用户名: 密码: 验证码:
基于电纺丝与ATRP聚合技术构建多功能性薄膜
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电纺丝技术高效方便地制备出具有多孔结构的纳米纤维薄膜材料,对纳米纤维表面进行化学修饰,可进一步扩大所制备薄膜材料在传感、催化、分离等领域的应用。近年来,电纺丝的表面修饰受到研究者的广泛关注,文献已经报道的修饰方法包括“click”反应、电化学沉积和等离子体处理等。在本文中,我们成功的制备出纤维表面含有聚合引发位点的二氧化硅纳米纤维薄膜材料,纳米纤维表面含有的引发位点的密度与文献中通过溶液沉积法得到的基体表面的引发位点密度近似,而且由纳米纤维构成的薄膜有一定的机械强度和化学稳定性,通过原子转移自由基活性聚合(ATRP),可以根据自己的需要将不同性质的聚合物刷子接枝在电纺丝表面,刷子是调控表面性质一种常用的方法。本文中,我们将三种不同性能聚合刷子接枝于纤维表面。获得了具有特异功能的薄膜材料。
     首先,我们成功在电纺丝表面合成离子液体的刷子,将离子液体的特性和电纺丝特性有机的结合在一起,获得了一种具有可调节性的功能薄膜体系。通过调节对抗离子,膜的表面结构很容易被调控。这种薄膜可以用作电化学的开关,改变对抗离子,膜孔洞的亲疏水性发生变化,由亲水逐渐变为疏水,薄膜的孔洞逐渐排斥水分子,电化学信号随之改变,当对抗离子为疏水性最强的三氟甲磺酸根离子时,孔洞关闭,而且此过程是可逆的,关闭的孔洞可以重新打开。我们又将具有电活性的对抗离子磷钨酸根通过离子交换方法固定在膜表面,使膜具有电活性。其次,我们又分别在电纺丝表面合成除了聚(乙烯基吡啶)和聚(甲基丙烯酸)刷子,这类刷子修饰的电纺丝膜可以用作制备金属有机复合材料的支架,这种薄膜材料在气体分离方面有广泛的应用。
     在本文中,我们运用了各种表征手段,如核磁共振,透射红外,反射红外,扫描电子显微镜,透射电子显微镜和X射线光电子能谱等。
Electrospinning is novel and efficient fabrication method that can produce fibrous membranes with fiber diameters ranging from several micrometers down to tens of nanometers. Surface functionalization of electrospun fibers is a versatile method to extend its application in sensors, filtration, catalysis and so on. In this work, we electrospun SiO2 nanofibers containing certain similar density of initiator site on surface, comparable to that prepared by using post-derivated solution deposition approach. All kinds of brushes possibly grafted from the surface of nanofibers with atom transfer radical polymerization(ATRP). In this work, three different brushes separately synthesized on the surface of nanofibers, at the same time, functionalized membrane were achieved.
     Poly (ionic liquid) brushes were successfully grafted from the electrospun SiO2 nanofiber surface. Combining the unique properties of ionic liquid and electrospun nanofibrous mat, this hierarchically structured membrane provides a useful platform for developing functionalized membrane systems. With counteranion exchange of the attached poly (ionic liquid) brushes, the properties and functionality of the prepared membrane can be easily adjusted. Such membrane was served as anion-directed molecular gating system. With counteranion exchange, the surface properties of the membrane was reversibly altered between hydrophilic to hydrophobic, which make pores withdraw or expel solvent molecules (H2O), thus controlling the transport of probe molecules through membrane. As further example, electroactive polyoxometalate (POM) units were incorporated into membrane through simple conteranion exchange, and functionalized membrane with electroactivity was also achieved. Poly (methacrylic acid) and poly (4-vinyl pyridine) were also separately grafted from electrospun membrane, which provide a platform for developing Metal -Organic Framework (MOF) Membrane. The electrospun membrane coated MOF potentially could be applied in gas sorption.
