用户名: 密码: 验证码:
溶致液晶模板法组装贵金属纳米结构材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
溶致液晶所具有的各向异性的特征以及易于调控的结构性质使其在模板合成纳米材料的领域中逐渐受到重视。本文试图利用这种模板的软物质特性和长程有序性对产物结构形貌进行调控,研究内容主要包括三部分:
     第一部分,利用聚氧乙烯-聚氧丙烯-聚氧乙烯双亲嵌段共聚物(Pluronic P123或F127)所形成的六角相液晶作模板,直接通过化学还原来制备二维平面金微米和纳米盘与银纳米纤维。论文系统研究了模板组成以及金属盐浓度等条件对产物形貌的影响。通过偏光显微镜(POM)、小角X射线散射(SAXS)、透射电镜(TEM)和紫外-可见吸收光谱(UV-vis)等测试技术对反应前后溶致液晶模板的结构与性质变化、所得产物的形貌与性质进行考察,并对不同形貌产物的形成机理进行了探讨。在液晶模板中嵌段共聚物为还原剂,原位还原氯金酸与硝酸银,并通过加入不同的表面活性剂CTAB(十六烷基三甲基溴化铵)、TBAB(四丁基溴化铵)或AOT(琥珀酸二异辛酯磺酸钠)分别对纳米粒子的形貌进行调控。
     以氯金酸水溶液取代水与P123形成液晶六角相,改变反应体系中CTAB或TBAB的浓度,可调控纳米粒子的形貌并得到高产率的三角形及六边形的金纳米或微米单晶薄片。金单晶盘具有面心立方结构和{111}取向的晶面,边长可达10μm。反应过程中,液晶结构对反应物及晶核的排布起到的限制作用,这一作用对单晶的生长极为重要。液晶中包覆剂CTAB(或TBAB)与AuCl_4~-的络合及在金表面的选择性吸附,是二维平面金盘状单晶生长的关键影响因素。通过控制包覆剂的掺杂浓度,可以控制单晶盘的尺寸。以硝酸银水溶液取代水与P123或F127形成的液晶中,通过还原反应可形成由银纳米粒子聚集组装而成的银纳米纤维,直径为1-4μm,长可达60μm。反应体系中加入AOT后,其阴离子头基可与Ag~+结合,从而将其固定在六角相的水区内,使其生长受水区尺寸的限制,因此在反应初期生成粒径较小的纳米粒子。随着反应时间延长,六角相液晶在纳米材料形成过程中起到了模板的作用,从而形成了长的纳米纤维。比较在同一反应体系中形成的Ag与Au纳米材料,由于Ag~+的还原速率较慢,银纳米粒子的生长更多地表现出液晶六角相的模板作用而得到长的纤维产物。
Synthesis of noble metal nanostructures has been an active research area for many decades, because of the importance of these materials for catalysis, photography, electronics, photonics, information storage, optoelectronics, biological labeling, imaging and sensing. A lot of efforts have been focused on controlling of the shape, size, crystallinity and structures. Particular emphasis has recently been placed on the control of shape, because in many cases it allows one to finely tune the properties with a greater versatility than can be achieved otherwise. In this dissertation lyotropic liquid crystals are used as templates to obtain noble metal nanostructures with controllable shape and size. Three main experimental researches are included.In the first part, anisotropic gold and silver nanostructures are prepared from LLC hexagonal phase templates made of PEO-PPO-PEO block copolymer and water. Single-crystalline gold nano- and microplates. with triangular or hexagonal shapes. are successfully synthesized for the first time with a large-scale amount from LLC templates. And long silver nanofibers are also obtained. POM (polarized optical microscope). SAXS (small angle X ray scattering). TEM (transmission electron microscope) and UV-vis spectrum measurements are used to investigate effect of different conditions on the product, including reduction time, concentration of capping agents (cetyltrimethylammonium bromide (CTAB), tetrabutylammonium bromide (TBAB) or sodium di-2-ethylhexylsulfosuccinate(AOT)) and metal salts.In HAuCl_4-containing hexagonal phase, the long range ordered structure of LLC directs the reagents and the naissant crystal nuclei which are distributed in water domain separated by hydrophobic cylinders, indicating a long-range ordered nuclei arrangement. With more AuCl_4~- being reduced, such arranged nuclei would orientationally attach and coalescence with adjacent ones. This is very important for the following single-crystal growth when the selective adsorption of CTAB or TBAB on {111} crystallographic facets plays the key role. The binding between capping
    agents and Au nuclei inhibits particles going randomly and favors single-crystal growth with {111} facets extending and results in large plate-like products (edge size even longer than 10 um).In AgNO3-containing LLC, the reduction rate of Ag+ is much lower than that of AuCU" Therefore the templating effect of LLC plays the most important role in Ag product formation. It is favorable for the small Ag particles aggregating in long-range ordered water domain of LLC and at last the long nanofibers (-60 um) are formed with diameter of 1-4 um. In this process, added AOT molecules reduce the lattice spacings, and their binding with Ag+ through negtive headgroups is helpful to immoblize Ag+ to prevent the Ag particle from growing larger.Obtained results suggest a novel, simple and effective way to produce particles with controllable shape and size, as well as a clue to understand the mechanism for crystal growth.In the second part of dissertation, LLC lamellar phase made of lecithin is formed to mimic biomembrane, where salt (NaCl) and biocompatible molecules including polyethylene glycol (PEG) macromolecules, nonionic surfactants (Ci2EO4, P123, F127), protein (bovine scrum albumin, BSA), amino acid (L-cysteine, Cys) and oleic acid (OA) as model drugs or drug carriers are introduced, with the aim to systematically study effects of these molecules on the biomembrane and preparation new "soft" nanomaterials. Then gold and silver nanoparticles are synthesized by templating of such lamellar phase containing nonionic block copolymers as reducers.In the neutral lecithin/H2O lamellar phase, different doped molecules will interact with lecithin bilayers by dissolving in water domain, adsorbing on lecithin headgroups or inserting themselves into hydrophobic parts of lecithin bilyers. NaCl can bind with lecithin headgroups and result in dehydration. Therefore, reduced repulsion between bilayer makes the lamellar phase more ordered as well as the lattice spacing (d) decreased. PEG, as the water-soluble macromolecule, swells the water layer and destroys the original ordered phase, inducing a phase seperation with an isotropic phase (rich PEG) and a anisotropic one (poor PEG). When doped in lecithin LLC, the hydrophobic tails of nonionic surfactant CnEO4 are inserted into
