用户名: 密码: 验证码:
PP/PA6/TiO_2纳米复合材料的制备、结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用纳米TiO_2改性聚丙烯/聚酰胺6(PP/PA6)共混物既可提升基体材料力学性能,又能赋予基体材料抗菌等功能。为提高纳米TiO_2与基体聚合物的相容性并防止其团聚采用了含不同官能团的硅烷偶联剂和甲苯-2,4-二异氰酸酯(TDI)对纳米TiO_2进行表面修饰,通过润湿性测试对表面修饰效果进行了评价分析,发现采用TDI表面修饰效果最好。在此基础上系统研究了投料比、反应温度和反应时间等因素对TDI与纳米TiO_2表面羟基(—OH)间化学反应的影响;结果表明,在投料比[TDI[/[—OH]=6:1(mol/mol),反应温度为95℃,反应时间为6 h时,纳米TiO_2表面—OH反应程度达92.31 mol%。利用红外光谱(FTIR)和热失重分析(TGA)对表面修饰纳米TiO_2进行测试分析表明,TDI以化学键形式连接在纳米TiO_2表面;此外,还利用透射电镜(TEM)对TDI修饰纳米TiO_2观察发现,纳米TiO_2能均匀分散在甲苯中并保持原始尺寸。
     通过熔融共混法利用表面修饰纳米TiO_2表面—NCO与PA6的端氨基(—NH_2)和羧基(—COOH)间的化学反应以增强纳米TiO_2与PP/PA6间的界面作用制备了PP/PA6/TiO_2纳米复合材料。对PP/PA6/TiO_2纳米复合材料静态力学和动态力学性能测试发现,少量纳米TiO_2能显著提高基体材料力学性能;填充5份大分子增容剂PP-g-MAH和3份表面修饰纳米TiO_2能使PP/PA6/TiO_2纳米复合材料综合性能达到最优;相对PP/PA6共混物其拉伸强度、缺口冲击强度和弯曲强度分别提高了50.55%、71.84%和52.58%。采用扫描电镜(SEM)和透射电镜(TEM)等测试技术对PP/PA6/TiO_2复合材料的形态结构以及纳米TiO_2的分散状况进行了研究,发现PA6以分散相均匀分散在连续相PP中,纳米TiO_2主要分散在PA6相以及PP与PA6界面区域。此外,还发现纳米TiO_2和PP-g-MAH加入到PP/PA6共混物中能使分散相PA6相尺寸减小,说明纳米TiO_2对共混物具有良好的增容作用;在添加纳米TiO_2的基础上继续添加PP-g-MAH能进一步提升基体材料的力学性能。
     采用DSC方法系统研究了PP/PA6/TiO_2纳米复合材料等温和非等温结晶动力学及其熔融行为。用Avrami方法对等温结晶动力学分析发现,对非增容复合材料,纳米TiO_2加快了PP和PA6相的等温结晶速率。结晶成核理论计算结果表明纳米TiO_2促进了PP和PA6相的成核。对增容复合材料而言,对PP相等温结晶性能的影响不大,但纳米TiO_2能显著影响PA6相的等温结晶行为,由于部分PA6分子链接枝了纳米TiO_2使其运动受到阻碍,使结晶速率下降,等温结晶活化能增大。对等温结晶熔融行为研究发现,所有的PP/PA6/TiO_2纳米复合材料中PP相基本上是呈熔融单峰;PA6相呈现多重熔融峰,较高结晶温度下表现为双重熔融峰,较低温度下表现为三重熔融峰。纳米TiO_2使熔融峰Ⅰ和Ⅱ的温度升高,这是因为纳米TiO_2对PA6具有成核作用,生成更为完善的晶体。熔融峰Ⅲ是更稳定晶体熔融的结果,熔融温度基本上不随结晶温度而变化。多重熔融峰是由不同尺寸或不同完善程度的晶体在升温过程中再结晶和再熔融引起的。非等温结晶动力学研究发现,纳米TiO_2对PP和PA6相起到异相成核作用,使结晶在较高温度下开始;但纳米TiO_2的存在又阻碍了结晶增长使其结晶速率减慢。低含量时,纳米TiO_2能降低非等温结晶活化能;随着纳米TiO_2含量的提高,增容体系中PA6相的活化能有所提高。纳米TiO_2的存在使结晶度下降,而结晶度随着冷却速率的提高呈先增加后下降的变化趋势。这是因为纳米TiO_2对聚合物的结晶具有两方面的影响,一方面对聚合物起到成核作用,另一方面,纳米TiO_2与聚合物间的相互作用又阻碍了大分子链的自由运动。这两种作用相互竞争,导致结晶度的这种变化。非等温结晶熔融行为发现PA6相也出现了多重熔融峰,随降温速率不同表现为单熔融峰或双重熔融行为。
     对PP/PA6/TiO_2纳米复合材料稳态流变和动态流变性能测试发现,少量纳米TiO_2能使PP/PA6/TiO_2纳米复合材料熔体黏度下降;在增容体系中添加一定量的纳米TiO_2使其流动指数(非牛顿指数)n值增大,但纳米TiO_2量超过一定量时,流动指数n反而又会减小,使PP/PA6/TiO_2纳米复合材料的假塑性增强;少量纳米TiO_2使流活化能降低,熔体黏度对温度的敏感性下降,这是由于纳米TiO_2在基体聚合物中分散均匀,对基体聚合物良好的润滑作用所引起的。动态流变性能研究发现,少量纳米TiO_2使PP/PA6/TiO_2纳米复合材料的剪切储能模量G′,损耗模量G″和复数黏度η~*都有所提高,由此表明纳米TiO_2能同时赋予基体材料以良好的弹性和黏性。
     抗菌实验表明,在2h内,PP/PA6/TiO_2纳米复合材料对枯草芽孢杆菌、金黄色葡萄球菌和大肠杆菌的抗菌率达90%以上。热稳定性能研究表明,纳米TiO_2能明显提高PP/PA6基体材料的热稳定性;此外,从热失重数据可知理论失重率和实际失重率在误差范围内相等,说明纳米TiO_2在PP/PA6基体中分散均匀。
Incorporation of titanium dioxide(TiO_2) nanoparticles into polypropylene/polyamide 6(PP/PA6) blends may give the matrix materials excellent mechanical properties and strong antibacterial and sterilization function.In order to improve the compatibility of TiO_2 nanoparticle and polymer and to hinder them aggregate together,silane coupling agents with different function groups and toluene-2,4-diisocyanate(TDI) were used to functionalize TiO_2 nanoparticle.It was found that TDI was the best modifier to functionalize TiO_2 nanoparticles.The main effecting factors on the reaction of TDI with the hydroxyl at the surface of TiO_2 nanoparticles had been investigated by determining the reaction extent of hydroxyl group.It was found that the reaction maintained at 95℃for 6 hours with the fixed mole ratio of[TDI]/[—OH]of 6:1,the reaction extent of hydroxyl reached 92.31 mol%.Fourier transform infrared spectrum(FTIR) spectroscopy and thermogravimetric analysis(TGA) were employed to characterize the TDI-functionalized TiO_2 and the results show the TDI molecules were covalently bonded at the nanoparticle surface.In addition,transmission electron microscope(TEM) images showed that the functionalized-TiO_2 can be well dispersed in toluene with the pristine size.
