用户名: 密码: 验证码:
钒氧化物纳米材料的制备和性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文旨在研究以真空热蒸发法制备具有不同光电特性的氧化钒薄膜,实验中以纯金属钒片为原料、采用真空蒸发法制备VOx薄膜,并对制备的薄膜进行了一系列不同条件的热处理。在所制备纳米结构的基础上,采用现代测试手段对低维钒氧化物纳米材料的合成、结构和性能进行了深入研究,探讨了组织、结构和性能的相关性,分析了结构形成和性能优化的机理和规律,并且通过各种实验和计算的方式来从机理上进一步解释了这些关系。
     主要的研究内容和成果如下:
     (1)体心立方结构二氧化钒新相的发现:通过真空热蒸发的方式在硅片上制备了准直阵列排布的氧化钒(准)纳米棒,经过细致的选区电子衍射分析,我们证明了这些纳米棒的结构为体心立方结构,在结合RBS,XPS以及EELS等实验方法的基础上,我们分析了这些纳米棒的化学组成,并测试了纳米棒薄膜的场发射和光催化等性质。
     (2)五氧化二钒纳米棒的制备:将220 oC真空热蒸发的三氧化二钒薄膜在空气中进行退火,在500 oC得到了五氧化二钒的纳米棒,对五氧化二钒纳米棒的性能测试可以发现,纳米棒有很强的光致发光现象;同时观察到纳米棒稳定的氧气的敏感性,可以用来作为探测氧气浓度的传感器。
     (3)五氧化二钒薄膜光学性能的增强:将180 oC真空热蒸发的三氧化二钒薄膜在空气中进行退火,发现通过改变热处理工艺可以改变薄膜中的缺陷浓度,从而进一步控制氧化钒薄膜的光学性能。对于五氧化二钒光学性能的分析我们分别在室温、低温和变温条件下进行了研究,揭示了缺陷工程中通过改变氧缺陷的浓度来调控薄膜的光学性能的作用。
     (4)强磁场下氧化钒纳米材料的生长和性能变化:磁场下对于薄膜的热处理过程进行了磁场影响的研究,研究结果发现,在磁场的作用下,样品的生长和光致发光性能都受到了影响。实验中我们发现,受磁场的影响越大时,纳米棒的生长越不容易,同时,热处理之后样品的光致发光强度也越低。
Vanadium oxides have attracted tremendous interest due to their excellent properties and applications in a wide range of fields. For example, vanadium pentoxide (V2O5) exhibits properties such as chemical sensing, photochromism and catalysis, and is a candidate material for applications in electronic information displays, electrochromic devices, optical-electrical switch and color memory devices, etc., Since materials having reduced dimensions may possess interesting properties that are very different from their bulk states, efforts have been directed recently to the synthesis of nanostructures of vanadium oxides and to the study of their structure-property relationships.
     In this dissertation, the low-dimensioned Vanadium Oxide nanomaterials were chosen as the objects. Some modern methods were used to study the preparation, structure and properties of low-dimensioned Vanadium Oxide nanomaterials. The main results are as follows:
     (1) VO_2 of a BCC structure: a new phase in the vanadium oxides system
     Films of aligned rods of vanadium oxides were deposited by heating a sheet of vanadium in a rough vacuum. Careful identification indicates that the rods are VO_2 with a body-centered-cubic structure. Due to the cone shape, they exhibited good field emission property. Upon heating in air at 400oC, the VO_2 rods were oxidized into V_2O_5, which induced intense visible light emission.
     (2) Synthesis and optical properties of V2O5 nanorods
     Two-step method was proposed to synthesize V2O5 nanorods on planar substrates. The V_2O_5 nanorods are single crystalline and could emit intense visible light at room temperature. This study provides a simple and low-substrate temperature route to fabricate V2O5 nanorods on planar substrates, which might be also applicable to other metal oxides.
     (3) Optical properties adjustment of V2O5 films by“Defect Engineering”
     The effect of optical properties with different heat-treatment of V_2O_5 films has been investigated. The relationship of the heat-treatment process on the red PL has been studied in detail. We find the photoluminescence property can be modified by different heat-treatment process. Meantime, the photosensitivity property is also changed. By calculation of the ab initio simulation and positron annihilation method, the PL property can be concluded caused by the Oxygen vacancies.
     (4) The influence of the strong magnetic field
     The heat-treatment in strong magnetic field has been investigated. The result shows that the crystallization and PL property will both be modified by magnetic field. Stronger the magnetic field, harder could the nanorods grow, and weaker could the PL intensity be.