    the hydrophobic part of bilayers, breaking its compact state. The EO groups will lie in the hydrophilic domain of bilayers and introduce electrostatic repulsion into the neutral system. Such arrangement of C12EO4 (and OA) decreases the phase order and increases d spacing. After doped into LLC, PPO blocks of PI23 will be inserted in bilayer through hydrophobic interaction, with PEO blocks extending in water. Due to the large volume of PPO blocks and the steric repulsion induced by PEO swelling in water, two lamellar phases are formed with poor PI23 or rich PI23 respectively. In the latter, the long PEO blocks can act as bridges between two bilayers and reduce the d spacing. F127 molecules in LLC act also in the same way. When BSA is introduced to lecithin LLC, it may be embedded in the bilayer, just like the manner of membrane proteins in native biomembranes. Its large volume induces stacking stress in bilayers, which brings about transition from lamellar to hexagonal phase at higher BSA concentration. Cys can adsorb on headgroups of lecithin and introduce electrostatic repulsion between neutral bilayers to decrease the long-range order of LLC.Templated by lecithin lamellar phases containing C12EO4, PI23 and F127. gold and silver nanostructures are prepared. The selective adsorption of lecithin headgroups on metal surfaces plays an important role in plate-like nanoparticle formation. However, such effect is weakened by the larger volume of headgroups and only a few plates can be observed. As EO blocks become longer, the reduction rate increases and the product sizes are smaller. The same effect is observed for increased HAuCL; concentration. Adding salts to LLC may change the product morphology through disturbing the headgroup adsorption on metal. For AgNO3 system, no regular silver plates can be obtained. This may be due to the slower reaction rate, which makes the templating effect more important and products smaller. The formation of irregular silver plates also suggests the headgroup adsorption on silver.Our effort for using biological LLC as template to synthesize anisotropic noble metal nanoparticles will be helpful to understand the formation mechanism of nanoparticles with controllable shape and size in biomimic system.In the last part, we successfully fabricate novel LLC made of nonionic block
    copolymer PI23 and ionic liquid (ILs) [Bmim]PF6(l-n-butyl-3-methyl imidazolium hexafluorophosphate), whose formation mechanism is investigated in detail. Moreover, the LLC phase containing of a small amount of ionic liquids ([Bmim]PF6, [0mim]PF6 (l-n-Octyl-3-methyl imidazolium hexafluorophosphate), [Ci6mim]Cl (l-n-Cetyl-3-methyl imidazolium chloride)) are used for templating synthesis of anisotropic gold nanostructures.POM and SAXS measurements showing hexagonal and lamellar phases can be obtained with increasing PI23 concentration. The various interactions between PEO-[Bmim]PF6 (hydrogen bonding) and PP0-[Bmim]PF6 (hydrophobic interaction) play the key role in LLC formation. Additionally, the cation [Bmim]+ with a hydrophobic butyl group tends to act as a cosurfactant and cooperate with the block copolymer in forming interfaces, thus enhancing the structural order. And also, as a melting salt, the ionic liquid (IL) may have a salting-out effect on the block copolymer system, which is helpful for the formation of self-assembled structures. The good stability of such system is due to strong interactions mentioned above. The structures of hexagonal and lamellar phases are all similar to those in wate systems.In PI23/H2O hexagonal phases doped with ILs, we also obtained a large amount of planar gold single-crystals with {111} facets. Here the ILs act as capping agents like CTAB, whose selective adsorption on certain crystallographic facets plays the crucial role in forming plates. It should be noted that the interactions of ILs with AuCLf, PEO, and Au nuclei are much stronger than those of CTAB, so that the reduction rates is decreased much, resulting in larger gold singe-crystals (edge size even longer than 12 um).These results will be helpful to explore applications of such self-assembled aggregates with ILs as "green" template, and understand the weak interactions (such as hydrogen bonding, coordination bond) between molecules.Thank the supports from the National Natural Science Foundation of China (20073025,20373035).