     In this work, various characterization techniques including infrared spectroscopy (IR), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) and electrochemical measurement were used to characterize the related membrane systems.
引文
[1] Li, D. and Y. N. Xia, Electrospinning of nanofibers: Reinventing the wheel? Adv Mater, 2004. 16:1151-1170.
    [2] Dersch, R., et al., Electrospun nanofibers: Internal structure and intrinsic orientation. J Polym Sci Pol Chem, 2003. 41:545-553.
    [3] Li, D., Y. L. Wang, and Y. N. Xia, Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett, 2003. 3:1167-1171.
    [4] Theron, A., E. Zussman, and A. L. Yarin, Electrostatic field-assisted alignment of electrospun nanofibres. Nanotechnology, 2001. 12:384-390.
    [5] Doshi, J. and D. H. Reneker, Electrospinning process and applications of electrospun fibers. J Electrostat, 1995. 35:151-160.
    [6] Huang, Z. M., et al., A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol, 2003. 63:2223-2253.
    [7] Buchko, C. J., et al., Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer, 1999. 40:7397-7407.
    [8] Pawlowski, K. J., et al., Electrospinning of a micro-air vehicle wing skin. Polymer, 2003. 44:1309-1314.
    [9] Ryu, Y. J., et al., Transport properties of electrospun nylon 6 nonwoven mats. European Polymer Journal, 2003. 39:1883-1889.
    [10] Nakata, K., et al., Electrospinning of poly (ether sulfone) and evaluation of the filtration efficiency. Sen-I Gakkaishi, 2007. 63:307-312.
    [11] Heikkila, P., et al., Electrospinning of polyamides with different chain compositions for filtration application. Polym Eng Sci, 2008. 48:1168-1176.
    [12] Zhang, S., W. S. Shim, and J. Kim, Design of ultra-fine nonwovens via electrospinning of Nylon 6: Spinning parameters and filtration efficiency. Mater Design, 2009. 30:3659-3666.
    [13] Qin, X. H. and S. Y. Wang, Filtration properties of electrospinning nanofibers. J Appl Polym Sci, 2006. 102:1285-1290.
    [14] Tsai, P. P., H. Schreuder-Gibson, and P. Gibson, Different electrostatic methods for making electret filters. J Electrostat, 2002. 54:333-341.
    [15] Schmedake, T. A., et al., Standoff detection of chemicals using porous silicon "smart dust" particles. Adv Mater, 2002. 14:1270.
    [16] Thorvaldsson, A., et al., Electrospinning of highly porous scaffolds for cartilage tissue engineering. Tissue Eng Pt A, 2008. 14:845-846.
    [17] Bae, M. S., et al., Nanofiber scaffold for tissue regeneration using electrospinning method. Tissue Eng Regen Med, 2008. 5:196-203.
    [18] Lannutti, J., et al., Electrospinning for tissue engineering scaffolds. Mat Sci Eng C-Bio S, 2007. 27:504-509.
    [19] Liao, S., et al., Processing nanoengineered scaffolds through electrospinning and mineralization, suitable for biomimetic bone tissue engineering. J Mech Behav Biomed, 2008. 1:252-260.
    [20] Tong, H. W. and M. Wang, Electrospinning of aligned biodegradable polymer fibers and composite fibers for tissue engineering applications. J Nanosci Nanotechno, 2007. 7:3834-3840.
    [21] Ashammakhi, N., et al., Biodegradable nanomats produced by electrospinning: Expanding multifunctionality and potential for tissue engineering. J Nanosci Nanotechno, 2007. 7:862-882.
    [22] Caracciolo, P. C., et al., Electrospinning of novel biodegradable poly(ester urethane)s and poly(ester urethane urea)s for soft tissue-engineering applications. J Mater Sci-Mater M, 2009. 20:2129-2137.
    [23] Zhang, S., et al., Gelatin nanofibrous membrane fabricated by electrospinning of aqueous gelatin solution for guided tissue regeneration. J Biomed Mater Res A, 2009. 90A:671-679.