引文
[1] Gleiter H. Nanocrystalline Materials. Europhysics News, 1989, 20(4): 223-315
    [2]朱静.纳米材料和器件.北京:清华大学出版社, 2003
    [3] Wang ZL. Characterization of nanophase materials. Weinheim: Wiley-VCH press, 2000
    [4] Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 345: 56-58
    [5] Jiang KL, Li QQ, Fan SS. Nanotechnology: Spinning continuous carbon nanotube yams, Carbon nanotubes weave their way into a range of imaginative macroscopic applications. Nature, 2002, 419(6909): 801
    [6]成会明.纳米碳管一制备、结构、物性及应用.北京:化学工业出版社, 2002
    [7]许并社.纳米材料及应用技术.北京:化学工艺出版社, 2004
    [8] Spahr ME, Stoschitzki-Bitterli P, Nesper R, et al. Vanadium oxide nanotubes: A new nanostructured redox-active material for the electrochemical insertion of lithium. J Electrochem Soc, 1999, 146 (8): 2780-2783
    [9] Azambre B, Hudson MJ, Heintz O. Topotactic redox reactions of copper(II) and iron(III) salts within VOs nanotubes. J Mater Chem, 2003, 13 (2): 385-393
    [10] Chen X, Sun XM, Li YD. Self-assembling vanadium oxide nanotubes by organic molecular templates. Inorg Chem, 2002, 41 (17): 4524-4530
    [11] Muhr HJ, Krumeich F, Schonholzer UP, et al. Vanadium oxide nanotubes - A new flexible vanadate nanophase. Adv Mater, 2000, 12 (3): 231-238
    [12] Xia YN, Yang PD. One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater, 2003, 15: 353-389
    [13] Kwan S, Kim F, Arkana J, et al. Synthesis and assembly of BaW04 nanorods. Chem Commun, 2001, 5: 447-448
    [14] Sun Y, Gates B, Mayers B, et al. Crystalline silver nanowires by soft solution processing. Nano Lett, 2002, 2: 165-168
    [15] Song JH, Messer B, Wu Y, et al. MMo3Se3 (M=Li+, Na+, Rb+, Cs+) nanowire formation via cation exchange in organic solution. J Am Chem Soc, 2001, 123: 9714-9715
    [16] Jiang X, Herricks T, Xia Y. CuO nanowires can be synthesized by heating copper substrates in air. Nano Lett, 2002, 2: 13-38
    [17] Gates B, Wu Y, Yin Y, et al. Single crystalline nanowires of Ag2Se can be synthesized by templating against nanowires of trigonal Se. J Am Chem Soc, 2001, 123:11500-11501
    [18] Messer B, Song JH, Huang M, et al. Surfactant-induced mesoscopic assemblies of inorganic molecular chains. Adv mater, 2000, 12: 1526-1528
    [19] Yin Y, Lu Y, Sun Y, et al. Silver nanowires can be directly coated with amorphous silica to generate well-controlled coaxial nanocables of silver/silica. Nano Lett, 2002, 2: 427-430
    [20] Patzke GR, Krumeich F, Nesper R. Oxidic nanotubes and nanorods-Anisotropic modules for a future nanotechnology. Angew Chem Int Ed, 2002, 41:2446-2461
    [21] Wu X, Tao Y, Lin D, et al. Synthesis and characterization of self-assembling (NH4)0.5V2O5 nanowires. J Mater Chem, 2004, 14: 901-904
    [22] Fan S, Chapline Mq Franklin NR, et al. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science, 1999, 283: 512-514
    [23] Varghese OK, Gong D, Paulose M, et al. Crystallization and high-temperature structural stability of titanium oxide nanotube arrays. J Mater Res, 2003, 18(1): 156-165
    [24] Vayssieres L. Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solution. Adv Mater, 2003, 15: 464-466
    [25] Xie Y, Qian YT, Wang WZ, et al. A benzene-thermal synthetic route to nanocrystalline GaN. Science, 1996, 272 (5270): 1926-1927
    [26] Iwata M, Adachi K, Furukawa S, et al. Synthesis of purified AIN nano powder by transferred type arc plasma. J Phys D Appl Phys, 2004, 37 (7): 1041-1047
    [27] Yen PC, Kao JS, Huang SY, et al. Properties of PZT nano-powder doped silica films. prepared by sol-gel process, Integr Ferroelectr, 2002, 50: 251-260
