用户名: 密码: 验证码:
豆荚结构碳纳米材料Peapod(C_(60)@SWNTs)的制备及其结构和高压相变研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要围绕限域在壁碳纳米管内部的C_(60)所形成的新型豆荚型碳纳米材料的合成、结构及其高压聚合开展了系统研究。
     利用直流电弧法,采用新型双金属催化剂制备出了高纯度、直径适合填充C_(60)的单壁碳纳米管(SWNTs)。建立了高温气相扩散实验系统,将C_(60)高填充率地限域在单壁碳纳米管中,成功地合成出peapod(C_(60)@SWNTs)样品。首次采用近红外激光激发,获得了C_(60)在SWNT内部的本征拉曼振动,为判定C_(60)存在于碳管内部提供了新判据。
     利用高压原位近红外拉曼光谱,研究了限域在碳纳米管内部的C_(60)高压聚合结构变化规律。利用压力和碳管限域的双重作用,首次在室温下实现了碳纳米管内的C_(60)的压致共价键合,获得了限域在碳纳米管内、真正的准一维链状聚合的C_(60)纳米线。首次发现在压力作用下C_(60)键合成一维纳米线的聚合过程,揭示了管内C_(60)与体材料C_(60)有着截然不同的相变规律,同时发现紫外激光可以使键合压力降低。
     研究了聚合结构Peapod的热稳定性,发现其明显高于体材料C_(60),二聚和一维链状结构的解聚温度提高了70K和80K。该研究表明利用高压作用,有助于深入认识纳米限域体系的键合规律,为制备新纳米材料提供了实验依据。
     在高压和低温条件下系统研究了Peapod的中频拉曼光谱。首次利用近红外激光激发,在实验上获得了Peapod的拉曼振动全谱,并探索了在碳管限域条件下C_(60)分子的运动状态,首次提出C_(60)分子在SWNTs内表现出不同寻常的锯齿阻碍型的准自由旋转。该结果有助于深入认识纳米限域体系中C_(60)分子新奇的结构,为其应用提供了实验依据。
     利用高压原位拉曼研究了填充C_(60)后的单壁碳纳米管在高压下的结构变化,首次发现了peapod中碳管的G-band出现了平台同时伴随R-band(呼吸模)强度的明显下降,该现象与空心单壁碳纳米管的高压原位拉曼光谱变化相近,认为C_(60)填充后的碳管在高压下发生了与空心碳管相近的从圆形到扁平、再到椭圆的结构变化。还发现了限域在碳管中的C_(60)无论是压致二聚还是一维链状聚合,解聚后直径不同的碳管结构变化不同,较小直径的碳管结构相变完全可逆,而较大直径碳管的相变具有不可逆性。
Single walled carbon nanotubes (SWNT) and C_(60), as the most important members of carbon family, has become the most focused material for their unique chemical and physical properties in the field of condensed matter physics and nano-materials.
     C_(60)-peapod, a SWNT including C_(60) molecules inside the tube, is quasi one dimensional nanostructure material, now attracting much interest. The unique structure of peapod and their fascinating physical and chemical properites imply a great potential in nanoscience and in technological applications. The discovery of peapods has opened new and fascinating possibilities to make building blocks for nanoengineering applications.
     Many experimental and theoretical studies have recently found that The C_(60) molecules into carbon nanotubes may significantly alter their electronic, conducting, or mechanical properties and thermal conductivity.
     One of the most widely used methods, the vapor phase reaction method, can produce peapod with a high filled ratio and high purity. Here, we synthesize peapod in high ratio and high purity by this method. The SWNTs were purified and opened and then sealed with C_(60) powder (purityof 99.9%) in a Y-shaped quartz tube at 1.2*10~(-4) Pa, and finally heated in a furnace at 823 K for 72 h to complete the encapsulation process by a vapor phase reaction.
     It is a still an open question whether the C_(60) molecules inside a nanotube are separated or whether they are connected by covalent bonds to form dimers, trimers, or longer oligomer chains in the nanotubes at ambient conditions. Therefore studies on the structures of C_(60) molecules in SWNTs and the possibility to synthesize one-dimensional C_(60) polymers inside has become a significant and interesting research field.
     High pressure can change the structure of materials, and thus change their physical properties. It provides us a very powerful tool to study the relations between the structure and physical properties.