引文
[1] 张立德.纳米材料的新进展及在21世纪的战略地位[J].中国粉体技术,2000,6(1):1-5.
    [2] 白春礼.中国的纳米科技研究[J].中国科技产业,2000,(9):8-11.
    [3] 郭建栋,徐晓林.纳米技术—未来科学的突破点[J].有色金属世界,2001,(2):18-21.
    [4] 张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001:476.
    [5] 白春礼.纳米科技及其发展前景[J].华北工学院学报(社科版),2001,(增刊):25-29,94.
    [6] 张立德.纳米材料的研究现状和发展趋势[J].现代科学仪器,1998,(1-2):27-29
    [7] Hamley I. W.. Nanotechnology with Soft Materials [J]. Angew. Chem. Int. Ed., 2003, 42: 1692-1712.
    [8] Niemeyer, C. M.. Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science [J]. Angew. Chem. Int. Ed., 2001, 40:4128-4158.
    [9] 李玲,向航.功能材料与纳米技术[M].北京:化学工业出版社,2002,105-105.
    [10] Daniel M. C., Astruc D.. Gold nanoparticlles: assembly, supramolecular chemisty, Quantum-size-related properties, and applications toward biology, catalysis, and nanptechnology [J]. Chem. Rev., 2004, 104(1): 293-346.
    [11] Haynes C. L., Duyne R. P. V.. Nanosphere lithography: a versatile annofabrication tool for studies of size-dependent nanoparticle optics [J]. J. Phys. Chem. B, 2001, 105(24): 5599-5611.
    [12] Kreibig U., Vollmer M.. Optical Properties of Metal Clusters [M]. Berlin: Springer, 1995.
    [13] 胡效亚,陈洪渊.纳米团簇研究新进展及其在分析化学中的应用[J].大学化学,2002,17(2):1-12.
    [14] Shiraishi Y., Toshima N.. Colloidal silver catalysts for oxidation of ethylene [J]. J. Molecular Catalysis A: Chemical, 1999, 141 (1-3): 187-192.
    [15] Fujii H., Ohtaki M., K.Eguchi. Synthesis and Photocatalytic Activity of Lamellar Titanium Oxide Formed by Surfactant Bilayer Templating [J]. J. Am. Chem. Soc., 1998, 120(27): 6832-6833.
    [16] Kanehara M., Oumi Y., Sano T., Teranishi T.. Formation of Low-Symmetric 2D Superlattices of Gold Nanoparticles through Surface Modification by Acid-Base Interaction [J]. J. Am. Chem. Soc., 2003, 125(29):8708-8709.
    [17] Kim S.-H., Medeiros-Ribeiro G., Ohlberg D. A. A., Williams R. S., Heath J. R.. Individual and Collective Electronic Properties of Ag Nanocrystals [J]. J. Phys. Chem. B., 1999, 103(47):10341-10347.
    [18] Walter E. C., Penner R. M., Liu H., Ng K. H., Zach M. P., Favier F.. Sensors from Electrodeposited Metal Nanowires [J]. Surf. Interface Anal., 2002, 34(1): 409-412
    [19] 唐芳琼,孟宪伟,陈东,冉均国,苟立,郑昌琼.纳米颗粒增强的葡萄糖生物传感器[J].中国科学(B缉),2000,30(2):119-124.
    [20] 薛群基,徐康.纳米化学[J].化学进展,2000,12(4):431-444.
    [21] 王世敏,许祖勋,傅晶.纳米材料制备技术[M].北京:化学工业出版社,2002.1-129.
    [22] 张立德,牟季美.纳米结构自组装和分子自组装体系[J].物理,1999,28(1):77-26
    [23] Whitesides G. M., Graybowski B.. Self-Assembly at All Scales [J]. Science, 2002, 295(5564):2418-2421.
    [24] Pileni M. R. Nanocrystal self-assemblies: fabrication and collective properties [J]. J. Phys. Chem. B, 2001, 105(17):3358-3371.
    [25] Hulteen J. C., Martin C. R., A General Template-based Method for the Prepartion ofNanomaterials [J]. J. Mater. Chem., 1997, 7(7):1075-1087.
    [26] Huczko A.. Template-based Synthesis of Nanomaterials [J]. Appl. Phys. A, 2000, 70:365-376.
    [27] Antonietti M.. Surfactants for Novel Templating Applications [J]. Curr. Opin. Colloid Interface Sci., 2001, 6: 244-248.
    [28] Zhou Y. K., Huang J., Shen C. M., Li H.. Synthesis of Highly Ordered LiNiO2 Nanowire Arrays in AAO Templates and Their Structural Properties [J]. Materials Science and Engineering A, 2002, 335 (1-2): 260-267.