     PP/PA6 based nanocomposites were prepared via melt blending.The mechanical properties were analyzed by static mechanical test and dynamic mechanical thermal analyzer(DMTA) and the results indicated that the mechanic properties can be significantly increased with the addition of functionalized-TiO_2.The comprehensive properties of the PP/PA6/TiO_2 nanocomposites will achieve their maximum with 3 phr functionalized-TiO_2 and 5 phr compatibilizer of PP-g-MAH.Compared with the uncompatibilized PP/PA6 blends,the tensile strength,notched impact strength and flexural strength of the PP-g-MAH compatibilized PP/PA6 blends with 3 phr of TDI-functionalized TiO_2 have increased 50.55%、71.84%and 52.58%,respectively.Scanning electron microscopy (SEM) and TEM were used to assess fracture surface morphology and dispersion of the TDI-functionalized TiO_2,respectively.Owing to the isocyanate(—NCO) at the TDI-functionalized TiO_2 surface can react with the—NH_2 or carboxyl groups of PA6 during melting blend,i.e.there are portions of PA6 will be grafted onto the nanoparticle surface,SEM and TEM micrographs showing that PA6 particles are uniformly distributed in the continuous PP phase and the functionalized-TiO_2 are preferentially located in the PA6 phase and the interface of PP and PA6 phase.In addition,it was found that the PA6 domain size would decrease with the incorporation of functionalized-TiO_2 and PP-g-MAH,which indicated they have strong compatibilizing effect on the immiscible PP/PA6 blends.In the presence of PP-g-MAH,the mechanical properties of PP/PA6 based nanocomposites filled with functionalized-TiO_2 will be further improved.
     The isothermal and non-isothermal crystallization and melting behavior of PP/PA6 based nanocomposites were investigated by differential scanning calorimetry(DSC).The Avrami equation was used to describe the isothermal crystallization kinetics.It was found the TiO_2 nanoparticles act as effective nucleating agents,the crystallization rate of PP and PA6 in the uncompatibilized PP/PA6 based nanocomposites is increased.The TiO_2 nanoparticles have less influence on the isothermal crystallization of PP phase in PP-g-MAH compatibilized nanocomposites. However the TiO_2 nanoparticles play an important role in the isothermal crystallization behavior of PA6 phase.Owing to portions of PA6 chains were grafted at the TiO_2 surface,which hinder the motion of PA6 chains, incorporation of TiO_2 nanoparticles result in higher isothermal crystallization activation energies phase and lower crystallization rate of PA6.All PP phases exhibit single melting endotherms in the as-prepared nanocomposites isothermally crystallized,however PA6 phases exhibit double melting endotherms at higher crystallization temperature and triple melting endotherms at lower crystallization temperature.The increased melting temperatures forⅠandⅡpeaks of PA6 phase can be attributed to the nucleation of TiO_2,which resulted in perfect PA6 crystal. Melting temperature forⅢpeak did not change with the variable isothermal crystallization temperature,which can be attributed to melting of the more stable crystal of PA6.The multiple melting endotherms are mainly caused by the recrystallization of PA6 spherulites with different crystal sizes and perfection during heating.The non-isothermal crystallization and melting behavior of PP and PA6 phase were investigated by DSC.The results show the Avrami index is higher than two,which indicated the non-isothermal crystallization process is complex.Owing to heterogeneous nucleation of TiO_2,non-isothermal crystallization of PP and PA6 phase began at higher temperature. However,the TiO_2 nanoparticles hinder the growth of PP and PA6 crystals and then lead to low crystallization rate.The crystallization activation energies of PP and PA6 phase decrease in the presence of low TiO_2 content.However,the crystallization activation energies of PA6 in the PP-g-MAH compatibilized nanocomposites increased with the incorporation of TiO_2.Crystallinity of PP and PA6 is increased with the incorporation of TiO_2 nanoparticles;however,they increased at first and then decreased with increase of cooling rate.This phenomenon can be explained as follows:the TiO_2 nanoparticles have two effects on the PP and PA6 phase,i.e.they act as effective nucleating agents for PP and PA6 phase,on the other hand the existence of the TiO_2 and the interaction between the nanoparticle and blends hinder the motion of the polymer chains.The two effects lead to the observed change of crystallinity with the increase of cooling rate.The PA6 phase in the non-isothermally crystallized sample exhibits multiple melting endotherms,which can be attributed to the different crystalline structures.
     The additions of small amount of TiO_2 nanoparticles make melt viscosity of PP/PA6 based nanocomposites decrease and also make non-newtonian index(n) of the PP-g-MAH compatibilized nanocomposites increase,however the n will decrease with increase of TiO_2 content,which favors the enhancement of pseudoplastic property. Flow activation energy of the PP-g-MAH compatibilized nanocomposites decrease with the incorporation of small amount of TiO_2 nanoparticles and the sensitivity of melt viscosity to temperature decreases.Owing to the homogeneous dispersion of TiO_2 nanoparticles in polymer blends,the TiO_2 nanoparticles have lubricating effect on the matrix polymer,which was the reason of the observed phenomenon.The storage(G') and loss moduli(G") and complex viscosity(η~*) are resulted from the dynamic frequency.All parameters increased monotonically in the entire frequency range with the addition of TiO_2 nanoparticles into the PP/PA6 blend,which indicated that the TiO_2 nanoparticles give the matrix polymer good elastic and viscous.
     The as-prepared PP/PA6 based nanocomposites have strong antimicrobial abilities against bacillus subtilis,staphylococcus aureu and escherichia coli.The average efficiency of antibacterial properties is over 90%within 2.0 h.Thermal stability of the PP/PA6 based nanocomposites was investigated by TGA and the result showed the TiO_2 nanoparticles favor the enhancement of thermal stability.In addition,the theoretical weight loss rate of the PP/PA6 based nanocomposites is equal to the actual weight loss rate at the range of error,which indicated that the nanoparticles are uniformly dispersed in the polymer matrix.