    [24] Van Lieshout, M. I., et al., Electrospinning versus knitting: two scaffolds for tissue engineering of the aortic valve. J Biomat Sci-Polym E, 2006. 17:77-89.
    [25] Chen, R., et al., Electrospinning Thermoplastic Polyurethane-Contained Collagen Nanofibers for Tissue-Engineering Applications. J Biomat Sci-Polym E, 2009. 20:1513-1536.
    [26] Gandhi, M., et al., Regeneration of bombyx mori silk by electrospinning: A comparative study of the biocompatibility of natural and synthetic polymers for tissue engineering applications. J Biobased Mater Bio, 2007. 1:274-281.
    [27] Zhao, D. M., et al., Composition-graded films of fluoroapatite/PHB fabricated via electrospinning for tissue engineering. J Bioact Compat Pol, 2007. 22:379-393.
    [28] Martins, A., R. L. Reis, and N. M. Neves, Electrospinning: processing technique for tissue engineering scaffolding. Int Mater Rev, 2008. 53:257-274.
    [29] Yoo, J. J., et al., Electrospinning fabrication of collagen-based scaffolds for vascular tissue engineering. Faseb J, 2006. 20:A1101-A1101.
    [30] Qi, H. X., et al., Biomimic tubulose scaffolds with multilayer prepared by electrospinning for tissue engineering. Mater Sci Forum, 2006. 510-511:882-885.
    [31] Shalumon, K. T., et al., Electrospinning of carboxymethyl chitin/poly(vinyl alcohol) nanofibrous scaffolds for tissue engineering applications. Carbohyd Polym, 2009. 77:863-869.
    [32] Qiu, R. X., et al., Electrospinning of synthesized triblock copolymers of epsilon-caprolactone and L-lactide for the application of vascular tissue engineering. Biomed Mater, 2009. 4:4.
    [33] Agarwal, S., J. H. Wendorff, and A. Greiner, Progress in the field of electrospinning for tissue engineering applications. Adv Mater, 2009. 21:3343-3351.
    [34] Sell, S. A., et al., Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering. Adv Drug Deliver Rev, 2009. 61:1007-1019.
    [35] Park, S. H., et al., Development of dual scale scaffolds via direct polymer melt deposition and electrospinning for applications in tissue regeneration. Acta Biomater, 2008. 4:1198-1207.
    [36] Jing, Z., et al., Biodegradable electrospun fibers for drug delivery. J Control Release, 2003. 92:227-231.
    [37] Xie, J. B. and Y. L. Hsieh, Ultra-high surface fibrous membranes from electrospinning of natural proteins: casein and lipase enzyme. J Mater Sci, 2003. 38:2125-2133.
    [38] Herricks, T. E., et al., Direct fabrication of enzyme-carrying polymer nanofibers by electrospinning. J Mater Chem, 2005. 15:3241-3245.
    [39] Jia, H. F., et al., Enzyme-carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalysts. Biotechnol Progr, 2002. 18:1027-1032.
    [40] Zeng, J., et al., Poly(vinyl alcohol) nanofibers by electrospinning as a protein delivery system and the retardation of enzyme release by additional polymer coatings. Biomacromolecules, 2005. 6:1484-1488.
    [41] Wang, Y. H. and Y. L. Hsieh, Enzyme immobilization via electrospinning of polymer/enzyme blends. Abstr Pap Am Chem S, 2003. 225:U556-U556.
    [42] Zhang, Y., et al., Highly porous SnO2 fibers by electrospinning and oxygen plasma etching and its ethanol-sensing properties. Sensor Actuat B-Chem, 2010. 144:43-48.
    [43] Zheng, W., et al., Electrospinning route for alpha-Fe2O3 ceramic nanofibers and their gas sensing properties. Mater Res Bull, 2009. 44:1432-1436.