    [29] Zhu B. L, Chen X., Sui Z. M., Xu L. M., Yang C. J., Zhao J. K., Liu J.. In situ Fabrication of ZnS Semiconductor Nanoparticles in Layered Organic- Inorganic Solid Template [J]. Chinese Chem. Lett., 2004,15(1): 97-100.
    [30] Gao F, Lu Q Y, Liu X Y, Zhao, D.. Controlled Synthesis of Semiconductor PbS Nanocrystals and Nanowires Inside Mesoporous Silica SBA-15 Phase [J].Nano Lett., 2001, 1(12): 743-748.
    [31] Walter E. C, Zach M. P., Favier F., Murray B. J., Inazu K., Hemminger J. C, Penner R. M.. Metal Nanowire Arrays by Electrodeposition [J]. Chemphyschem., 2003,4(2): 131-138.
    [32] Hamley I. W.. Introduction to Soft Mater Polymers, Colloids, Amphiphiles and Liquid Crystals [M]. 2000, Chichester: John Wiley & Sons, Ltd.: 1-45.
    [33] He H. X., Zhang H., Li Q. G, Zhu T., Li S. F. Y, Liu, Z. F.. Fabrication of Designed Architectures of Au Nanoparticles on Solid Substrate with Printed Self-Assembled Monolayers as Templates [J]. Langmuir, 2000,16(8):3846-3851.
    [34] Bague R P, Khilar K C. Effects of intermicellar exchange rate on the formation of silver nanoparticles in reverse microemulsions of AOT [J]. Langmuir, 2000,16(3): 905-910.
    [35] Ravaine S., Fanucci G E., Seip C. T., Adair J. H., Talham D. R.. Photochemical Generation of Gold Nanoparticles in Langmuir-Blodgett Films [J]. Langmuir, 1998,14(3): 708-713.
    [36] Jiang X. C, Xie Y, Lu J., Zhu L., He W. Qian Y. Oleate Vesicle Template Route to Silver Nanowires [J]. J. Mater. Chem., 2001,11(7): 1775-1777.
    [37] Velev O. D., Lenhoff A. M.. Colloidal Crystals As Tempates for Porous Materials[J]. Curr. Opin. Colloid Interface Sci., 2000, 5(1-2): 56-63.
    [38] Velev O. D., Jede T. A., Lobo R. F., Lenhoff A. M.. Porous Silica Via Colloidal Crystallization [J]. Nature, 1997,389(6650): 447-448.
    [39] Gates B., Yin Y., Xia Y. N.. Fabrication and Characterization of Porous Membranes with Highly Ordered Three-Dimensional Periodic Structrues [J]. Chem. Mater., 1999, 11(10): 2827-2836.
    [40] Brown P. V. Wilzius P.. Electrochemically Grow Photonic Crystals [J]. Nature, 1999, 402(6762):603-604.
    [41] Yan H. W., Blanford C. F., Holland B. T., Parent M., Smyrl W. H., Stein A.. A Chemical Synthesis of Periodic Macroporous NiO and Metallic Ni [J]. Adv. Mater., 1999, 11(12):1003-1006.
    [42] Alexandridis, P., Olsson, U., Lindman, B.. A Record Nine Different Phases (Four Cubic, Two Hexagonal, and One Lamellar Lyotropic Liquid Crystalline and Two Micellar Solutions) in a Ternary Isothermal System of an Amphiphilic Block Copolymer and Selective Solvents (Water and Oil) [J]. Langmuir, 1998. 14(10):2627-2638.
    [43] Zhao D., Feng J., Huo Q., Melosh N., Fredrickson G. H.. Chmelka B. F.. Stucky G. D.. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores [J]. Science, 1998, 279(5350):548-552.
    [44] 余成忠,田博之,范杰,屠波,赵东元.嵌段共聚物反介观液晶相新方法合成多级有序排列的二氧化硅纳米棒[J].高等学校化学学报.2003,24(1):5-8.
    [45] Lee T.. Yao, N.. Imai H.. Aksay I. A.. Barium Titanate Nanoparticles in Block Copolymer [J]. Langmuir, 2001, 17(24): 7656-7663.
    [46] 杨冬,齐利民.利用生物组织或生物大分子合成具有复杂形态的无机材料[J].化学通报,2002,65:1-9.
    [47] Bigham, S. R., Coffer, J. L.. The Influence of Adenine Content on the Properties of Q-CdS Clusters Stablized by Polynucleotides [J]. Colloids Surf. A, 1995, 95: 211-219.
    [48] 田玫,李丕春,杨文胜.利用鲑鱼精DNA为模板构建CdS纳米线[J].分子科学学报,2002,18(2):75-78.
    [49] Braun, E.. Eichen, Y., Sivan, U., Ben-Yoseph, G.. DNA-templated assembly and electrode attachment of a conducting silver wire [J]. Nature, 1998, 391: 775-778.