引文
[1]吴培熙,张留成.聚合物共混改性[M].北京:中国轻工业出版社,1996.1-6
    [2]宋焕成,赵付熙.聚合物基复合材料[M].北京:国防工业出版社,1986.1-200
    [3]Burke N A D,Stover H D H,Dawson F P.Magnetic nanocomposites:preparation and characterization of polymer-coatediron nanoparticles[J].Chem Mater,2002,14(11):4752-4761
    [4]Roy R,Komameni S,Roy D M.Multi-phase ceramic composites made by sol-gel technique[J].Mater Res Soc Symp Proc,1984,32:347-359
    [5]花国然,罗新华,刘红俐,等.纳米材料及其复合技术[J].南通工学院学报(自然科学版),2002,1(1):29-33
    [6]Cheng-Kuang,Chan,I-Ming Chu.Effect of hydrogen bonding on theglass transition behavior of poly(acrylic acid)/silica hybridmatedals prepared by sol-gel process[J].Polym,2001,42(14):6089-6093
    [7]Bruce M Novak,Caroline Davies."Inverse" organic-inorganic compositesmaterials.2.Free radical routes into nonshrinking sol-gel composites [J].Macromol,1991,24(19):5481-5483
    [8]OU Baoli,LI Duxin.Preparation of polystyrene/silica nanocomposites by copolymerization of styrene with silica macromonomer[J].Sci China Ser B,2007,50(3):385-391
    [9]欧玉春,扬锋,庄严,等.在位分散聚合聚甲基丙烯酸甲酯/二氧化硅纳米复合材料研究[J].高分子学报,1997,(2):199-205
    [10]Vollenberg P H T,Heikens D.Particle size dependence of the Young's modulus of filled polymers:1.Preliminary experiments[J].Polym,1989,30(9):1656-1662
    [11]Kurokawa Y,Yasuda H,Oya A.Preparation of a nanocomposite of polypropylene and smectite[J].J Mater Sci Lett,1996,15(17):1481-1483
    [12]熊传溪,闻荻江,皮正杰.超微细Al_2O_3增韧增强聚苯乙烯的研究[J].高分子材料科学与工程,1994,10(4):69-73
    [13]郭卫红,李盾,苏诚伟,等.PMMA/SiO_2共混体系的研究Ⅰ纳米级SiO_2填充PMMA体系[J].塑料工业,1998,26(5):10-14
    [14]中条澄.高分子一无机复合体[J].高分子加工(日),1989,38:540
    [15]Chiming Chan,Jingshen Wu,Jianxiong Li,et al.Polypropylene/calcium carbonate nanocomposites[J].Polym,2002,43(10):2981-2992
    [16]黄锐,徐伟平,蔡碧华,等.纳米级无机粒子对聚乙烯的增强与增韧[J].塑料工业,1997,25(3):106-108
    [17]王琪,徐僖.磨盘形力化学反应器及其在高分子材料制备中的应用[J].高等化学学报,18(7):1197-1201
    [18]Okada A,Kawasumi M,Kurauchi T,et al.Synthesis and characterization of a nylon 6-clay hybrid[J].Polym Prepfint,1987,28:447-448
    [19]Emmanuel P Giannelis.Polymer layered silicate nanocomposites[J].Adv Mater,1996,8(1):29-35
    [20]周志华,曾海林,高超,等.原位缩聚法制备碳纳米管/尼龙11复合材料[J].高分子学报,2008,(2):188-191
    [21]Ying Li,Jian Yu,Zhaoxia Guo.The influence of silane treatment on nylon 6/nano-SiO_2 in situ polymerization[J].J Appl Polym Sci,2002,84(4):827-834
    [22]Yanjing L,Ambo W,Richard C.Molecular self-assembly of TiO_2/polymer nanocomposite films[J].J Phys Chem B,Polym Phys,1997,101(8):1385-1388
    [23]欧宝立,李笃信.无机纳米粒子表面修饰[J],高分子材料科学与工程,2008,(5):1-5
    [24]Somasundaran P,Krishnakumar S.Colloids and surfaces A[J].Phys Eng Aspects,1997,(123-124):491-513
    [25]Koshiro Hashimoto,Takao Fujisawa,Masahiro Kobayashi,et al.Graft copolymerization of glass fiber and its application[J].J Appl Polym Sci,1982,27(12):4529-4539
    [26]Espiard Ph,Guyot A.Poly(ethyl acrylate) latexes encapsulating nanoparticles of silica:2.Grafting process onto silica[J].Polym,1995,36(23):4391-4395
    [27]Jethmalani J M,Ford W T.Diffraction of visible light by ordered monodisperse silica-poly(methyl acrylate) composite films[J].Chem Mater,1996,8(8):2138-2146
    [28]Eastmond G C,Nguyen-Huu C,Piret W H.Graft polymerization from glass surfaces[J].Polym,1980,21(6):598-603
    [29]Prucker O,Ruhe J.Synthesis of poly(styrene) monolayers attached to high surface area silica gels through self-assembled monolayers of azo initiators[J].Macrom,1998,31(3):592-601
    [30] Perruchot C, Khan M A, Kamitsi A, et al. Synthesis of well-defined, polymer-grafted silica particles by aqueous ATRP [J]. Langmuir, 2001, 17 (15): 4479-4481
    [31] Von Werne T, Patten T E. Atom transfer radical polymerization from nanoparticles: a tool for the preparation of well-defined hybrid nanostructures and for understanding the chemistry of controlled/"living" radical polymerizations from surfaces [J]. J Am Chem Soc, 2001,123 (31): 7497-7505
    [32] Bartholome C, Beyou E, Bourgeat-Lami E, et al. Nitroxide-mediated polymerizations from silica nanoparticle surfaces: "graft from" polymerization of styrene using a triethoxysilyl-terminated alkoxyamine initiator [J]. Macrom, 2003, 36 (21): 7946-7952