     A resonant Raman spectroscopy study has been carried out under high pressure, using a diamond anvil cell, on carbon nanotube peapods synthesized in high yield in our laboratory. The Raman signal was excited by a near IR laser (830 nm) to avoid photopolymerization of C_(60) and thus obtain the intrinsic vibrational information on the C_(60) molecules in the nanotubes. It is found that the surrounding tubes create an effective pressure on the encapsulated C_(60) due to tube-fullerene interactions, resulting in a shift of the intrinsic Ag(2) vibrational mode to 1474 cm?1 at ambient pressure. High pressure Raman spectroscopy indicates that (C_(60))2 dimers form near 1 GPa, and that a further polymerization of C_(60) occurs near 23 GPa, creating linear chains of covalently linked C_(60) molecules in the tubes. These studies provide helpful information on the structures of peapods both at ambient and high pressure.
     Polymerization of C_(60) molecules in SWNTs under high pressure and simultaneous irradiation of UV laser (325 nm) has been carried out for the first time by using diamond anvil cell. Raman spectra for the peapod samples decompressed from high pressure indicated that C_(60)s form one-dimensional orthorhombic polymer in SWNTs with the UV laser irradiation at high pressure of 21.5 GPa, which is lower than that for the polymerized sample only induced by high pressure. The polymerization is an irreversible phase transition in the peapod.
     Peapods present a model system for studying the properties of dimensionally constrained crystal structures, whose dynamical properties are very important. However, how the C_(60) molecules rotate inside SWNTs, especially at room temperature, is still an interesting open question. We have recently studied the rotational dynamics of C_(60) molecules confined inside SWNT by analyzing the IFM (intermediate frequency mode) lattice vibrations using NIR Raman spectroscopy. The rotation of C_(60) was tuned to a known state by applying high pressure, at which condition C_(60) first forms covalently bonded dimers at low pressure and then forms a single-chain non-rotating polymer structure at high pressure, in which state the molecules form chains with a two-fold symmetry. We propose that the C_(60) molecules in carbon nanotubes exhibit an unusual type of ratcheted rotation due to the interaction between C_(60) and SWNT walls in the“hexagon orientation”, and the characteristic vibrations of ratcheted rotation becomes more obvious with decreasing temperature. This study has given new insights and has provided an effective method (combination of NIR Raman and high pressure) to study the one-dimensional confinement effects. Not only do the results have important implications for the future utilization of peapods in new nano-materials, but they have also increased our basic understanding of the dynamics of a unique dimensionally constrained crystal structure, which is important for many applications in various fields, such as superhard and electronic materials, geology and geophysics.
     Peapod can be taken as a representative qusi-one-dimensional model material. As a fundamental data, thermal stability of polymeric peapod is necessary for its potential application in the nanodevice and nanoengineering field. We thus have investigated the thermal stability and the de-plymerization process for this particular polymeric structure for the first time and compared with that of bulky polymeric structure. We found that polymeric C_(60) Chain confinement within SWNTs has better stability than the bulky sample. The chemical thermal stability of polymeric C_(60) molecules inside SWNT was analyzed by heat in Ar atmosphere. The de-polymeric temperature of the polymeric C_(60) molecules inside nanutube is higher than that of polymeric C_(60) powder, respectively, about 40~70 K for dimer polymeric and about 60~80 K for orthorhombic polymer. These results indicated that the thermal stability of polymeric C_(60) is increased due to the encapsulation, the host SWNT indeed plays an exactly important role to prevent the heated-depolymerizing.
     We investigated the different diameter transition of host SWNT for both dimer and one-chain polymer of peapod in polymerization and de-polymerization process. The nanotube diameter reduction from the pristine peapod to the dimer and one-chain polymer are observed; however, the reversibility of diameter only occurs in the smaller nanotube. This work can help us to further understand the physical and structure properties of peapod, and provide a new approach to tune the diameter of SWNTs.
     The investigation of their structural evolution under high pressure is always an important topic, which can provide information on the stability and phase transitions of SWNTs under compression.
引文
[1] Smith BW, Monthioux M, Luzzi DE. Encapsulated C60 in carbon nanotubes. Nature 1998;396:323.
    [2] Iijima S. Helical Microtubules of Graphitic Carbon. Nature 1991;354:56.
    [3] Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993;363:603.
    [4] Clemens SC, Farrell JW, Gromet LP. Synchronous changes in seawater strontium isotope compositio. Nature 1993;363:607.
    [5] Henning T, Salama F. Carbon in the Universe. Science 1998;282:2204.
    [6] Dresselhaus MS, Eklund PC. Phonons in carbon nanotubes. Advances in Physics 2000;49:705.
    [7] Thess A, Roland L, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Seong Gon K, Rinzler AG, Colbert DT, Scuseria GE, Tom谩nek D, Fischer JE, Smalley RE. Crystalline Ropes of Metallic Carbon Nanotubes. Science 1996;273:483.