    [50] Mucic, R. C., Storhoff, J. J., Mirkin, C. A., Letsinger R. L.. DNA-Directed Synthesis of Binary Nanoparticle Network Materials [J]. J. Am. Chem. Soc., 120 (48):12674-12675.
    [51] Wong, K.K.W., Douglas, T., Gider, S., Awschalom, D.D., Mann, S.. Biomimetic Synthesis and Characterization of Magnetic Properties (Magnetoferritin) [J]. Chem. Mater., 1998,10(1):279-285.
    [52] Shenton, W., Douglas, T., Young, M., Stubbs, G., Mann, S.. Inorganic Organic Nanotube Composites from Template Mineralization of Tobacco Mosaic Virus [J]. Adv. Mater., 11(3):253-256.
    [53] Shenton, W., Pum, D., Sleytr, U. B., Mann, S.. Synthesis of cadmium sulphide superlattices using self-assembled bacterial S-layers [J]. Nature, 1997, 389: 585-587.
    [54] Klaus, T., Joerger, R., Olsson, E., Granqvist, C.G.. Silver-based crystalline nanoparticles, microbially fabricated [J]. Proc.Natl.Acad.Sci.USA, 1999, 96(24):13611-13614.
    [55] Yang, D., Qi L., Ma, J.. Eggshell Membrane Templating of Hierarchically Ordered Macroporous Networks Composed of TiO_2 Tubes [J]. Adv. Mater., 2002,14(21):1543-1546.
    [56] 邰子厚,梁映秋.有序分子膜[J].大学化学,1997,12(3):1-6.
    [57] 王良御,廖松生.液晶化学[M].北京:科学出版社,1988.138-149.
    [58] 李彦,张庆敏,黄福志等.表面活性剂溶致液晶体系研究进展[J].大学化学,2000,15(1):5-9.
    [59] Gulik-Krzywicki T., Dedieu J. C., Roux D., Degert C., Laversanne R., Freeze-Fracture Electron Microscopy of Sheared Lamellar Phase [J]. Langmuir, 1996, 12(20): 4668-4671.
    [60] Lin Z., Davis H. T., Scriven L. E.. Cryogenic Electron Microscopy of Micelles and Lyotropic Liquid Crystals in Some Polar Solvents [J]. Langmuir, 1996, 12(22):5489-5493.
    [61] Kresge C. T., Leonowicz M. E., Roth W. J., Vartuli J. C., Beck J. S.. Ordered
    ??Mesoporous Molecular Sieves Synthesized by a Liquid Crystal Template Mechanism [J]. Nature, 1992,359: 710-712.
    [62] Coleman N. R. B., Attard G S.. Ordered Mesoporous Silicas Prepared from Both Micellar Solutions and Liquid Crystal Phases [J]. Micropor. Mesopor. Mater., 2001,44-45: 73-80.
    [63] Attard G S., Edgar M., Goltner C. G. Inorganic Nanostructures from Lyotropic Liquid Crystal Phases [J]. Acta. Mater., 1998,46(3): 751-758.
    [64] Jiang X C, Xie Y, Lu J, Zhu L., He W., Qian Y.. Simultaneous In Situ Formation of ZnS Nanowires in a Liquid Crystal Template by -Irradiation [J]. Chem. Mater., 2001, 13(4): 1213-1218.
    [65] Li Y, Wan J. H., Gu Z. N.Templated Synthesis of CdS Nanowires in Hexagonal Liquid Crystal Systems [J]. ACTA. Physico-Chimica Sinica, 1999,15(1): 1-4.
    [66] Guo R., Liu T. Q.. The Synthesis of PbS Fine Particles in the Triton X-100/C_(10)H_(21)OH/H_2O Lamellar Liquid Crystal [J]. Colloids surf. A: Physicochem. Eng. Asp., 1997, 123-124: 587-591.
    [67] Braun P. V., Stupp S. I.. CdS Mineralization of Hexagonal, Lamellar, and Cubic Lyotropic Liquid Crystals [J]. Mater. Res. Bull., 1999, 34(3): 463-469.
    [68] Braun P. V., Osenar P., Tohver V., Kennedy S. B., Stupp S. I., Nanostructure Templating in Inorganic Solids with Organic Lyotropic Liquid Crystals [J]. J. Am. Chem. Soc, 1999, 121(32): 7302-7309.
    [69] Huang L., Wang H., Wang Z., Mitra A., Zhao D., Yan Y.. Cuprite nanowires by electrodeposition from lyotropic reverse hexagonal liquid crystalline phase [J]. Chem. Mater., 2002, 14(2): 876-880.
    [70] Huang L., Wang H., Wang Z., Mitra A., Bozhilov K. N., Yan Y.. Nanowire arrays electrodeposited from liquid crystalline phases [J]. Adv. Mater., 2002,14(1), 61-64.
    [71] Huang L., Wang Z., Wang H., Cheng X., Mitra A., Yan Y.. Polyaniline Nanowires by Electro- polymerization from Liquid Crystalline Phases [J]. J. Mater. Chem., 2002,12(2): 388-391.
