostructure of silver via a surfactant-free mixed solvents route. Crystal Growth Design,2009, 9:3941-3947
    [51]史洪伟,王红艳,张莉.PVA软模板法制备纳米硒.安徽大学学报(自然科学版),2009,33(5):77-80
    [52]Koh J H, Seo J A, Ahn S H, et al. Templated synthesis of porous TiO2 thin films using amphiphilic graft copolymer and their use in dye-sensitized solar cells. Thin Solid Films,2010,519(1):158-163
    [53]Gao Y H, Ma R J, Xiong D A, et al. Hollow spheres with α-cyclodextrin nanotube assembled shells. Carbohydrate Polymers,2011,83(4):1611-1616
    [54]Dong L, Hollis T, Fishwick S, et al. Modification of DNA-templated conductive polymer nanowires via click chemistry. Advanced Materials,2007,19(13): 1748-1751
    [55]Pal S K, Bahadur D. Shape controlled synthesis of iron-co-balt alloy magnetic nanoparticles using soft template method. Materials Letters,2010,64(10): 1127-1129
    [56]Schnepp Z, Wimbush S C, Antonietti M, et al. Synthesis of highly magnetic iron carbide nanoparticle via a biopolymer route. Chemistry of Materials,2010, 22(18):5340-5344
    [57]徐庆红,纪雪梅,马吉山.硬模板法合成钴铁氧体微米磁管及磁学纳米粒子.功能材料,2009,40(1):13-19
    [58]Weber J, Antonietti M, Thomas A. Mesoporous poly(benzimidazole) network via solvent mediated templating of hard spheres. Macromolecules,2007,40(4): 1299-1304
    [59]肖振林,夏云生,曲蛟.真空辅助硬模板法制备三维有序介孔氧化钕.无机化学学报,2011,27(1):92-94
    [60]Pang Y Y, Meng G W, Shang W J. Array of ordered Ag nanowires with different diameters areas embedded in one piece of anodic alumina membrane. Applied Physics A,2003,77:717-720
    [61]王德举,刘仲能,李学礼.介孔沸石材料.化学进展,2008,20(5):637-643
    [62]王晓坡,许红涛,陶磊明等.利用牛血清蛋白合成CdS纳米棒和网状纳米线.物理化学学报,2009,25(9):1769-1774
    [63]高艳新,孙丽超,谢素原等.电化学制备有序聚苯胺纳米线阵列.电化学,2012,18(1):51-55
    [64]鲁厚芳,闫康平,严季新等.金属有序纳米孔道阵列模板合成法.材料导报,2006.20:7-13
    [65]Masuda H, Fukuda K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science,1995,268(9): 1466-1468
    [66]张吉林,洪广言.利用AAO模板合成纳米材料.应用化学,2004,21(1):6-11
    [67]胡国锋,张海明,邸文文等.AAO模板的湿法刻蚀研究.半导体技术,2010,35(6):531-576
    [68]付琳捷,李美亚,汪晶等.制备工艺对多孔阳极氧化铝模板的影响.微纳电子技术,2008,45(2):109-113
    [69]Brumlik C J, Martin C R. Template synthesis of metal microtubules. Journal of the American Chemical Society,1991,113(8):3174-3175
    [70]周兰,杜凯,肖江等.直流电沉积制备纳米铜丝阵列.原子能科学技术,2008,42(9):769-772
    [71]Wang H, Xu C W,, Cheng F L, et al. Pd nanowire arrays as electrocatalysts for ethanol electrooxidation. Electrochemistry Communications,2007,9(5): 1212-1216
    [72]Chu S Z, Wada K, Inoue S, et al. Fabrication and characterization of ordered Ni nanostructures on glass by anodization and direct electrodeposition. Chemistry of Meterials,2002,14:4595-4602
    [73]Li H, Xu C L, Zhao G Y, et al. Fabrication and magnetic properties of amorphous Co0.71Pt0.29 nanowire arrays. Solid State Communications,2004, 132(6):399-403
    [74]Qin D H, Peng Y, Cao L, et al. A study of magnetic properties:FexCo1-x alloy nanowire arrays. Chemical Physics Letters,2003,374(5-6):661-666
    [75]王金银,岳二红,余刚等.AAO模板法制备Pd-Ni合金纳米线.稀有金属材料与工程,2007,36(1):126-129
    [76]Yue E H, Yu G, Ouyang Y J, et al. Electrochemical fabrication of Pd-Ag alloy nanowire arrays in anodic alumina oxide template. Journal of Materials Science and Technolgy,2008,24(6):850-856
    [77]Zong R L, Zhou J, Li Q, et al. Synthesis and optical properties of silver nanowire arrays embedded in anodic alumina membrane. Journal of Physical Chemistry B,2004,108(43):16713-16716