    [8]朱宏伟,吴德海,徐才录.碳纳米管:机械工业出版社, 2003.
    [9] Ajayan PM. Nanotubes from carbon. Chem. Rev. 1999;99:1787.
    [10] Stone AJ, Wales DJ. Theoretical studies of icosahedral C60 and some related species. Chemical Physics Letters 1986;128:501.
    [11] Peigney A, Laurent C, Flahaut E, Bacsa RR, Rousset A. Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 2001;39:507.
    [12] Gao G, Cagin T, Iii WAG. Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes. Nanotechnology 1998;9:184.
    [13] Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, et al. Electrical conductivity of individual carbon nanotubes. Nature 1996;382:54.
    [14] Mintmire JW, Dunlap BI, White CT. Are fullerene tubules metallic? Physical Review Letters 1992;68:631.
    [15] Saito R, Fujita M, Dresselhaus G, Dresselhaus MS. Electronic structure of chiralgraphene tubules. Applied Physics Letters 1992;60:2204.
    [16] Adrian B, Christoph S, Jean-Paul S, Jean-Marc B, et al. Aharonov-Bohm oscillations in carbon nanotubes. Nature 1999;397:673.
    [17] Robert FS. Superstrong nanotubes show they are smart, too. Science 1998;281:940.
    [18] Sander JT, Alwin RMV, Cees D. Room-temperature transistor based on a single carbon nanotube. Nature 1998;393:49.
    [19] Jing K, Nathan RF, Chongwu Z, Michael GC, et al. Nanotube molecular wires as chemical sensors. Science 2000;287:622.
    [20] Yakobson BI, Brabec CJ, Bernholc J. Nanomechanics of Carbon Tubes: Instabilities beyond Linear Response. Physical Review Letters 1996;76:2511.
    [21] Nardelli MB, Yakobson BI, Bernholc J. Brittle and Ductile Behavior in Carbon Nanotubes. Physical Review Letters 1998;81:4656.
    [22] Treacy MMJ, Ebbesen TW, Gibson JM. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 1996;381:678.
    [23] Krishnan A, Dujardin E, Ebbesen TW, Yianilos PN, Treacy MMJ. Young's modulus of single-walled nanotubes. Physical Review B 1998;58:14013.
    [24] Zhang P, Lammert PE, Crespi VH. Plastic Deformations of Carbon Nanotubes. Physical Review Letters 1998;81:5346.
    [25] Srivastava D, Menon M, Cho K. Nanoplasticity of Single-Wall Carbon Nanotubes under Uniaxial Compression. Physical Review Letters 1999;83:2973.
    [26] Tersoff J, Ruoff RS. Structural Properties of a Carbon-Nanotube Crystal. Physical Review Letters 1994;73:676.
    [27] Berber S, Kwon Y-K, Tomanek D. Unusually High Thermal Conductivity of Carbon Nanotubes. Physical Review Letters 2000;84:4613.
    [28] Yu C, Shi L, Yao Z, Li D, Majumdar A. Thermal Conductance and Thermopower of an Individual Single-Wall Carbon Nanotube. Nano Letters 2005;5:1842.
    [29] Pop E, Mann D, Wang Q, Goodson K, Dai H. Thermal Conductance of anIndividual Single-Wall Carbon Nanotube above Room Temperature. Nano Letters 2006;6:96.
    [30] Zhu W, Bower C, Zhou O, Kochanski G, Jin S. Large current density from carbon nanotube field emitters. Applied Physics Letters 1999;75:873.
    [31] Lefebvre J, Austing DG, Bond J, Finnie P. Photoluminescence Imaging of Suspended Single-Walled Carbon Nanotubes. Nano Letters 2006;6:1603.
    [32] Iakoubovskii K, Minami N, Kazaoui S, Ueno T, Miyata Y, Yanagi K, Kataura H, Ohshima S, Saito T. IR-Extended Photoluminescence Mapping of Single-Wall and Double-Wall Carbon Nanotubes. The Journal of Physical Chemistry B 2006;110:17420.
    [33] kuzumaki T, Hayashi T, Ichinose H, Miyazawa K, Ito K, Y I. Structure and deformation behaviour of carbon nanotubes reinforced nanocrystalline C60 composite. J. Jpn. Institute of Metals 1997;61:319.
    [34] R. Saito, G. Dresselhaus, Dresselhaus M. Physical Properties of Carbon Nanotubes. Imperial College Press, London.