    [72] Ding J. H., Gin D. L.. Catalytic Pd Nanoparticles Synthesized Using A Lyotropic Liquid Crystal Polymer Template [J]. Chem. Mater., 2000, 12(1):22-24.
    [73] Gray D. H., Gin D. L.. Polymedzable Lyotropic Liquid Crystals Containing Transition-metal Ions As Building Blocks for Nanostructured Polymers And Composites [J]. Chem. Mater., 1998, 10(7):1827-1832.
    [74] Qi L. M., Gao Y. Y., Ma J. M.. Synthesis of Ribbons of Silver Nanoparticles in Lamellar Liquid Crystals [J]. Colloids surf. A: Physicochem. Eng. Asp., 1999, 157(1-3): 285-294.
    [75] 张冬柏,齐利民,程虎民,马季铭.液晶模板法制备Au纳米线[J].高等学校化学学报,2003,24(12):2143-2146.
    [76] Andersson M. Alfredsson V., Kjellin P., Palmqvist A. E. C.. Macroscopic Alignment of Silver Nanopartieles in Reverse Hexagonal Liquid Crystalline Templates [J]. Nano Lett., 2002, 2(12): 1403-1407.
    [77] Kotz, J., Kosmella, S.. Polymers in lyotropic liquid crystals [J]. Curr. Opin. Colloid Interface Sci., 1999, 4(5): 348-353.
    [78] Ficheux, M.F., Bellocq, A. M., Nallet, F.. Experimental Study of a Lyotropic Lamellar Phase Swollen with Polymer Solutions [J]. J Phys Ⅱ France, 1995, 5:823-834.
    [79] Ficheux, M. F., Bellocq, A. M., Nallet, F.. Effect of Two Water-Soluble Polymers on the Stability of the AOT-H_2O-Lamellar Phase [J]. Colloids Surf. A, 1997, 123-124: 253-263.
    [80] Freyssingeas, E., Antelmi, D., Kekieheff, P., Richetti, P., Belloeq, A. M.. Softening of the Interactions between Surfactant Bilayers in a Lamellar Phase due to the Presence of a Polymer [J]. Eur. Phys. J. B, 1999, 9:123-136.
    [81] Zhang, K., Linse, P.. Soluilization of Polymer in the Lyotropic Lamellar Phase: The AOT/PEO/Water System [J]. J. Phys. Chem. B, 1995, 99(22):9130-9135.
    [82] Ruppelt, D., Kotz, J., Jaeger, W., Friberg, S. E., R. A. Mackay.. Influence of Cationic Polyeleetrolytes on Structure Formation in Lamellar Liquid Crystalline Systems [J]. Langmuir, 1997, 13(13):3316-3319.
    [83] Radinska, E.Z., Gulik-Krzywicki, T., Lafuma, F., Langevin, K., Urbach, W., Williams, C. E., Ober, R.. Polymer Confinement in Surfactant Bilayer of a Lyotropic Lamellar Phase [J]. Phys. Rev. Lett., 1995, 74(21): 4237-4240.
    [84] Clegg, S. M., Williams, P. A., Warren, P., Robb, I. D.. Phase behavior of Polymers with Concentrated Dispersions of Surfactants [J]. Langmuir, 1994,10: 3390-3394.
    [85] Koltover, I., Salditt, T., Radler, J. 0., Safinya, C. R.. An Inverted Hexagonal Phase of Cationic Liposome-DNA Complexes Related to DNA Release and Delivery [J]. Science, 1998,281: 78-81.
    [86] Radler, J. O., Koltover, I., Salditt, T., Safinya, C. R... Structure of DNA-Cationic Liposome Complexes: DNA Intercalation in Multilamellar Membranes in Distinct Interhelical Packing Regimes[J]. Science, 1997; 275:810-814.
    [87] Colin A., Roux, D.. Incorporating DNA in a lamellar phase: A Flory model [J]. Eur. Phys. J. E, 2002, 8: 499-506.
    [88] Cunningham B.A., Midmore L., Kucuk O., Lis L.J., Westerman M.P., Bras W., Wolfe D.H.. Qiunn P. J., Qadri S.B.. Sterols Stabilize the Ripple Phase Structure in Dihexadecylphosphatidylcholine [J]. Biochim.Biophys.Acta, 1995, 1233(1): 75-83.
    [89] Firestone M. A.. Wolf A. C, Seifert S.. Small-Angle X-ray Scattering Study of the Interaction of Poly(ethylene oxide)-b-Poly(propylene oxide)-b- Poly(ethylene oxide) Triblock Copolymers with Lipid Bilayers [J]. Biomacromolecules, 2003, 4 (6): 1539-1549.
    [90] Fabre P., Casafrande C, Veyssie M.. Ferrosmectics: A New Magnetic and Mesomorphic Phase [J]. Phys. Rev. Lett., 1990, 64(5): 539-542.
    [91] Quillier C, Fabre P., Cabuil V.. Doping of Lyotropic Smectics with Nonmagnetic Particles: Comparison with Ferrosmectics [J]. J. Phys. Chem., 1993,97(2): 287-289.