    [33] Schomaker E, Zwarteveen A J, Challa G, et al. Synthesis of isotactic poly(methylmethacrylate) covalently bound to microparticulate silica [J]. Polym Commun, 1988,29 (6): 158-160
    [34] Michiel L C M O, Sein A, Schouten A J. Anionic grafting of polystyrene and poly(styrene-block-isoprene) onto microparticulate silica and glass slides [J]. Polym, 1992, 33 (20): 4394-4400
    [35] Sanchez C, Soler-Illia G J A A, Ribot F, et al. Designed hybrid organic-inorganic nanocomposites from functional nanobuilding blocks [J]. Chem Mater, 2001, 13 (10): 3061-3083
    [36] Kawasumi M, Hasegawa N, Kato M, et al. Preparation and mechanical properties of polypropylene-clay hybrids [J]. Macromol, 1997, 30 (20): 6333-6338
    [37] Peter Reichert, Hansjorg Nitz, Stefan Klinke, et al. Poly(propylene)/organoclay nanocomposite formation: Influence of compatibilizer functionality and organoclay modification [J]. Macromol Mater Eng, 2000, 275 (1): 8-17
    [38] Sangeeta Hambir, Neelima Bulakh, Pravin Kodgire, et al. PP/clay nanocomposites: a study of crystallization and dynamic mechanical behavior [J]. J Polym Sci B: Polym Phys, 2001, 39 (4): 446-450
    [39] Peter Reichert, Botho Hoffmann, Thorsten Bock, et al. Morphological stability of poly(propylene) nanocomposites [J]. Macromol Rapid Commun, 2001, 22 (7): 519-523
    [40] Solomon M J, Almusallam A S, Seefeldt K F, et al. Rheology of polypropylene/clay hybrid materials [J]. Macromol, 2001, 34 (6): 1864-1872
    [41] Marco Zanetti, Giovanni Camino, Peter Reichert, et al. Thermal behaviour of poly(propylene) layered silicate nanocomposites[J].Macromol Rapid Commun,2001,22(3):176-180
    [42]Shelley J S,Mather P T,DeVries K L.Reinforcement and environmental degradation of nylon-6/clay nanocomposites[J].Polym,2001,42(13):5849-5858
    [43]Cho J W,Paul D R.Nylon 6 nanocomposites by melt compounding[J].Polym,2001,42(3):1083-1094
    [44]Botho Hoffmann,Christoph Dietrich,Ralf Thomann,et al.Morphology and rheology of polystyrene nanocomposites based upon organoelay[J].Macromol Rapid Commun,2000,21(1):57-61
    [45]欧宝立,李笃信.聚丙烯/无机纳米复合材料研究进展[J].材料导报,2008,22(3):32-35
    [46]Hongxia Zhao,Robert K Y Li.Crystallization,mechanical and fracture behaviors of spherical alumina-filled polypropylene nanocomposites[J].J Polym Sci B:Polym Phys,2005,43(24):3652-3664
    [47]L(?)pez-Quintanilla M L,S(?)nchez-Vald(?)s S,Ramos de Valle L F,et al.Effect of some compatibilizing agents on clay dispersion of polypropylene-elay nanocomposites[J].J Appl Polym Sci,2006,100(6):4748-4756
    [48]Ling Chen,Ke Wang,Mei Ling Toh,et al.Poly(propylene)/clay nanocomposites prepared by reactive compounding with an epoxy based masterbateh[J].Macromol Mater Eng,2005,290(10):1029-1036
    [49]Lee Wook Jang,Eung Soo Kim,Hun Sik Kim,et al.Preparation and characterization of polypropylene/clay nanocomposites with polypropylene-graft-maleic anhydride[J].J Appl Polym Sci,2005,98(3):1229-1234
    [50]Moon Jo Chung,Lee Wook Jang,Jae Hun Shim,et al.Preparation and characterization of maleic anhydride-g-polypropylene/diamine-modified clay nanocomposites[J].J Appl Polym Sci,2005,95(2):307-311
    [51]Pravin Kodgire,Rajendra Kalgaonkar,Sangeeta Hambir,et al.PP/clay nanocomposites:Effect of clay treatment on morphology and dynamic mechanical properties[J].J Appl Polym Sci,2001,81(7):1786-1792
    [52]王俊霞,宋国君,吕海金,等.不同亚微观形态的聚丙烯/蒙脱土纳米复合材料的研究[J].塑料工业,2006,34(4):44-47
    [53]Ratnayake U N,Haworth B.Polypropylene-clay nanocomposites:Influence of low molecular weight polar additives on intercalation and exfoliation behavior [J].Polym Eng Sci,2006,46(8):1008-1015
    [54]王平华,徐国永.聚丙烯/凹凸棒土纳米复合材料的制备、结构与性能[J].高分子材料科学与工程,2005,21(2):213-216
    [55]王旭,黄锐.PP/纳米级CaCO_3复合材料性能研究[J].中国塑料,1999,13(10):22-25
    [56]吴春蕾,章明秋,容敏智.纳米SiO_2表面接枝聚合改性及其聚丙烯基复合材料的力学性能[J].复合材料学报,2002,19(6):61-67
    [57]吴唯,徐种德.纳米刚性微粒与橡胶弹性微粒同时增强增韧聚丙烯的研究[J].高分子学报,2000,(1):99-104
    [58]郭刚,于杰,罗筑,等.纳米SiO_2粒子与聚烯烃弹性体协同改性聚丙烯的研究[J].现代化工,2004,24(7):40-43