    [78]Nielsch K, Wehrspohn R B, Barthel J, et al. Hexagonally ordered 100 nm period nickel nanowire arrays. Applied Physics Letters,2001,79(9):1360-1362
    [79]Konishi Y, Motoyama M, Matsushima H, et al. Electrodeposition of Cu nanowire arrays with a template. Journal of Electroanalytical Chemistry,2003, 559:149-153
    [80]Fodor P S, Tsoi G M, Wenger L E. Fabrication and characterization of Co1-xFex alloy nanowires. Journal of Applied Physics,2002,91(10):8186-8188
    [81]王刚,阎康平,周川等.阳极氧化铝模板法制备纳米电子材料.电子元件与材料,2002,21(5):27-30
    [82]Sun L, Sarson P C, Chien C L. Electrochemical deposition of Nickel nanowire arrays in single crystal mica films. Applied Physics Letters,1999,19: 2803-2805
    [83]Pra L D D, Ferain E, Legras R, et al. Fabrication of a new gengration of track-etched templates and their use for the synthesis of metallic and organic nano-structures. Nuclear Instruments and Methods in Physics Research B,2002, 196(1-2):81-88
    [84]姚会军,刘杰,段敬来等.重离子径迹模板法合成银纳米线.物理化学学报,2007,23(4):489-492
    [85]姚会军,刘杰,段敬来等.离子径迹模板辅助法制备InSb纳米线.原子能科学技术,2008,42(Suppl.):295-299
    [86]Bhattacarrya S, Saha S K, Chakravrty D. Nanowire formation in a polymeric film. Applied Physics Letters,2000,76(26):3896-3898
    [87]Badri B, Hermann A M. Metal hydride batteries:Pd nanotube incorporation into the negative electrode. International Journal of Hydrogen Energy,2000,25(3): 249-253
    [88]Mbindyo JKN, Mallouk TE, Mattzela JB, et al. Template synthesis of metal nanowires containing monolayer molecular-junctions. Journal of the American Chemical Society,2002,124(15):4020-4026
    [89]Possin G E. A method for forming very small diameter wires. Review of Scientific Instruments,1970,41(5):772-774
    [90]Williams W D, Giordano N. Fabrication of 80 A metal wires. Review of Scientific Instruments,1984,55(3):410-412
    [91]Apel P Y, Blonskaya I V, Orelovitch O L, et al. Effect of nanosized surfactant molecules on the etching of ion tracks:New degrees of freedom in design of pore shape. Nuclear Instruments and Methods in Physics Research Section B, 2003,209:329-334
    [92]莫丹,刘杰,姚会军等.利用重离子径迹云母模板制备Au纳米线.原子能科学技术,2008,42(Suppl.):300-302
    [93]李海英.高定向石墨材料的研究进展.山西科技,2009,4:83-84
    [94]Morin S, Lachenwitzer A, Magnussen O M, et al. Potential controlled step flow to 3D step decoration transition:Ni electrodeposition on Ag (111). Physics Review Letters,1999,83(24):5066-5069
    [95]Li Q, Brown M A, Hemminger J C, et al. Luminescent polycrystalline cadmium selenide nanowires synthesized by cyclic electrodeposition/stripping coupled with step edge decoration. Chemistry of Meterials,2006,18(15):3432-3441
    [96]Zach M P, Hemminger J C, Penner R M, et al. Synthesis of molybdenum nanowires with millimeter-scale lengths using electrochemical step edge decoration. Chemistry of Meterials,2002,14(7):3206-3216
    [97]Zach M P, Penner R M. Nanocrystalline nickel nanoparticles. Advanced Materials,2000,12(12):878-883
    [98]Walter E C, Murray B J, Favier F, et al. Noble and coinage metal nanowires by electrochemical step edge decoration. Journal of Physical Chemistry B,2002, 106(44):11407-11411
    [99]Thompson M A, Menke E J, Martens C C, et al. Shrinking nanowires by kinetically controlled electrooxidation. Journal of Physical Chemistry B,2006, 110:36-41
    [100]Walter E C, Zach M P, Favier F, et al. Metal nanowire arrays by electrodeposition. ChemPhysChem,2003,4(2):131-138