    [92] Ponsinet V., Fabre P., Veyssie M., Auvray L.. A Small-Angle Neutron Scattering Study of the Ferrosmectic [J]. J. Phys. II France, 1993, 3:
     1021-1039.
    [93] Quillier C, Ponsinet V., Cabuil V.. Magnetically Doped Hexagonal Lyotropic Phases [J]. J. Phys. Chem.,1994,98(14): 3566-3569.
    [94] Wang W., Chen X., Efrima S.. Silver Nanoparticles Capped by Long-chain Unsaturated Carboxylates [J]. J. Phys. Chem. B, 1999,103(34): 7238-7246.
    [95] Wang W., Efrima S., Reger 0.. Directing Oleate Stabilitized Nanosized Colloids into Organic Phases [J]. Langmuir, 1998, 14(3): 602-610.
    [96] Wang W, Efrima S., Reger O.. Directing Silver Nanoparticles into Colloid- Surfactant Lyotropic Lamellar Systems [J]. J. Phys. Chem. B. 1999, 103(27):5613-5621.
    [97] Chen X., Efrima S., Regev O., Wang. W, Niu L, Sui Z. M.. Zhu B. L, Yuan X. B., Yang K. Z.. Doping Silver Nanoparticles in AOT Lyotropic Lamellar Phases [J]. Science in China (Series B), 2001, 44(5): 492-499.
    [98] Chen X., Efrima S., Regev O.. Sui Z. M., Yang K. Z.. Doping Silver Nanoparticles in AOT Lyotropic Lamellar Phases [J]. Studies in Surface Science and Catalysis, 2001, 132: 711-714.
    [99] Firestone M. A., Williams D. E., Seifert S., Csencsits. R.. Nanoparticle Arrays Formed by Spatial Compartmentalization in a Complex Fluid [J]. Nano Lett.. 2001.1(3): 129-135.
    [100] Eiser, E., Bouchama, F., Thathagar, M. B., Rothenberg, G. Trapping Metal Nanoclusters in "Soap and Water" Soft Crystals [J]. CHEMPHYSCHEM, 2003,4: 526-528.
    [101] Shi, H., Qi, L., Ma, J., Cheng, H., Zhu, B.. Synthesis of Hierarchical Superstructures Consisting of BaCrO_4 Nanobelts in Catanionic Reverse Micelles [J]. Adv. Mater., 2003,15 (19): 1647-1651.
    [102] Chen S., Wang Z. L., Ballato J., Foulger S. H., Carroll D. L. Monopod, Bipod, Tripod, and Tetrapod Gold Nanocrystals [J]. J. Am. Chem. Soc, 2003. 125:16186-16187.
    [103] Xia, Y, Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F.. Yan, H.. One-Dimensional Nanostructures: Synthesis, Characterization, and
     Applications [J]. Adv. Mater., 2003, 15(5):353-389.
    [104] Wiley, B., Sun, Y., Mayers, B., Xia, Y.. Shape-Controlled Synthesis of Metal Nanostructures: The Case of Silver [J]. Chem. Eur. J., 2005, 11: 454-463.
    [105] Burda, C, Chen, X., Narayanan, R., El-Sayed, M. A.. Chemistry and Properties of Nanocrystals of Different Shape [J]. Chem. Rev., 2005, in press.
    [106] Jana N. R., Gearheart L., Murphy C. J.. Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods [J]. J. Phys. Chem. B, 2001, 105(19): 4065-4067.
    [107] Gole A., Murphy C. J.. Seed-Mediated Synthesis of Gold Nanorods: Role of the Size and Nature of the Seed [J]. Chem. Mater., 2004, 16(19): 3633-3640.
    [108] Gao J., Bender C. M., Murphy C. J.. Dependence of the Gold Nanorod Aspect Ratio on the Nature of the Directing Surfactant in Aqueous Solution [J]. Langmuir, 2003, 19(21): 9065-9070.
    [109] Sun Y, Mayers B., Herricks T., Xia Y. Polyol Synthesis of Uniform Silver Nanowires: A Plausible Growth Mechanism and the Supporting Evidence [J]. Nano Lett., 2003, 3(7): 955-960.
    [110] Link S., Mohamed M. B., El-Sayed M. A.. Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant [J]. J. Phys. Chem. B, 1999, 103(16): 3073-3077.
    [111] Kim F, Song J., Yang P.. Photochemical Synthesis of Gold Nanorods [J]. J. Am. Chem. Soc, 2002,124(48): 14316-14317.
    [112] Aguirre C. M., Kaspar T. R., Radloff C, Halas N. J.. CTAB Mediated Reshaping of Metallodielectric Nanoparticles [J]. Nano Lett., 2003, 3(12): 1707-1711.
    [113] Nikoobakht B., Wang Z. L., El-Sayed M. A.. Self-Assembly of Gold Nanorods [J]. J. Phys. Chem. B, 2000,104(36): 8635-8640.