    [59]Jeng-Yue Wu,Tzong-Ming Wu,Wei-Yan Chen,et al.Preparation and characterization of PP/clay nanocomposites based on modified polypropylene and clay[J].J Polym Sci B:Polym Phys,2005,43(22):3242-3254
    [60]Tjong S C,Bao S P,Liang G D.Polypropylene/montmorillonite nanocomposites toughened with SEBS-g-MA:Structure-property relationship[J].J Polym Sci B:Polym Phys,2005,43(21):3112-3126
    [61]马继盛,漆宗能,李革,等.聚丙烯/蒙脱土纳米复合材料的等温结晶研究[J].高分子学报,2001,(5):589-593
    [62]徐卫兵,梁国栋,杭国培,等.聚丙烯/聚(丙烯-g-马来酸酐)/蒙脱土纳米复合材料结晶动力学研究[J].应用化学,2002,19(8):754-758
    [63]章永化,许德雄,钟伟东,等.改性蒙脱土复合母粒对聚丙烯结晶性能的影响[J].华南理工大学学报(自然科学版),2003,31(10):1-5
    [64]周莉,臧树良,田彦文,等.MC尼龙6/ZnO纳米复合材料制备[J].现代塑料加工应用,2008,20(3):35-37
    [65]Varlot K,Reynaud E,Kloppfer M H,et al.Clay-reinforced polyamide:Preferential orientation of the montmorillonite sheets and the polyamide crystalline lamellae[J].J Polym Sci B:Polym Phys,2001,39(12):1360-1370
    [66]Rick D Davis,Jeffery W Gilman,David L Vander Hart.Processing degradation of polyamide 6/montmorillonite clay nanocomposites and clay organic modifier [J].Polym Degrad Stability,2003,79(1):111-121
    [67]宋波,黄锐,魏刚,等.PA6/纳米CaCO_3复合材料的制备和性能[J].工程塑料应用,2002,30(12):2-4
    [68]陈煌,王国全,黄慧,等.PA6无/机纳米复合材料的力学性能研究[J].塑料,2008,37(2):50-53
    [69]杜拴丽,李迎春.有机化纳米SiO_2填充改性尼龙6复合材料的研究[J].塑料工业,2007,35(8):25-27
    [70]Hailin Zeng,Chao Gao,Yanping Wang,et al.In situ polymerization approach to multiwalled carbon nanotubes-reinforced nylon 1010 composites:Mechanical properties and crystallization behavior[J].Polym,2006,47(1):113-122
    [71]Minsung Kang,Seung Jun Myung,Hyoung-Joon Jin.Nylon 610 and carbon nanotube composite by in situ interfacial polymerization[J].Polym,2006,47(11):3961-3966
    [72]Zhang W D,Shen L,Phang I Y,et al.Carbon nanotubes reinforced nylon-6composite prepared by simple melt-Compounding[J].Macromol,2004,37(2):256-259
    [73]Juan Li,Lifang Tong,Zhengping Fang,et al.Thermal degradation behavior of multi-walled carbon nanotubes/polyamide 6 composites[J].Polym Degrad Stability,2006,91(9):2046-2052
    [74]Rajatendu Sengupta,Sabharwal S,Anil K Bhowmick,et al.Thermogravimetric studies on Polyamide-6,6 modified by electron beam irradiation and by nanofillers[J].Polym Degrad Stability,2006,91(6):1311-1318
    [75]Juan Li,Zhengping Fang,Lifang Tong,et al.Effect of multi-walled carbon nanotubes on non-isothermal crystallization kinetics of PA6[J].Eur Polym J,2006,42(12):3230-3235
    [76]Suryasarathi Bose,Arup R Bhattacharyya,Pravin V Kodgire,et al.Fractionated crystallization in PA6/ABS blends:influence of a reactive compatibilizer and multiwall carbon nanotubes[J].Polym,2007,48(1):356-362
    [77]Li Sun,Jin-Tao Yang,Gen-Yao Lin,et al.Crystallization and thermal properties of polyamide 6 composites filled with different nanofillers[J].Mater Lett,2007,61(18):3963-3966
    [78]王娟娟,马晓燕,冯立起.聚丙烯共混改性研究进展[J].2003,2:52-58
    [79]贾宏葛,王雅珍,李华维.PP-g-MAH对聚丙烯/尼龙6共混体的影响[J].塑料工业,2006,34(增刊):129-131
    [80]吴清鹤,谭寿再,吴健文,等.PA6/PP合金的研制[J].工程塑料应用,2007,35(6):12-15
    [81]张良均,章身毅,王勇平,等.MPP增容PP/PA6共混物的形态结构与增容机 理[J].武汉化工学院学报,2003,25(4):7-9
    [82]段良福,李炳海.PP-g-MAH和PP-g-GMA增容PP/PA6共混体系的研究[J].塑料助剂,2007,3:36-40
    [83]伍玉娇,骆丁胜,杨红军,等.POE-g-MAH对PP/PA6共混体系形态结构与力学性能的影响[J].塑料,2007,36(5):30-34
    [84]李笃信,贾德民.PP-g-DBM增容PP/PA6共混物性能研究[J].中国塑料,2000,14(7):30-34.
    [85]Tucker J D,Lee S,Einspom R L.A study of the effect of PP-g-MA and SEBS-g-MA on the mechanical and morphological properties of polypropylene/nylon 6 blends[J].Polym Eng Sci,2000,40(12):2577-2589
    [86]张景春,谢续明,郭宝华.多组分单体接枝聚丙烯/尼龙6反应共混物结晶行为研究[J].高分子学报,2002,(3):282-286
    [87]吴石山,杨阳,李乔钧,等.PP-g-MAH/PA6共混物流变性能的研究[J].中国塑料,1999,13(2):33-35
    [88]肖力光,于水.增容剂对PP/PA6共混体系相容性的影响[J].吉林建筑工程学院学报,2002,19(1):39-46
    [89]解孝林,李伯耿,申屠宝卿,等.R-SMA增容PA6/PP共混物的形态结构与流变行为[J].工程塑料应用,1997,25(5):50-52
    [90]Ma Xiaoyan,Liang Guozheng,Lu Haijun,et al.Novel intercalated nanocomposites of polypropylene,organic rectorite,and poly(ethylene octene)elastomer:Morphology.and mechanical properties[J].J Appl Polym Sci,2005,97(5):1907-1914
    [91]杨宁,贵大勇,田军.蒙脱土插层尼龙66及其合金力学性能研究[J].塑料,2004,33(3):40-43.