    [44] Wang, J. X., et al., HCHO sensing properties of Ag-doped In2O3 nanofibers synthesized by electrospinning. Mater Lett, 2009. 63:1750-1753.
    [45] Wang, X. Y., et al., Synthesis and electrospinning of a novel fluorescent polymer PMMA-PM for quenching-based optical sensing. J Macromol Sci Pure, 2002. A39:1241-1249.
    [46] Hao, R., J. Y. Yuan, and Q. Peng, Fabrication and sensing behavior of Cr2O3 nanofibers via in situ gelation and electrospinning. Chem Lett, 2006. 35:1248-1249.
    [47] Ding, B., et al., Electrospun nanofibrous membranes coated quartz crystal microbalance as gas sensor for NH3 detection. Sensor Actuat B-Chem, 2004. 101:373-380.
    [48] Tao, S. Y., G. T. Li, and J. X. Yin, Fluorescent nanofibrous membranes for trace detection of TNT vapor. J Mater Chem, 2007. 17:2730-2736.
    [49] Wang, X. Y., et al., Electrospun nanofibrous membranes for highly sensitive optical sensors. Nano Lett, 2002. 2:1273-1275.
    [50] Choi, S. W., et al., An electrospun poly(vinylidene fluoride) nanofibrous membrane and its battery applications. Adv Mater, 2003. 15:2027-2032.
    [51] Yang, Q. B., et al., Preparation and characterization of a pan nanofibre containing Ag nanoparticles via electrospinning. Synthetic Met, 2003. 137:973-974.
    [52] Ma, G. P., D. Z. Yang, and J. Nie, Preparation of porous ultrafine polyacrylonitrile (PAN) fibers by electrospinning. Polym Advan Technol, 2009. 20:147-150.
    [53] Qin, X. H., et al., Effect of LiCl on electrospinning of PAN polymer solution: theoretical analysis and experimental verification. Polymer, 2004. 45:6409-6413.
    [54] Gomes, D. S., et al., Characterization of an electrospinning process using different PAN/DMF concentrations. Polimeros, 2007. 17:206-211.
    [55] Bai, J., et al., Synthesis of AgCl/PAN composite nanofibres using an electrospinning method. Nanotechnology, 2007. 18:-.
    [56] Qin, X. H., et al., Effect of LiCl on the stability length of electrospinning jet by PAN polymer solution. Mater Lett, 2005. 59:3102-3105.
    [57] Li, X. F., et al., Fabrication of Polyacrylonitrile/polypyrrole (PAN/Ppy) composite nanofibres and nanospheres with core-shell structures by electrospinning. Mater Lett, 2008. 62:1155-1158.
    [58] Qin, X. H., Structure and property of electrospinning PAN nanofibers by different preoxidation temperature. J Therm Anal Calorim, 2010. 99:571-575.
    [59] Shou, D. H. and J. H. He, PAN/PVP micro composite fibers using electrospinning. J Polym Eng, 2008. 28:115-118.
    [60] Qin, X. H., et al., Effect of different salts on electrospinning of polyacrylonitrile (PAN) polymer solution. J Appl Polym Sci, 2007. 103:3865-3870.
    [61] Kim, M. N., et al., Preparation of PVA/PAN Bicomponent Nanofiber Via Electrospinning and Selective Dissolution. J Appl Polym Sci, 2009. 113:274-282.
    [62] Jalili, R., et al., Fundamental parameters affecting electrospinning of PAN nanofibers as uniaxially aligned fibers. J Appl Polym Sci, 2006. 101:4350-4357.
    [63] Oh, G. Y., et al., Preparation of the novel manganese-embedded PAN-based activated carbon nanofibers by electrospinning and their toluene adsorption. J Anal Appl Pyrol, 2008. 81:211-217.
    [64] Heikkila, P. and A. Harlin, Electrospinning of polyacrylonitrile (PAN) solution: Effect of conductive additive and filler on the process. Express Polym Lett, 2009. 3:437-445.