    [28] Wu XM, Di YY, Tan ZC, et al. Low temperature heat capacity of the anatase nano-powder TiO2. J Inorg Mater, 2001, 16 (1): 159-164
    [29] Huan J, Zhou WC, Luo F. A neural network model for dielectric loss of Si/C/N nano powder. J Inorg Mater, 2002, 17 (4): 852-856
    [30]胡克俊.国内外三氧化二钒提取工艺发展状况.钢铁钒钛, 1995, 16(4): 55-62
    [31] Almeida LAL, Deep GS, Lima AMN. Thermal dynamics of vanadium oxide films within the metal-insulator transition: Evidence for chaos near percolation threshold. Appl Phys Lett, 2000, 77(26): 4365-4367
    [32] Li YM, Tetsuichi KD. Electrochemical properties of spin-coated thin films of thin films from peroxo-polymolybdovanadate solution. J Electrochem Soc, 1995, 4: 142-147
    [33]申泮文,车云霞.无机化学丛书第八卷,钛分族钒分族铬分族.北京:科学出版社, 1998
    [34] Livage J, Betrille F, Roux C, et al. Sol-gel synthesis of oxide materials. Acta Mater, 1998, 46(3): 742-750
    [35] Yao T, Oka Y, Yamamoto N. Layered structures of vanadium pentoxide gels. Mater Res Bull, 1992, 27: 669-675
    [36] Livage J. Vanadium pentoxide gels. Chem Mater, 1991, 3: 578-593
    [37] Silva LF, Pofeti LPR, Stradiotto NR, et al. Immobilization and electrochemical properties of anionic complexes on a V2O5/surfactant nanocomposite. J Non-Crystal Solids, 2002, 298: 213-218
    [38] Mercouri GK, Chun GW, Henry um, et al. Conductive-polymer bronzes intercalated polyaniline in vanadium oxide xerogels. J Am Chem Soc, 1989, 11: 4139-4141
    [39] Wu CG, Degroot DC, Marcy HO, et al. Redox intercalative polymerization of aniline in V2O5 xerogel. Chem Mater, 1996, 8(8): 1992-2004
    [40] Demets GJF, Anaissi FJ, Toma HE. Electrochemical properties of assembled poly (pyrrole)V2O5 xerogel films. Electrochimica Acta, 2000,46: 547-554
    [41] Mercouri GK, Chun GW, Henry OM, et al. Conductive polymer/oxide bronze nanocomposites, Intercalated polythiophene in vanadium pentoxide (V2O5) xerogels. Chem Mater, 1990, 2(3): 222-224
    [42]杨邦朝,王文生.薄膜物理与技术.成都:电子科技大学出版社, 1994, 17~50
    [43]孔庆升.薄膜电子学.北京:电子工业出版社, 1994, 8~18
    [44]崔敬忠,达道安,邱家稳.双靶磁控溅射制备掺W氧化钒薄膜的研究.真空与低温, 1999, 5(2): 77~80
    [45] Morin FJ. Oxides which show a metal-to insulator transition at the Neel temperature. Phys Rev Lett, 1959, 3, 34-36
    [46] Jingzhong C, Daoan D, Wanshun J. Structure characterization of vanadium oxide thin films prepared by magnetron sputtering methods. Appl Surf Sci, 1998, 133: 225~229
    [47] Hidetoshi M, Masayuki K, Itaru Y. Vanadium oxide thin films deposited onto Cu buffer layer by RF magnetron sputtering. Thin Solid Films, 1999, 343-344,:168~170
    [48] Hanlon TJ, Walker RE, Coath JA. Comparison between Vanadium dioxide coating on glass produced by sputtering, alkoxide and aqueous sol-gel methods. Thin Solid Films, 2002, 405: 234~237
    [49] Yong JP, Kwang SR, Kwang MK. Electrochemical properties of vanadium oxide thin film deposited by RF sputtering. Solid State Ionics, 2002, 154-155 : 229~235
    [50]李华高,杨子文,刘爽.非制冷红外探测器用VOx薄膜的制备.半导体光电, 2001, 22(1): 38~40
    [51] Speck KR. Vanadium dioxide films grown from vanadium tetraisopropoxide by the sol-gel process. Thin Solid Films, 1988, 165: 317~322
    [52]赵康,魏建锋,孙军.溶胶凝胶法制备VO2薄膜的组织与性能研究.功能材料, 2002, 33(1): 84~85
    [53] Rajendra RT. Room temperature deposited vanadium oxide thin films for uncooled infrared detectors. Mater Res Bull, 2003, 38: 1235~1240
    [54] Chenmou Z, Xinmin Z, Jianhui Z. Preparation and Characterization of VO2 Nanopowders. J Solid State Chem, 2001, 156: 274~280
    [55] Zhang XM, Wu HS, Chen XM. A three-dimensional organic-inorganic hybrid material supported by decavanadate clusters and Na-0 chains: Synthesis and crystal structure of [Na6(H2O)16dod4V10O28]. Chin J Struc Chem, 2004,23 (4): 407-412