    [101]Francis G M, Kuipers L, Cleaver J R A, et al. Diffusion controlled growth of metallic nanoclusters at selected surface sites. Journal of Applied Physics, 1996,79(6):2942-2947
    [102]Massood Z A, Deep B, Srikanth S, et al. Deposition of parallel arrays of palladium nanowires and electrical characterization using microelectrode contacts. Nanotechnology,2004,15(3):374-378
    [103]Yun M, Myung N V.. Electrochemically Grown Wires for Individually Addressable Sensor Arrays. Nano Letters,2004,4(3),419-422
    [104]Bangar M A., Ramanathan K, Yun M, et al. Controlled growth of a single palladium nanowire between microfabricated electrodes. Chemistry of Meterials,2004,16(24):4955-4959
    [105]Hayward R C, Saville D A, Aksay I A. Electrophoretic assembly of colloidal crystals with optically tunable micropatterns. Nature,2001,404(6773):56-59
    [106]Chandrasekharan N, Kamat P V. Assembling gold nanoparticles as nanostructured films using an electrophoretic approach. Nano Letters,2001, 1(2):67-70
    [107]Hermanson K D, Lumsdon S O, Williams J P, et al. Directed Assembly of One-Dimensional Nanostructures into Functional Networks. Science,2001, 294(2):1082-1086
    [108]向娟,田景华,田中群等.两步电沉积法制备单晶Au纳米线阵列.电化学,2004,10(1):9-13
    [109]王成伟,彭勇,潘善林等.α-Fe纳米线阵列膜磁各向异性的穆斯堡尔谱研究.物理学报,1999,48(11):2146-2150
    [110]Shen C M, Zhang X G, Li H L. DC electrochemical deposition of CdSe nanorods array using porous anodic aluminum oxide template. Materials Science and Engineering A,2001,303(1/2):19-23
    [111]孔令斌,李梦柯,陆梅等.模板法制备枝状Pt纳米线.高等学校化学学报,2003(3):513-515
    [112]徐怡,徐金霞,蒋林华.非晶Co及CoP纳米阵列的制备及研究.材料保护,2006,39(9):4-6
    [113]徐丽萍,袁志好,张晓光.基于多孔氧化铝模板电沉积法制备多级枝状金属纳米线.科学通报,2006(51):1871-1874
    [114]Hoffman P D, Sarangapani P S, Zhu Y X. Dielectrophoresis and AC-induced assembly in binary colloidal suspensions. Langmuir,2008,24:12164-12171
    [115]Bhatt K H, Velev O D. Control and Modeling of the Dielectrophoretic Assembly of On-Chip Nanoparticle Wires. Langmuir,2004,20(2):467-476
    [116]Pethig R, Huang Y, Wang X B, et al. Electromanipulation and separation of cells using travelling electric fields. Journal of Physics D:Applied Physics,1992, D25:881-888
    [117]Arnold W M, Zimmermann U. Electrorotation development of a technique for dielectric measurements on individual cells and particles. Journal of Electrostatics,1988,21:151-191
    [118]Gierhart B C, Howitt D G, Chen S J, et al. Frequency dependence of gold nanoparticle superassembly by dielectrophoresis. Langmuir,2007,23: 12450-12456
    [119]Bezryadin A, Westervelt R M, Tinkham M. Self-assembled chains of graphitized carbon nanoparticles. Applied Physics Letters,1999,74(18):2699-2701
    [120]Jung S H, Chen C, Cha S H, et al. Spontaneous self-organization enables dielectrophoresis of small nanoparticles and formation of photoconductive microbridges. Journal of the American Chemical Society,2011,133(28): 10688-10691
    [121]Grabar K C, Allison K J, Baker B E, et al. Two-dimensional arrays of colloidal gold particles:a flexible approach to macroscopic metal surfaces. Langmuir, 1996,12(10):2353-2361
    [122]Maijenburg A W, Maas M G, Rodijk E J B, et al. Dielectrophoretic alignment of metal and metal oxide nanowires and nanotubes:a universal set of parameters for bridging pre-patterned microelectrodes. Journal of Colloid and Interface Science,2011,355:486-493