    [65] Zhang, C. Q., et al., A novel approach to prepare silver chloride nanoparticles grown on the surface of PAN nanofibre via electrospinning combined with gas-solid reaction. Colloid Surface A, 2010. 353:64-68.
    [66] Park, S. J. and S. H. Im, Electrochemical behaviors of PAN/Ag-based carbon nanofibers by electrospinning. B Korean Chem Soc, 2008. 29:777-781.
    [67] Sun, L. K., et al., Fabrication of Pan-Based Hollow Carbon Fibers by Coaxial Electrospinning and Two Post-Treatments. Acta Polym Sin, 2009:61-65.
    [68] Titchenal, N. L., et al., Next-generation carbon fibers by electrospinning PAN and MWNT nanocomposite. Abstr Pap Am Chem S, 2003. 226:U443-U443.
    [69] Liu, H. Q. and Y. L. Hsieh, Electrospinning of polyacrylonitrile (PAN) and hydrolysis of PAN nanofibers. Abstr Pap Am Chem S, 2003. 226:U402-U402.
    [70] Boland, E. D., et al., Tailoring tissue engineering scaffolds using electrostatic processing techniques: A study of poly(glycolic acid) electrospinning. J Macromol Sci Pure, 2001. 38:1231-1243.
    [71] Nair, L. S., S. Bhattacharyya, and C. T. Laurencin, Development of novel tissue engineering scaffolds via electrospinning. Expert Opin Biol Th, 2004. 4:659-668.
    [72] Khil, M. S., et al., Novel fabricated matrix via electrospinning for tissue engineering. J Biomed Mater Res B, 2005. 72B:117-124.
    [73] Venugopal, J. and S. Ramakrishna, Applications of polymer nanofibers in biomedicine and biotechnology. Appl Biochem Biotech, 2005. 125:147-157.
    [74] Zong, X. H., et al., Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer, 2002. 43:4403-4412.
    [75] Gao, X. F. and L. Jiang, Water-repellent legs of water striders. Nature, 2004. 432:36-36.
    [76] Martindale, D., Medicine - Tissue repair - Scar no more. Sci Am, 2000. 283:34-36.
    [77] Katti, D. S., et al., Bioresorbable nanofiber-based systems for wound healing and drug delivery: Optimization of fabrication parameters. J Biomed Mater Res B, 2004. 70B:286-296.
    [78] Khil, M. S., et al., Electrospun nanofibrous polyurethane membrane as wound dressing. J Biomed Mater Res B, 2003. 67B:675-679.
    [79] Rho, K. S., et al., Electrospinning of collagen nanofibers: Effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials, 2006. 27:1452-1461.
    [80] Zhu, M. F., et al., Superhydrophobic surface directly created by electrospinning based on hydrophilic material. J Mater Sci, 2006. 41:3793-3797.
    [81] Wang, J. S. and K. Matyjaszewski, Controlled living radical polymerization - atom-transfer radical polymerization in the presence of transition-metal complexes. J Am Chem Soc, 1995. 117:5614-5615.
    [82] Xia, J. H., S. G. Gaynor, and K. Matyjaszewski, Controlled/"living" radical polymerization. Atom transfer radical polymerization of acrylates at ambient temperature. Macromolecules, 1998. 31:5958-5959.
    [83] Azzaroni, O., et al., Polyelectrolyte brushes as efficient ultrathin platforms for site-selective copper electroless deposition. Langmuir, 2006. 22:6730-6733.
    [84] Oren, R., et al., Organization of Nanoparticles in Polymer Brushes. J Am Chem Soc, 2009. 131:1670.
    [85] Moya, S. E., et al., Explanation for the apparent absence of collapse of polyelectrolyte brushes in the presence of bulky ions. J Phys Chem B, 2007. 111:7034-7040.
    [86] Ramstedt, M., et al., Synthesis and characterization of poly(3-sulfopropylmethacrylate) brushes for potential antibacterial applications. Langmuir, 2007. 23:3314-3321.