    [56] Harreld JH, Wong HP, Dave BC, et al. Synthesis and properties of polypyrrole-vanadium oxide hybrid aerogels. J Non-Cryst Solid, 1998, 225: 319-324
    [57] Didier R, Gerard F. Intercalated vanadyl vanadates: syntheses, crystal structures, and magnetic properties. Inorg Chem, 1995, 34: 6520-6523
    [58] Zhang Y, Warren CJ, Haushalter RC, et al. Comparative study of the structural, electronic, and magnetic properties of the layered ternary vanadium oxides CaV4O9, Cs2V4O9, and [H2N(CH2)4NH2]V4O9. Chem Mater, 1998, 10 (4): 1059-1064
    [59] Marco AQ Luciene PRP, Tania AFL, et al. Synthesis, characterization, electrochemical, and pectroelectrochemical studies of an N-cetyl- trimethylammenium bromide/V2O5 nanocomposite. Langmuir, 2001, 17: 1975-1982
    [60]王家俊,益小苏.高聚物/无机物插层型纳米复合材料.材料导报, 1999, 13(6): 54-58
    [61] Victor L, James MH. Study of the structure and mechanism of formation through self-assembly of mesostructured vanadium oxide. Chem Mater, 1997, 9(12): 2731-2744
    [62] Gerald GJ, Arthur D, Guo J, et al. Novel tungsten, molybdenum, and vanadium oxides containing surfactant ions. Chem Mater, 1996, 8(8): 2096-2101
    [63] Ping L, Igor LM, Jun L, et al. Mesostructured vanadium oxide containing dodeeylamine. Chem Mater, 1997, 9(11): 2513-2520
    [64] Goodenough JB. The two components of the Crystallographic Transition in VO2. J Solid State Chem, 1971, 3: 490-495
    [65] Haras A, Wiko M. Electronic properties of the VO2(011) surface: density functional cluster calculations. Surface Science, 2001, 491: 77-87
    [66] Yoshio O, Takeshi Y. Powder X-Ray crystal structure of VO2(A). Journal of solid state chemistry, 1990,86: 116-124
    [67]刘国强,徐宁,曾潮流等.锂离子电池钒系正极材料的研究进展.电源技术, 2002, 26(2): 114-118
    [68] Calatayud M, Andres J, Beltran A. A theoretical study on the structure, energetics and bonding of VOx+ and VOx (x=1-4) systems. Chem Phy Lett, 2001, 333: 493-503
    [69] Freas RB, Waite BA, Campna JE. The Role of Cluster Ion Structure in Reactivity and Collision-Indud Dissociation:Application to Cobalt/Oxygen Cluster Ions in the Gas Phase. J Chem Phys, 1987, 86: 1276-1288
    [70] King FL, Parent DC. Characterization of cluster ions produced by the sputtering or direct laser vaporization of group 13 metal (Al, Ga, and In) oxides. J Chem Phys, 1991, 94: 2578-2587
    [71] Cox, PA. Transition Metal Oxides. 1992, Clarendon Press, Oxford
    [72] Ziemann P. Mass-spectrometric investigation of the stabilities and structures of Mn-O and Mn-Mg-O clusters. Phys Rev B, 1992, 46: 13480-13486
    [73] Wang LS, Desai SR. Sequential Oxygen Atom Chemisorption on Surfaces of Small Iron Clusters. Phys Rev Lett, 1996: 4853-4856
    [74] Persson JL, Holmgren L, Aklin T, Rosen A. Ionization potentials of oxidized copper clusters. Chem Phys Lett, 1997, 271: 61-66
    [75] Goodenough JB. Landolt-Bernstein New Series Group III: Semiconductor. Subvol 17 1984,129-291
    [76] Newnham RE. Refinement of the Al2O3, Ti2O3, V2O3, and Cr2O3 structures Kristallogr. 1962, 117: 235-237
    [77] Horiuchi H, Tokonami M. Crystal structures of VnO2n±1 (2    [78] Twu J, Guo T, Chen K. Raman spectroscopic studies of the thermal decomposition mechanism of ammonium metavanadate. J Mater Chem, 1997,7: 2273
    [79] Park HK, Smyrl J. V2O5-P2O5 glasses as cathode for lithium secondary battery. J Electrochem Soc, 1985, 132: 512-513
    [80] Murphy DW, Christian PA, Disalo FJ. Lithium incorporation by V6O13 and related (+4, +5) oxide materials. J Electrochem Soc, 1981, 128: 2053-2060