    [123]Cui Q Z, Rajathurai K, Jia W Z, et al. Synthesis of single crystalline tin nanorods and their application as nanosoldering materials. Journal of Physical Chemistry C,2010,114(50):21938-21942
    [124]Sarker B K., Shekhar S, Khondaker S L. Semiconducting Enriched Carbon Nanotube Aligned Arrays of Tunable Density and Their Electrical Transport Properties. ACS Nano,2011,5(8):6297-6305
    [125]Cheng C D, Gonela R K, Gu Q, et al. Self-assembly of metallic nanowires from aqueous solution. Nano Letters,2005,5(1):175-178
    [126]Yin A J, Li J, Jian W, et al. Fabrication of highly ordered metallic nanowire arrays by electrodeposition. Applied Physics Letters,2001,79(7):1039-1041
    [127]Ramos A, Morgan H, Green N G, et al. AC electrokinetics:a review of forces in microelectrode structures. Journal of Physics D:Applied Physics,1998,31(18): 2338-2353
    [128]Morales A M, Lieber C M. A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires. Science,1998,279(5348):208-211
    [129]Lu Y Q, Ji H F. Electric field-directed assembly of gold and platinum nanowires from an electrolysis process. Electrochemistry Communications,2008,10(2): 222-224
    [130]Ranjan N, Vinzelberg V, Mertig M. Growing one-dimensional metallic nanowires by dielectrophoresis. Small,2006,2(12):1490-1496
    [131]Robison R A, Stokes R H. Electrolyte solutions,2nd ed, Butterworth Publications limied:London,1965
    [132]袁建国,钟强,周兆英等.无模板交流电沉积法制备金纳米/微米线.稀有金属材料与工程,2011,40(10):1864-1866
    [133]Kawasaki J K. and Arnold C B. Synthesis of Platinum Dendrites and Nanowires via Directed Electrochemical Nanowire Assembly. Nano Letters,2011,11: 781-785
    [134]Cheng Y, Yu G, Tang L L, et al. Self assembled dendritic nanowires of Au-Pt alloy through electrodeposition from solution under AC-fields. Journal of Crystal Growth.,2011,334(1):181-188
    [135]Tang L L, Yu G, Si W W, et al. Pd-Ag Alloy Dendritic Nanowires:Fabrication and Application in Hydrogen Sensor. Journal of Nanoscience and Nanotechnology,2011,11:10255-10261
    [136]侯长军,范小花,范瑛等.氢敏材料的研究进展.电子元件与材料,2006,25(10):1-5
    [137]陶长元,唐金晶,杜军等.氢敏材料及清欠传感器的研究进展.材料导报,2005,19(2):9-16
    [138]Fields L L, Zheng J P, Cheng Y, et al. Room-temperature low-power hydrogen sensor based on a single tin dioxide nanobelt. Applied Physics Letters,2006, 88:263102(three pages)
    [139]Varghese O K, Gong D, Paulose M, et al. Hydrogen sensing using titania nanotubes. Sensors and Actuators B,2003,93(1/3):338-344
    [140]Mor G K, Varghese O K, Paulose M, et al. Fabrication of hydrogen sensors with transparent titanium oxide nanotube-array thin films as sensing elements. Thin Solid Films,2006,496:42-48
    [141]白硕,丁冬雁,宁聪琴等.Nb掺杂Ti02纳米管的制备及其氢敏特性.材料科学,2010,47(3):147-151
    [142]马士才,季惠明,张晨.Ti02纳米管气敏材料的研究与应用.材料导报,2006,20(z2):111-114
    [143]Wang B, Zhu L F, Yang Y H, et al. Fabrication of a SnO2 nanowire gas sensor and sensor performance for hydrogen. Journal of Physical Chemistry C,2008, 112:6643-6647
    [144]Gong J W, Chen Q F, Fei W F, et al. Micromachined nanocrystalline SnO2 chemical gas sensors for electronic nose. Sensors and Actuators B,2004,102: 117-125
    [145]Davazoglou D, Dritsas T. Fabrication and calibration of a gas sensor based on chemically vapor deposited WO3 films on silicon substrates application to H2 sensing. Sensors and Actuators B,2001,77:359-362