    [87] Comrie, J. E. and W. T. S. Huck, Formation of hybrid 2D polymer-metal microobjects. Langmuir, 2007. 23:1569-1576.
    [88] Spruijt, E., E. Y. Choi, and W. T. S. Huck, Reversible electrochemical switching of polyelectrolyte brush surface energy using electroactive counterions. Langmuir, 2008. 24:11253-11260.
    [89] Dai, X., et al., Direct visualization of reversible switching of micropatterned polyelectrolyte brushes on gold surfaces using laser scanning confocal microscopy. Langmuir, 2008. 24:13182-13185.
    [90] Choi, E. Y., et al., Electrochemical characteristics of polyelectrolyte brushes with electroactive counterions. Langmuir, 2007. 23:10389-10394.
    [91] Brown, A. A., O. Azzaroni, and W. T. S. Huck, Photoresponsive polymer brushes for hydrophilic patterning. Langmuir, 2009. 25:1744-1749.
    [92] Jennings, G. K. and E. L. Brantley, Physicochemical properties of surface-initiated polymer films in the modification and processing of materials. Adv Mater, 2004. 16:1983-1994.
    [93] Andruzzi, L., et al., Control of surface properties using fluorinated polymer brushes produced by surface-initiated controlled radical polymerization. Langmuir, 2004. 20:10498-10506.
    [94] Wang, Y. P., et al., Synthesis and characterization of surface-initiated polymer brush prepared by reverse atom transfer radical polymerization. European Polymer Journal, 2005. 41:737-741.
    [95] Wang, L. P., et al., Synthesis and characterization of surface-initiated polymer brushes on silicon substrates by reversible addition fragmentation chain transfer polymerization. Polym Advan Technol, 2008. 19:285-290.
    [96] Armand, M., et al., Ionic-liquid materials for the electrochemical challenges of the future. Nature Materials, 2009. 8:621-629.
    [97] Lei, Z. G., et al., Predictive molecular thermodynamic models for liquid solvents, solid salts, polymers, and ionic liquids. Chemical Reviews, 2008. 108:1419-1455.
    [98] Binnemans, K., Ionic liquid crystals. Chemical Reviews, 2005. 105:4148-4204.
    [99] Dupont, J., R. F. de Souza, and P. A. Z. Suarez, Ionic liquid (molten salt) phase organometallic catalysis. Chemical Reviews, 2002. 102:3667-3691.
    [100] Dzyuba, S. V. and R. A. Bartsch, New room-temperature ionic liquids with C-2-symmetrical imidazolium cations. Chem Commun, 2001:1466-1467.
    [101] Wasserscheid, P. and W. Keim, Ionic liquids - New "solutions" for transition metal catalysis. Angew Chem Int Edit, 2000. 39:3773-3789.
    [102] Ngo, H. L., et al., Thermal properties of imidazolium ionic liquids. Thermochim Acta, 2000. 357:97-102.
    [103] Gathergood, N., M. T. Garcia, and P. J. Scammells, Biodegradable ionic liquids: Part I. Concept, preliminary targets and evaluation. Green Chem, 2004. 6:166-175.
    [104] Shekaari, H., Y. Mansoori, and R. Sadeghi, Density, speed of sound, and electrical conductance of ionic liquid 1-hexyl-3-methyl-imidazolium bromide in water at different temperatures. J Chem Thermodyn, 2008. 40:852-859.
    [105] Wadhawan, J. D., et al., Ionic liquid modified electrodes. Unusual partitioning and diffusion effects of Fe(CN)6(4-/3-) in droplet and thin layer deposits of 1-methyl-3-(2, 6-(S)-dimethylocten-2-yl)-imidazolium tetrafluoroborate. J Electroanal Chem, 2000. 493:75-83.
    [106] Rowsell, J. L. C. and O. M. Yaghi, Metal-organic frameworks: a new class of porous materials. Micropor Mesopor Mat, 2004. 73:3-14.