    [92]Arroyo M,Su(?)rez R V,Herrero B,et al.Optimisation of nanocomposites based on polypropylene/polyethylene blends and organo-bentonite[J].J Mater Chem,2003,13:2915-2921
    [93]Hsintzu Liao,Chin-san Wu.Synthesis and characterization of polyethylene-octene elastomer/clay/biodegradable starch nanocomposites[J].J Appl Polym Sci,2005,97(1):397-404
    [94]Lee M W,Hu X,Yue C Y,et al.Effect of fillers on the structure and mechanical properties of LCP/PP/SiO_2 in-situ hybrid nanocomposites[J].Compos Sci Tech,2003,63(3-4):339-346
    [95]Sathya Kalambur,Syed S H Rizvi.Biodegradable and functionally superior starch-polyester nanocomposites from reactive extrusion[J].J Appl Polym Sci,2005,96(4):1072-1082
    [96]Joy K M,Keun-Joon Hwang,Chang-Sik Ha.Preparation,mechanical and rheological properties of a thermoplastic polyolefin(TPO)/organoclay nanocomposite with reference to the effect of maleic anhydride modified polypropylene as a compatibilizer[J].Polym,2005,46(6):1995-2002
    [97]Baoqing Zhang,Yanfen Ding,Peng Chen,et al.Fibrillation of thermotropic liquid crystalline polymer enhanced by nano-clay in nylon-6 matrix[J].Polym,2005,46(14):5385-5395
    [98]Jin-Hae Chang,Bo-Soo Seo,Seong Hun Kim.Blends of a thermotropic liquid-crystalline polymer and a poly(butylene terephthalate)/organoclay nanocomposite[J].J Polym Sci B:Polym Phys,2004,42(20):3667-3676
    [99]丁运生,张志成.MMT-PVAc/PA6/HDPE共混物中MMT纳米粒子对HDPE 结晶性能的影响[J].高分子材料科学与工程,2005,21(4):256-259
    [100]丁运生,张志成.辐照法制备的醋酸乙烯酯/蒙脱土纳米复合材料与HDPE 和PA6共混物的研究[J].高等学校化学学报,2004,25(7):1351-1354
    [101]史大刚,姚子华,马晓莉,等.纳米碳酸钙改性PVC/PP共混体系的研究[J].塑料,2005,34(2):41-46
    [102]胡圣飞,彭少贤,应继儒,等.高强度聚氯乙烯共混材料研制[J].工程塑料应用,2000,28(2):1-2
    [103]Ruowen Zong,Yuan Hu,Shaofeng Wang,et al.Thermogravimetric evaluation of PC/ABS/montmorillonite nanocomposite[J].Polym Degrad Stability,2000,83(3):423-428
    [104]Tsu-Hwang Chuang,.Wenjeng Guo,Kuo-Chung Cheng,et al.Thermal properties and flammability of ethylene-vinyl acetate copolymer/montmorillonite/polyethylene nanocomposites with flame retardants [J].J Polym Research,2004,11(3):169-174
    [105]Valentini L,Biagiotti J,Kenny J M,et al.Physical and mechanical behavior of single-walled carbon nanotube/polypropylene/ethylene-propylene-diene rubber nanocomposites[J].J Appl Polym Sci,2003,89(10):2657-2663
    [106]Xiang Gao,Lixin Mao,Riguang Jin,et al.Preparation and characterization of polycarbonate/poly(propylene)/attapulgite ternary nanocomposites with the morphology of encapsulation[J].Macromol Mater Eng,2005,290(9):899-905
    [107]Yongjin Li,Hiroshi Shimizu.Novel morphologies of poly(phenylene oxide) (PPO)/polyamide 6(PA6) blend nanocomposites[J].Polym,2004,45(22):7381-7388
    [108]Hee B Kim,Joon S Choi,Chung H Lee,et al.Polymer blend/organoclay nanocomposite with poly(ethylene oxide) and poly(methyl methacrylate)[J].Eur Polym J,2005,41(4):679-685
    [109]Olaf Meincke,Dirk Kaempfer,Hans Weickmann,et al.Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene[J].Polym,2004,45(3):739-748
    [110]游长江,席宋,莫海林,等.SEP/蒙脱土混杂材料对PP/PS共混物性能的影响[J].合成橡胶工业,2003,26(1):42
    [111]黎华明,沈志刚,王进,等.间规聚苯乙烯/尼龙6/磺化间规聚苯乙烯/蒙脱土纳米复合材料的研究[J].功能高分子学报,2002,15(3):261-265
    [112]Mahmood Mehrabzadeh,Musa R Kamal.Melt processing of PA-66/clay,HDPE/clay and HDPE/PA-66/clay nanocomposites[J].Polym Eng Sci,2004,44(6):1152-1161
    [113]Gelfer M Y,Hyun H Song,Lizhi Liu,et al.Effects of organoclays on morphology and thermal and rheological properties of polystyrene and poly(methyl methacrylate) blends[J].J Polym Sci B:Polym Phys,2003,41(1):44-54
    [114]Yong Wang,Qin Zhang,Qiang Fu.Compatibilization of immiscible poly(propylene)/polystyrene blends using clay[J].Macromol Rapid Commun,2003,24(3):231-235
    [115]Khatua B B,Lee D J,Kim H Y,et al.Effect of organoclay platelets on morphology of nylon-6 and poly(ethylene-ran-propylene) rubber blends[J].Macromol,2003,37(7):2454-2459
    [116]Youngjae Yoo,Changhyun Park,Sung-Goo Lee,et al.Influence of addition of organoclays on morphologies in nylon 6/LLDPE blends[J].Macromol Chem Phys,2005,206(8):878-884
    [117]Zhang W,Ge S,Wang Y,et al.Use of functionalized WS2 nanotubes to produce new polystyrene/polymethylmethacrylate nanocomposites[J].Polym,2003,44(7):2109-2115
    [118]Xiaohui Liu,Qiuju Wu,Lars A Berglund,et al.Polyamide 6-clay nanocomposites/polypropylene-grafted-maleic anhydride alloys[J].Polym,2001,42(19):8235-8239
    [119]Chow W S,Mohd Ishak Z A,Ishiaku U S,et al.The effect of organoclay on the mechanical properties and morphology of injection-molded polyamide 6/polypropylene nanocomposites[J].J Appl Polym Sci,2004,91(1):175-189.