    [146]Trinchi A, Wlodarski W, Li Y X. Hydrogen sensitive Ga2O3 schottky diode sensor based on SiC. Sensors and Actuators B,2004,100:94-98
    [147]Wang H T, Kang B S, Ren F. Hydrogen-selective sensing at room temperature with ZnO nanorods. Applied Physics Letters,2005,86:243503-243505
    [148]Tostenson E T, Ren Z F, Chou T W. Advances in the science and technology of carbon nanotubes and their composites:a review. Journal of Computer Science and Technology,2001,61(13):1899-1912
    [149]任宏亮,何金田,梁二军等.纳米气敏传感器研究进展.纳米器件与技术,2003,6:16-21
    [150]Jing K, Franklin N R, Zhou C W, et al. Nanotube molecular wires as chemical sensors. Science,2000,287:622-625
    [151]Kumar M K, Reddy A L M, Ramaprabhu S. Exfoliated single-walled carbon nanotube-based hydrogen sensor. Sensors and Actuators B,2008,130: 653-660
    [152]Kong J, Chapline M G, Dai H. Fuctionalized carbon nanotubes for molecular hydrogen sensors. Advanced Materials,2001,13:1384-1386
    [153]Sayagoa I, Terradob E, Lafuenteb E, et al. Hydrogen sensors based on carbon nanotubes thin films. Synthetic Metals,2005,148:15-19
    [154]Wong Y M, Kang W P, Davidson J L, et al. A novel microelectronic gas sensor utilizing carbon nanotubes for hydrogen gas detection. Sensors and Actuators B, 2003,93:327-332
    [155]Ding Dongyan, Chen Zhi, Rajaputra S, et al. A novel microelectronic gas sensor utilizing carbon nanotubes for hydrogen gas detection. Sensors and Actuators B, 2007,124:12-17
    [156]肖恺,闫一功,雷良才等.Pd-Ag合金在电化学氢传感器中的应用研究.腐蚀科学与防护技术,2002,14(3):125-128
    [157]欧阳跃军,余刚,唐莉莉等.纳米钯基氢传感材料.传感器与微系统,2010,29(4):5-8
    [158]Atashbar M Z, Banerji D, Singamaneni S. Room temperature hydrogen sensor based on palladium nanowires. IEEE Sensors Journal,2005,5(5):792-797
    [159]Atashbar M Z, Bliznyuk V, Banerji D, et al. Deposition of parrllel arrays of palladium nanowires on highly oriented pyrolytic graphite. Journal of Alloy and Compounds,2004,372:107-110
    [160]nnik E, K(?)l(?)inc N, Ozturk Z Z. Tempertature-dependent H2 gas-sensing properties of fabricated Pd nanowires using highly oriented pyrolytic graphite. Journal of Applied Physics,2010,108(5):054317
    [161]Cherevko S, Kulyk N, Fu J, et al. Hydrogen sensing performance of electrodeposited conoidal palladium nanowire and nanotube arrays. Sensors and Actuators B,2009,136:388-391
    [162]Im Y, Lee C, Vasquez R P, et al. Investigation of a single Pd nanowire for use as a hydrogen sensor. Small,2006,2(3):356-358
    [163]Dasari R, Zamborini F P. Hydrogen switches and sensors fabricated by combining electropolymerization and Pd electrodeposition at microgap electrodes. Journal of the American Chemical Society,2008,130(48): 16138-16139
    [164]Yu S F, Welp U, Hua L Z, et al. Fabrication of palladium nanotubes and their application in hydrogen sensing. Chemistry of Meterials,2005,17:3445-3450
    [165]Sonwane C G, Wilcox J, Ma Y H. Solubility of hydrogen in Pd-Ag and Pd-Au binary alloys using density functional theory. Journal of Physical Chemistry B, 2006,110:24549-24558
    [166]Tong H D, vanden Berg A H J, Gardeniers J G E, et al. Preparation of palladium-silver alloy films by a dual-sputtering technique and its application in hydrogen separation membrane. Thin Solid Films,2005,479:89-94
    [167]Wang Min, Feng Ying. Palladium-silver thin film for hydrogen sensing. Sensors and Actuators B,2007,123(1):101-106