    [107] Yaghi, O. M., et al., Reticular synthesis and the design of new materials. Nature, 2003. 423:705-714.
    [108] Kitagawa, S., R. Kitaura, and S. Noro, Functional porous coordination polymers. Angew Chem Int Edit, 2004. 43:2334-2375.
    [109] Kepert, C. J., T. J. Prior, and M. J. Rosseinsky, Hydrogen bond-directed hexagonal frameworks based on coordinated 1,3,5-benzenetricarboxylate. J Solid State Chem, 2000. 152:261-270.
    [110] Yaghi, O. M., et al., Construction of a new open-framework solid from 1,3,5-cyclohexanetricarboxylate and zinc(II) building blocks. J Chem Soc Dalton, 1997:2383-2384.
    [111] Vishnyakov, A., et al., Nanopore structure and sorption properties of Cu-BTC metal-organic framework. Nano Lett, 2003. 3:713-718.
    [112] Duren, T., et al., Design of new materials for methane storage. Langmuir, 2004. 20:2683-2689.
    [113] Rowsell, J. L. C., et al., Hydrogen sorption in functionalized metal-organic frameworks. J Am Chem Soc, 2004. 126:5666-5667.
    [114] Skoulidas, A. I., Molecular dynamics simulations of gas diffusion in metal-organic frameworks: Argon in CuBTC. J Am Chem Soc, 2004. 126:1356-1357.
    [115] Zheng, X. J., et al., Hydrothermal syntheses, structures and magnetic properties of two transition metal coordination polymers with a square grid framework. Polyhedron, 2004. 23:1257-1262.
    [116] Liu, X. J., et al., Crystal structure and fluorescence of a novel 3D inorganic-organic hybrid polymer with mixed ligands. Inorg Chem Commun, 2004. 7:31-34.
    [117] Kondo, M., et al., Microporous materials constructed from the interpenetrated coordination networks. Structures and methane adsorption properties. Chem Mater, 2000. 12:1288-1299.
    [118] Wang, Q. M., et al., Metallo-organic molecular sieve for gas separation and purification. Micropor Mesopor Mat, 2002. 55:217-230.
    [119] Guo, H. L., et al., "Twin Copper Source" Growth of Metal-Organic Framework Membrane: Cu-3(BTC)(2) with High Permeability and Selectivity for Recycling H-2. J Am Chem Soc, 2009. 131:1646-+.
    [120] Fu, G. D., et al., Core-sheath nanofibers from combined atom transfer radical polymerization and electrospinning. Macromolecules, 2008. 41:6854-6858.
    [121] Chang, Z. J., et al., Grafting Poly(methyl methacrylate) onto Polyimide Nanofibers via "Click" Reaction. Acs Appl Mater Inter, 2009. 1:2804-2811.
    [122] Fu, G. D., et al., Smart Nanofibers from Combined Living Radical Polymerization, "Click Chemistry" and Electrospinning. Acs Appl Mater Inter, 2009. 1:239-243.
    [123] Lu, X. B., et al., Room temperature ionic liquid based polystyrene nanofibers with superhydrophobicity and conductivity produced by electrospinning. Chem Mater, 2008. 20:3420-3424.
    [124] Shao, C. L., et al., Fiber mats of poly(vinyl alcohol)/silica composite via electrospinning. Mater Lett, 2003. 57:1579-1584.
    [125] Choi, S. S., et al., Silica nanofibers from electrospinning/sol-gel process. J Mater Sci Lett, 2003. 22:891-893.
    [126] Ma, H. W., et al., Protein-resistant polymer coatings on silicon oxide by surface-initiated atom transfer radical polymerization. Langmuir, 2006. 22:3751-3756.
    [127] Noro, S., et al., Framework engineering by anions and porous functionalities of Cu(II)/4,4 '-bpy coordination polymers. J Am Chem Soc, 2002. 124:2568-2583.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700