    [35] Itkis ME, Perea DE, Niyogi S, Love J, Tang J, Yu A, Kang C, Jung R, Haddon RC. Optimization of the Ni−Y Catalyst Composition in Bulk Electric Arc Synthesis of Single-Walled Carbon Nanotubes by Use of Near-Infrared Spectroscopy. The Journal of Physical Chemistry B 2004;108:12770.
    [36] Appenzeller J, Martel R, Avouris P, Stahl H, Lengeler B. Optimized contact configuration for the study of transport phenomena in ropes of single-wall carbon nanotubes. Applied Physics Letters 2001;78:3313.
    [37] Collins PG, Zettl A. Unique characteristics of cold cathode carbon-nanotube-matrix field emitters. Physical Review B 1997;55:9391.
    [38] Rzepka M, Lamp P, de la Casa-Lillo MA. Physisorption of Hydrogen on Microporous Carbon and Carbon Nanotubes. The Journal of Physical Chemistry B 1998;102:10894.
    [39] Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, et al. Storage of hydrogen in single-walled carbon nanotubes. Nature 1997;386:377.
    [40] Chen P, Wu X, Lin J, Tan KL. High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science 1999;285:91.
    [41]张力德,牟季美.纳米材料和纳米结构:科学出版社, 2001.
    [42] Kroto HW, Heath JR, O'Brien SC, Curl RF, Smalley RE. C60: Buckminsterfullerene. Nature 1985;318:162.
    [43] Hebard AF, Rosseinsky MJ, et al. Superconductivity at 18 K in Potassium-Doped C(60). Nature 1991;350:600.
    [44] Rosseinsky MJ, Ramirez AP, Glarum SH, Murphy DW, Haddon RC, Hebard AF, Palstra TTM, Kortan AR, Zahurak SM, Makhija AV. Superconductivity at 28 K in RbxC60. Physical Review Letters 1991;66:2830.
    [45] Tanigaki K, Ebbesen TW, et al. Superconductivity at 33 K in Cs(x)Rb(y)C(60). Nature 1991;352:222.
    [46] RUOFF RS, RUOFF AL. Is C60 stiffer than diamond? . Nature 1991;350:663.
    [47] Burgos E, Halac E, Weht R, Bonadeo H, Artacho E, Ordejón P. New Superhard Phases for Three-Dimensional C60-based Fullerites. Physical Review Letters 2000;85:2328.
    [48] Yamanaka S, Kini NS, Kubo A, Jida S, Kuramoto H. Topochemical 3D Polymerization of C60 under High Pressure at Elevated Temperatures. Journal of the American Chemical Society 2008;130:4303.
    [49] Regueiro MN, Monceau P, Hodeau J-L. Crushing C(60) to Diamond at Room Temperature. Nature 1992;355:237.
    [50] Dubrovinskaia N, Dubrovinsky L, Langenhorst F, Jacobsen S, Liebske C. Nanocrystalline diamond synthesized from C60. Diamond and Related Materials 2005;14:16.
    [51] Nagy JB, Yuan Y, Jao TC, Fendler J. Solubilizate reorganization in reversed micelles. The Journal of Physical Chemistry 1990;94:863.
    [52] Zhao T, Liu J, Li Y, Zhu D. C60 photoluminescence spectra related to gas adsorption. Applied Physics Letters 1992;61:1028.
    [53] Hutchison K, Gao J, Schick G, Rubin Y, Wudl F. Bucky Light Bulbs: White Light Electroluminescence from a Fluorescent C60 Adduct−Single Layer Organic LED. Journal of the American Chemical Society 1999;121:5611.
    [54] Blank VD, Buga SG, Serebryanaya NR, Dubitsky GA, Sulyanov SN, Popov MY, Denisov VN, Ivlev AN, Mavrin BN. Phase transformations in solid C60 at high-pressure-high-temperature treatment and the structure of 3D polymerized fullerites. Physics Letters A 1996;220:149.
    [55] Sundqvist B. Fullerenes under high pressures. Advances in Physics 1999;48:1.
    [56]Kitaura R, Shinohara H. Carbon-nanotube-based hybrid materials: Nanopeapods. Chemistry-an Asian Journal 2006;1:646.
    [57] Brian W, Smith., Marc M, Luzzi DE. Encapsulated C_{60} in carbon nanotubes. Nature 1998;396:323.
    [58] Smith BW, Luzzi DE. Formation mechanism of fullerene peapods and coaxial tubes: a path to large scale synthesis. Chemical Physics Letters 2000;321:169.
    [59] Pichler T, Kuzmany H, Kataura H, Achiba Y. Metallic Polymers of C60 Inside Single-Walled Carbon Nanotubes. PH YSICA L R EV I EW L ET T ERS 2001;87:267401.