    [114] Jin R., Cao Y. W., Mirkin C. A., Kelly K. L., Schatz G. C, Zheng J. G. Photoinduced Conversion of Silver Nanospheres to Nanoprisms [J]. Science, 2001,294: 1901-1903.
    [115] Sun Y., Mayers B., Xia Y.. Transformation of Silver Nanospheres into Nanobelts and Triangular Nanoplates through a Thermal Process [J]. Nano Lett., 2003, 3(5): 675-679.
    [116] Chen S., Carroll D. L.. Synthesis and Characterization of Truncated Triangular Silver Nanoplates [J]. Nano Lett., 2002,2(9): 1003-1007.
    [117] Chen S., Carroll D. L.. Silver Nanoplates: Size Control in Two Dimensions and Formation Mechanisms [J]. J. Phys. Chem. B, 2004, 108(18): 5500-5506.
    [118] Pastoriza-Santos, I., Liz-Marzan L. M.. Synthesis of Silver Nanoprisms in DMF [J]. Nano Lett., 2002, 2(8): 903-905.
    [119] Jiang L. P., Xu S., Zhu J. M., Zhang J. R., Zhu J. J., Chen H. Y. Ultrasonic-Assisted Synthesis of Monodisperse Single-Crystalline Silver Nanoplates and Gold Nanorings [J]. Inorg. Chem., 2004, 43(19): 5877-5883.
    [120] Maillard M., Giorgio S., Pileni M. P.. Tunning the Size of Silver Nanodisks with Similar Aspect Ratios: Synthesis and Optical Properties [J]. J. Phys. Chem. B, 2003, 107(11): 2466-2470.
    [121] Maillard M., Huang P., Brus L.. Silver Nanodisk Growth by Surface Plasmon Enhanced Photoreduction of Adsorbed [Ag+] [J]. Nano Lett., 2003, 3(11): 1611-1615.
    [122] Maillard M.. Giorgio S.. Pileni M. P.. Silver Nanodisks [J]. Adv. Mater.. 2002, 14(15): 1084-1086.
    [123] Chen S., Fan Z., Carroll D. L.. Silver Nanodisks: Synthesis, Characterization, and Self-Assembly [J]. J. Phys. Chem. B, 2002, 106(42): 10777-10781;
    [124] Hao E., Kelly K. L., Hupp J. T., Schatz G. C. Synthesis of Silver Nanodisks Using Polystyrene Mesospheres as Templates [J]. J. Am. Chem. Soc, 2002. 124(51): 15182-15183.
    [125] Germain V, Li J., Ingert D., Wang Z. L, Pileni M. P.. Stacking Faults in Formation of Silver Nanodisks [J]. J. Phys. Chem. B, 2003, 107(34):8717-8720.
    [126] Milligan W. O., Morriss R. H.. Morphology of Colloidal Gold—A Comparative Study [J]. J. Am. Chem. Soc, 1964, 86( 17): 3461 -3467.
    [127] Zhou Y., Wang C. Y., Zhu Y. R.. Chen Z. Y. A Novel Ultraviolet Irradiation Technique for Shape-Controlled Synthesis of Gold Nanoparticles at Room Temperature [J]. Chem. Mater., 1999, 11(9): 2310-2312.
    [128] Malikova N., Pastoriza-Santos I., Schierhorn M., Kotov N. A., Liz-Marzan L. M.. Layer-by-Layer Assembled Mixed Spherical and Planar Gold Nanoparticles: Control of Interparticle Interactions [J]. Langmuir, 2002, 18(9):3694-3697.
    [129] Stoeva S. I., Prasad B. L. V., Uma S., Stoimenov P. K., Zaikovski V., Sorensen C. M., Klabunde K. J.. Face-Centered Cubic and Hexagonal Closed-Packed Nanocrystal Superlattices of Gold Nanoparticles Prepared by Different Methods [J]. J. Phys. Chem. B, 2003, 107(30): 7441-7448.
    [130] Ibano D.. Yokota Y., Tominaga T.. Prepatation of Gold Nanoplates Protected by an Anionic Phospholipid [J]. Chem. Lett.. 2003, 32(7): 574-575.
    [131] Tsuji M., Hashimoto M.. Nishizawa Y, Tsuji T.. Preparation of Gold Nanoplates by a Microwave-polyol Method [J]. Chem. Lett., 2003, 32(12):1114-1115.
    [132] Kim J. U.. Cha S. H. Shin K., Jho J. Y. Lee J. C. Preparation of Gold Nanowires and Nanosheets in Bulk Block Copolymer Phases under Mild Conditions [J]. Adv. Mater.. 2004, 16(5): 459-464.
    [133] Sun X., Dong S.. Wang E.. Large-Scale Synthesis of Micrometer-Scale Single-Crystalline Au Plates of Nanometer Thickness by a Wet-Chemical Route [J].Angew. Chem. Int. Ed., 2004,43(46): 6360-6363.
    [134] Shankar S. S., Rai A., Ankamwar B., Singh A., Ahmad A., Sastry M.. Biological Syntiesis of Triangular Gold Nanoprisms [J]. Nature Mater., 2004, 3:482-488.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700