    [81] Jin K, Takashi M, Tomiya K. Lithium insertion and extinction kinetics of Li1+vV3O8. J Power Source, 1999, 83: 79-82
    [82] Marco G, Stefano P, William HS, et al. In site X-ray absorption spectroscopy characterization of V2O5 xergel cathodes upon lithium intercalation. J Electrochem Soc, 1999, 146(7): 2387-2392
    [83] Chen W, Mai LQ, Xu Q, et al. Synthesis and Li-insertion properties of polyethylene-oxide) V2O5 nanocomposite Films. Solid State Phenomena, 2003, 90-91:13-18
    [84] Fleroux, BEK, Nazar LF. Electrochemical lithium intercalation into a polyaniline V2O5 nanocomposiote. J Electroche Soc, 1996, 143(9): L 181-L 183
    [85] Susumu K, Tetsuo I, Charles R M, et al. Charge-discharge properties of composite films of polyaniline and crystalline V2O5 particles. J Electrochem Soc, 1998, 145(80): 2707-2710
    [86] Le DB, Passerimi S, Guo J. High surface area V2O5 aerogel intercalation electrodes. J Electrochem Soc, 1996, 143: 2099-2103
    [87] Katsumi N, Youichi S, Norio M. Electrochromic properties of vanadium pentoxide thin films prepared by new wet process. Appl Phys Lett, 1992, 60(7): 802-804
    [88] Bourland TC, Carter RG, Yokochi AFT. Vanadium-catalyzed selenide oxidation with in situ[2,3] sigmatropic rearrangement (SOS reaction): scope and asymmetric applications. Org Biomol Chem, 2004,2 (9):1315-1329
    [89] Razavi A, Bobyak L, Fallon P. The effects of biasing and annealing on the optical properties of radio-frequency sputtered VO2. J Vac Sci Technil A, 1990, 8(3):1391
    [90]吴广明,吴永刚,倪星元等.锂离子注入对V2O5薄膜光吸收的影响.光学学报, 1999, 19(5): 640-646
    [91]童茂松,戴国瑞.溶胶一凝胶法制备VO2为基体的薄膜材料及其应用.功能材料, 2000, 31(3): 230-236
    [92] Ajayan PM, Stephan O, Redlich P, et al. Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures. Nature, 1995, 375: 564-566
    [93] Niederberger M, Muhr HJ, Krumeich F, et al. Low-cost synthesis of vanadium oxide nanotubes via two novel non-alkoxide routes. Chem Mater, 2000, 12: 1995-2000
    [94] Chandrappa GT, Steunou N, Cassaignon S, et al. Vanadium oxide: From gels to nanotubes. J Sol-Gel Sci Tech, 2003, 26 (1-3): 593-596
    [95] Patzke GR, Krumeich F, Nesper R. Oxidic nanotubes and nanorods-An isotropic modules for a future nanotechnology. Angew Chem Int Ed, 2002, 4: 2446-2461
    [96] Satishkumar BC, Govindaraj A, Nath M, et al. Synthesis of metal oxide nanorods using carbon nanotubes as templates. J Mater Chem, 2000, 10: 2115-2119
    [97] Gui Z, FanR, Mo W, et al. Precursor morphology controlled formation of rutile VO, nanorods and their self-assembled structure. Chem Mater, 2002, 14: 5053-5056
    [98] Pinna N, Wild U, Urban J, et al. Divanadium pentoxide nanorods. Adv Mater, 2003, 15(3): 329-331
    [99]江泽民.对中国能源问题的思考.上海交通大学学报, 2008, 42(3), 345-359
    [100]郁伟中.正电子物理及其应用.科学出版社,北京, 2003
    [101]腾民康.正电子湮没谱学及其应用.原子能出版社,北京, 2000
    [102] Chakrabarti A, Hermann K, Druzinic R, et al. Geometric and electronic structure of vanadium pentoxide: A density functional bulk and surface study. Physical Review B, 1999, 59(16), 10583-10590
    [103] McCarty KF, Bartelt NC. Role of Bulk Thermal Defects in the Reconstruction Dynamics of the TiO2(110) Surface. Phys Rev Lett, 2003, 90, 046104
    [104] Martikainen HO, Lindroos VK. Observations on the effect of magnetic field on the recrystallization in ferrite. Scadi Jour Metall,1981,10: 3-8
    [105] Yasuda H, Ohnaka I, Shimamura K, Fukuda T, Watanabe K. Processing for Alligned structure by a Magnetic Field. The 3rd International Symposium on Eleetromagnetie Proeessing of Materials, 2000, 647-652

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700