    [168]Cheng Y T, Li Y, Li D, et al. Preparation and characterization of Pd/Ni thin films for hydrogen sensing. Sensors and Actuators B,1996,30(1):11-16
    [169]Mandelis A, Garcia J A. Pd/PVDF thin film hydrogen sensor based on laser-amplitude-modulated optical-transmittance:dependence on H2 concentration and device physics. Sensors and Actuators B,1998,49(3): 258-267
    [170]Sun Y G, Tao Z L, Chen J, et al. Ag Nanowires coated with Ag/Pd alloy sheaths and their use as substrates for reversible absorption and desorption of hydrogen. Journal of the American Chemical Society,2004,126:5940-5941
    [171]周保平,余刚,欧阳跃军等.碳纤维上电沉积Pd-Ag合金纳米粒子链及其氢传感性能.物理化学学报,2010,26(1):237-243
    [172]Si W, Yu G, Zhou B P, et al. Pd-Ag alloy nanoparticle chains deposited on carbon fiber for hydrogen sensing. Sensor Letters,2012,10(1-2):26-32
    [173]Wang Z, Hu Y M, Wang W, et al. Fast and highly-sensitive hydrogen sensing of Nb2O5 nanowires at room temperature. International Journal of Hydrogen Energy,2012,37(5):4526-4532
    [174]Tobiska P, Hugon O, Trouillet A, et al. An integrated optic hydrogen sensor based on SPR palladium. Sensors and Actuators B,2001,74:168-172
    [175]Scharnagl K, Eriksson M, Karthigeyan A, et al. Hydrogen detection at high concentrations with stabilised palladium. Sensors and Actuators B,2001,78: 138-143
    [176]Mukhopadhyay I, Freyland W. Electrodeposition of Ti nanowires on highly oriented pyrolytic graphite from an ionic liquid at room temperature. Langmuir, 2003,19(6):1951-1953
    [177]Smith P A, Nordquist C D, Jackson T N, et al. Electric field assisted assembly and alignment of metallic nanowires. Applied Physics Letters,2000,77(9): 1399-1401
    [178]覃东棉,刘桂华,李小斌等.Debye-Huckell理论的研究进展.材料导报,2010,24(13):107-112,132
    [179]Pohl H A. Dielectrophoresis:The behavior of neutral matter in nonuniform electric fields. Cambridge:Cambridge University Press,1978,38-47
    [180]Jones T B. Electromechanics of particles. Cambridge:Cambridge University Press,1995,140
    [181]Ramos A, Morgan H, Green N G, et al. Electrokinetics:A review of forces in microelectrode structures. Journal of Physics D:Applied Physics,1998,31: 2338-2353
    [182]Gray D M. In water encyclopedia; Lehr J H, Lehr J W, Lehr J K, et al. New York, 2005:429-433
    [183]Lide D R. CRC handbook of chemistry and physics. Boca Raton:CRC Press, 1993,6-10
    [184]Green N G, Ramos A, Gonzalez A, et al. Fluid flow induced by nonuniform AC electric fields in electrolytes on microelectrodes. I. Experimental measurements. Physical Review E,2000,61:4011-4018
    [185]陈玉,成永红,孙颖等.指形电极结构设计及其对快脉冲真空闪络特性的影响.高电压技术,2009,35(4):761-765
    [186]郑小林,鄢佳文,胡宁等.基于直列式交错微电极阵列的细胞电融合.传感器与微系统,2012,31(2):23-25,29
    [187]Cheng C, Haynie D T. Hayniea Growth of single conductive nanowires at prescribed loci, Applied Physics Letters,2005,87:263112-1-3
    [188]Ranjan N, Mertig M, Cuniberti G, et al. Dielectrophoretic growth of metallic nanowires and microwires:theory and experiments, Langmuir,2010,26: 552-559
    [189]Oriani R A. The physical and metallurgical aspects of hydrogen in metals. In proceeding of 4th international conference on cold fusion, vol.1:Plenary session papers, Dec.6-9,1993, Lahaina, Maui, Hawaii, p.18-1
    [190]Frieske H, wicke E, Bunsenges B. Physical Chemistry,1973,77:50
    [191]Wicke E, Brodowsky H. Hydrogen in metals. Springer-Verlag, Berlin,1978,2: 73

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700