    [120]Chow W S,Mohd Ishak Z A,Karger-Kocsis J,et al.Compatibilizing effect of maleated polypropylene on the mechanical properties and morphology of injection molded polyamide 6/polypropylene/organoclay nanocomposites[J].Polym,2003,44(24):7427-7440
    [121]Sachin N Sathe,Surekha Devi,Sdnivasa Rao G S,et al.Relationship between morphology and mechanical properties of binary and compatibilized ternary blends of polypropylcne and nylon 6[J].J Appl Polym Sci 1996,61(1):97-107
    [122]Chow W S,Abu Bakar A,Mohd Ishak Z A,et al.Effect of maleic anhydride-grafted ethylene-propylene robber on the mechanical,rheological and morphological properties of organoclay reinforced polyamide 6/polypropylene nanocomposites[J].Eur Polym J,2005,41(4):687-696
    [123]Chow W S,Mohd Ishak Z A,Karger-Kocsis J.Morphological and rheological properties of polyamide 6/poly(propylene)/organoclay nanocomposites[J].Macromol Mater Eng,2005,290(2):122-127
    [124]Meng Feng,Fangling Gong,Chungui Zhao,et al.Effect of clay on the morphology of blends of poly(pmpylene) and polyamide 6/clay nanocomposites [J].Polym Int,2004,53(10):1529-1537
    [125]Quansheng Su,Meng Feng,Shimin Zhang,et al.Melt blending of polypropylene-blend- polyamide 6-blend-organoclay systems[J].Polym Int,2007,56(1):50-56
    [126]王茜,陈喆,方鹏飞,等.聚丙烯/尼龙6/蒙脱土纳米复合材料的加工流变性能和微结构研究[J].纳米科技,2006,(5):51-54
    [127]Li Jian,Chixing Zhou,Wang Gang,et al.Preparation and linear rheological behavior of polypropylene/MMT nanocomposites[J].Polym Compos,2003,24(3):323-331
    [128]Yong Tang,Yuan Hu,Rui Zhang,et al.Investigation on polypropylene and polyamide-6 alloys/montmorillonite nanocomposites[J].Polym,2004,45(15):5317-5326
    [129]Hua Wang,Changchun Zeng,Mark Elkovitch,et al.Processing and properties of polymeric nano-composites[J].Polym Eng Sci,2001,41(11):2036-2046
    [130]Emi Ukaji,Takeshi Furusawa,Masahide Sato,et al.The effect of surface modification with silane coupling agent on suppressing the photo-catalytic activity of fine TiO_2 particles as inorganic UV filter[J].Appl Surf Sci,2007,254,563-569
    [131]郭刚,于杰,罗筑,等.聚丙烯/纳米级金红石型二氧化钛/聚烯烃弹性体复合材料的抗老化性能研究[J].高分子学报,2006,(2):219-224
    [132]Xiaohong Li,Zhi Cao,Zhijun Zhang,et al.Surface-modification in situ of nano-SiO_2 and its structure and tribological properties[J].Appl Surf Sci,2006,252(22),7856-7861
    [133]Shuisheng Sun,Chunzhong Li,Ling Zhang,et al.Effects of surface modification of fumed silica on interfaeial structures and mechanical properties of poly(vinyl chloride) composites[J].Eur Polym J,2006,42(7):1643-1652
    [135]顾惕人,朱步瑶.表面化学[M].北京:科学技术出版社,1999,1-150
    [136]李绍雄,刘益军.聚氨酯胶粘剂[M].北京:化学工业出版社,1998.13-20
    [137]Ruriko Yokoyama,Seiko Suzuki,Kumi Shirai,et al.Preparation and properties of biocompatible polymer-grafted silica nanoparticle[J].Eur Polym J,2006,42(12):3221-3229
    [138]Li H R,Lin J,Zhang H J,et al.Preparation and luminescence properties of hybrid materials containing europium(Ⅲ) complexes covalently bonded to a silica matrix[J].Chem Mater,2002,14:3651-3655
    [139]童玉清,田明,徐瑞芬,等.新型的高杀菌纳米二氧化钛/聚丙烯复合材料的结构和物理特性研究[J].复合材料学报,2003,20(5):88-94
    [140]Choi S S.Influence of polymer-filler interactions on retraction behaviors of natural rubber vulcanizates reinforced with silica and carbon black[J].J Appl Polym Sci,2006,99(3):691-696
    [141]Xiaohui Liu,Qiuju Wu.Non-isothermal crystallization behaviors of polyamide 6/clay nanocomposites[J].Eur Polym J,2002,38(7):1383-1389
    [142]Godshall D,White C,Wilkes G L.Efect of compatibilizer molecula weight and maleic anhydride content on interfacial adhesion of polypropylene-PA6bicomponent fibers[J].J Appl Polym Sci,2001,80(2):130-133
    [143]孙载坚.塑料增韧[M].北京:化学工业出版社,1992.210
    [144]Wu S.Phase structure and adhesion in polymer blends:A criterion for rubber toughening[J].Polym,1985,26(12):1855-1863
    [145]Sue H J,Huang J,Yee A F.Interfacial adhesion and toughening mechanisms in an alloy of polycarbonate/polyethylene[J].Polym,1992,33(22):4868-4871
    [146]贾宏葛,王雅珍,李华维.PP-g-MAH对聚丙烯/尼龙6共混体的影响[J].塑料工业,2006,34:129-131
    [147]欧宝立,李笃信.表面修饰纳米SiO_2增强增韧聚氯乙烯[J].复合材料学报,2009,26(1):48-53
    [148]张金柱,汪信,陆路德,等.纳米无机粒子对塑料增强增韧的“裂缝与银纹相互转化”机理[J].工程塑料应用,2003,31(1):20-22
    [149]朱诚身.聚合物结构分析[M].北京:科学出版社,2004,1-598
    [150]过梅丽.高聚物与复合材料的动态力学热分析[M].化学工业出版社,北京,200,1-235
    [151]马晓燕.有机累托石/聚合物熔融插层纳米复合材料的研究.[博士学位论文].西安:西北工业大学,2004,60-122
    [152]孙莉,杨晋涛,施艳琴,等.PA6/CNT复合材料的动态机械性能和增强机理分析[J].塑料工业,2007,35(增刊):247-249
    [153]徐翔民.尼龙66/SiO_2纳米复合材料的界面结构与性能研究:[博士学位论文].开封:河南大学,2008,115-124
    [154]Fang Z,Harrats C,Moussaif N,et al.Location of a nanoclay at the interface in an immiscible poly(ε-caprolactone)/poly(ethylene oxide) blend and its effect on the compatibility of the components[J].J Appl Polym Sci,2007,106(5):3125-3135
    [155]董炎明.高分子分析手册[M].北京:中国石化出版社,2004,258-259
    [156]Avalos F,Lopez-Manchado M A,Arroyo M.Crystallization kinetics of polypropylene:1.Effect of small additions of low-density polyethylene[J].Polym,1996,37:5681-5688
    [157]Avrami M J.Kinetics of phase change-Ⅰ.General theory[J].J Chem Phys,1939,7:1103-1112
    [158]Avrami M J.Kinetics of phase change-Ⅲ.Granulation phase change an microstructure[J].J Chem Phys,1941,9:117-124
    [159]周桢.聚合物/多壁碳纳米管复合材料结构与性能的研究:[博士学位论文].上海:上海交通大学,2007
    [160]Lin C C.The rate of crystallization of poly(ethylene terephthalate) by differential scanning calorimetry[J].Polym Eng Sci,1983,23(3):113-116
    [161]Guo Q P,Groeninckx G.Crystallization kinetics of poly(ε-caprolactone)imiscible thermosetting polymer blends of epoxy resin and poly(ε-caprolactone)[J].Polym,2001,42(21):8647-8655
    [162] Zhong Z K, Guo Q P. The miscibility and morphology of hexamine cross-linkenovolac/poly(e-caprolactone)blends [J]. Polym, 1997, 38: 279-286
    [163] Grenier D, PrudHomme E R. Avrami analysis: Three experimental limiting factors [J]. J Polym Sci B: Polym Phys, 1980,18 (7): 1655-1657
    [164] Yu Long, Robert A. Shanks, et al. Kinetics of polymer crystallization [J]. Prog Polym Sci, 1995,20 (4): 651-701
    [165] Peggy Cebe, Su-Don Hong. Crystallization behaviour of poly(ether-ether-ketone) [J]. Polym, 1986,27 (8): 1183-1192
    [166] Tzong-Ming Wu, Yi-Hsin Lien, Sung-Fu Hsu. Isothermal crystallization kinetics and melting behavior of nylon/saponite and nylon/montmorillonite nanocomposites [J]. J Appl Polym Sci, 2004, 94 (5): 2196-2204
    [167] Wengui Weng, Guohua Chen, Dajun Wu. Crystallization kinetics and melting behaviors of nylon 6/foliated graphite nanocomposites [J]. Polym, 2003,44 (26): 8119-8132
    [168] Xiang Ling Ji, Wan Jin Zhang, Zhong Wen Wu. The double-melting behavior of poly(ether diphenyl ether ketone) [J]. J Polym Sci B: Polym Phys, 1997, 35 (3): 431-436
    [169] Jia Chong Ho, Kung Hwa Wei. Induced y → a crystal transformation in blends of polyamide 6 and liquid crystalline copolyester [J]. Macromol, 2000, 33 (14): 5181-5186
    [170] Saujanya C, Radhakrishnan S. Structure development and crystallization behaviour of PP/nanoparticulate composite [J]. Polym, 2001, 42 (16): 6723-6731
    [171] Hoffman J D, Weeks J J. Rate of spherulitic crystallization with chain folds in polychlorotrifluoroethylene [J]. J Chem Phys, 1962, 37, 1723-1741
    [172] Andrzej Jeziorny. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by d.s.c. [J]. Polym, 1978, 19 (10): 1142-1144
    [173] Ozawa T. Kinetics of non-isothermal crystallization [J]. Polym, 1971, 12 (3): 150-158
    [174] Tianxi Liu, Zhishen Mo, Shanger Wang, et al. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone) [J]. Polym Eng Sci, 1997, 37 (3): 568-575
    [175] Kim Piew Chuah, S. N. Gan S N, Chee K K. Determination of avrami exponent by differential scanning calorimetry for non-isothermal crystallization of polymers[J].Polym,1999,40(1):253-25
    [176]Dobreva A,Gutzow I.Activity of substrates in the catalyzed nucleation of glass-forming melts.I.Theory[J].J Non-Cryst Solids,1993,162(1-2):1-12
    [177]Wunderlich B.Thermal analysis[M].New York Academic Press,1990,418
    [178]Fornes T D,Paul D R.Crystallization behavior of nylon 6 nanocomposites[J].Polym,2003,44(14):3945-3961
    [179]Dobreva A,Gutzow I.Activity of substrates in the catalyzed nucleation of glass-forming melts.Ⅱ.Experimental evidence[J].J Non-Cryst Solids,1993,162(1-2):13-25
    [180]Kissinger H E.Variation of peak temperature with heating rate in differential thermal analysis[J].J Res Natl Bureau Stand,1956,57:217-221
    [181]Tzong-Ming Wu,Erh-Chiang Chen,Chien-Shiun Liao.Polymorphic behavior of nylon 6/saponite and nylon 6/montmorillonite nanocomposites[J].Polym Eng Sci,2002,42(6):1141-1150
    [182]Tzong-Ming Wu,Chien-Shiun Liao.Polymorphism in nylon 6/clay nanocomposites[J].Macromol Chem Phys,2000,201(18):2820-2825
    [183]Xiaohui Liu,Qiuju Wu.Phase transition in nylon 6/clay nanocomposites on annealing[J].Polym,2002,43(6):1933-1936
    [184]Minying Liu,Qingxiang Zhao,Yudong Wang,et al.Melting behaviors,isothermal and non-isothermal crystallization kinetics of nylon 1212[J].Polym,2003,44(8):2537-2545
    [185]吴其晔,巫静安.高分子材料流变学[M].北京:高等教育出版社,2002.1-351
    [186]Mooney M.Explicit formulas for slip and fluidity[J].J Rheol,1931,2(2):210-222
    [187]Schramm,G A.Practical approach to rheology and rheometry[M](李晓军译).北京:石油工业出版社,1998,113
    [188]王兆波,彭红瑞,王新,等.HIPS/nano-TiO_2复合材料的吸光及光老化性能研究[J].材料科学与工艺,2006,14(6):572-576
    [189]章玉清,田明,徐瑞芬,等.新型的高杀菌纳米二氧化钛/聚丙烯复合材料的结构和物理特性研究[J].复合材料学报,2003,20(5):88-94
    [190]王曦,王鸿博,高卫东,等.含银PA6纳米纤维的制备及抗菌性能研究[J].合成纤维工业,2008,31(1):12-14
    [191]高向华,魏丽乔.聚丙烯抗菌塑料的研制[J].山西化工,2007,27(6):9-11
    [192]张丽英,张浩.抗菌聚丙烯的性能及影响因素[J].合成树脂及塑料,2007,24(5):12-16
    [193]刘超锋 杨振如.纳米TiO_2在抗菌塑料中的应用[J].上海塑料,2007,(3):18-20
    [194]彭红瑞.无机纳米粒子/聚合物复合材料的研究:[博士学位论文].青岛:中国海洋大学,2005,25-37
    [195]Wu C S,Liu Y L,Chiu Y C,et al.Thermal stability of epoxy resins containing flame retardant components:an evaluation with thermogravimetric analysis[J].Polym Degrad Stability,2002,78:41-48
    [196]Doyle C D.Estimating thermal stability of experimental polymers by empirical thermogravimetric analysis[J].Anal Chem,1961,33:77-79
    [197]Park S J,Cho M S.Thermal stability of carbon-MoSi2-carbon composites by thermogravimetric analysis[J].J Mater Sci,2000,35:3525-3527
    [198]Seo M K,Park S J A.kinetic study on the thermal degradation of Muliti-walled carbon nanotubes-reinforced poly(propylene) composites[J].Macromol Mater Eng,2004,289:368-374
    [199]吴用,曾文茹.聚苯乙烯在空气中热降解的化学动力学研究[J].安徽化工,2006,(6):24-26
    [200]Chen Y H,Wang Q.Thermal oxidative degradation kinetics of flame-retarded polypropylene with intumescent flame-retardant master batches in situ prepared in twin-screw extruder[J].Polym Degrad Stability,2007,92:280-291

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700