    [60] Bandow S, Takizawa M, Hirahara K, Yudasaka M, Iijima S. Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes. Chemical Physics Letters 2001;337:48.
    [61] Bandow S, Takizawa M, Kato H, Okazaki T, Shinohara H, Iijima S. Smallest limit of tube diameters for encasing of particular fullerenes determined by radial breathing mode Raman scattering. Chemical Physics Letters 2001;347:23.
    [62] Kataura H, Maniwa Y, Kodama T, Kikuchi K, Hirahara K, Suenaga K, Iijima S, Suzuki S, Achiba Y, Kratschmer W. High-yield fullerene encapsulation in single-wall carbon nanotubes. Synthetic Metals 2001;121:1195.
    [63] Yudasaka M, Ajima K, Suenaga K, Ichihashi T, Hashimoto A, Iijima S. Nano-extraction and nano-condensation for C60 incorporation into single-wall carbon nanotubes in liquid phases. Chemical Physics Letters 2003;380:42.
    [64] Yutaka Maniwaa, Hiromichi Katauraa, Fujiwarab A. Novel Structures of C60and C70 -Encapsulating.
    [65] Dresselhaus MS, Eklund PC. Phonons in carbon nanotubes. Advances in Physics 2000;49:705
    [66] Kataura H, Maniwa Y, Abe M, Fujiwara A, Kodama T, Kikuchi K, Imahori H, Misaki Y, Suzuki S, Achiba Y. Optical properties of fullerene and non-fullerene peapods. Applied Physics a-Materials Science & Processing 2002;74:349.
    [67] Pichler T, Kuzmany H, Kataura H, Achiba Y. Metallic Polymers of C60 Inside Single-Walled Carbon Nanotubes. Physical Review Letters 2001;87:267401.
    [68] Kavan L, Dunsch L, Kataura H, Oshiyama A, Otani M, Okada S. Electrochemical Tuning of Electronic Structure of C60 and C70 Fullerene Peapods:  In Situ Visible Near-Infrared and Raman Study. The Journal of Physical Chemistry B 2003;107:7666.
    [69] Kavan L, Dunsch L, Kataura H. In situ Vis-NIR and Raman spectroelectrochemistry at fullerene peapods. Chemical Physics Letters 2002;361:79.
    [70] Pfeiffer R, Kuzmany H, Plank W, Pichler T, Kataura H, Achiba Y. Spectroscopic analysis of single-wall carbon nanotubes and carbon nanotube peapods. Diamond and Related Materials 2002;11:957.
    [71] Liu X, Pichler T, Knupfer M, Fink J, Kataura H. Determination of the filling factor of C60 peapods by electron energy-loss spectroscopy in transmission. Synthetic Metals 2003;135-136:715.
    [72] Okazaki T, Okubo S, Nakanishi T, Joung SK, Saito T, Otani M, Okada S, Bandow S, Lijima S. Optical band gap modification of single-walled carbon nanotubes by encapsulated fullerenes. Journal of the American Chemical Society 2008;130:4122.
    [73] Okada S, Saito S, Oshiyama A. Energetics and Electronic Structures of Encapsulated C_{60} in a Carbon Nanotube. Physical Review Letters 2001;86:3835.
    [74] Okada S, Otani M, Oshiyama A. Electron-state control of carbon nanotubes by space and encapsulated fullerenes. Physical Review B (Condensed Matter and Materials Physics) 2003;67:205411.
    [75] Otani M, Okada S, Oshiyama A. Energetics and electronic structures of one-dimensional fullerene chains encapsulated in zigzag nanotubes. Physical Review B 2003;68:125424.
    [76] Lu J, Nagase S, Zhang S, Peng L. Strongly size-dependent electronic properties in C60-encapsulated zigzag nanotubes and lower size limit of carbon nanopeapods. Physical Review B 2003;68:121402.
    [77] Du M-H, Cheng H-P. Manipulation of fullerene-induced impurity states in carbon peapods. Physical Review B 2003;68:113402.
    [78] Cho Y, Han S, Kim G, Lee H, Ihm J. Orbital Hybridization and Charge Transfer in Carbon Nanopeapods. Physical Review Letters 2003;90:106402.
    [79] Dubay O, Kresse G. Density functional calculations for C60 peapods. Physical Review B 2004;70:165424.
    [80] Rochefort A. Electronic and transport properties of carbon nanotube peapods. Physical Review B (Condensed Matter and Materials Physics) 2003;67:115401.
    [81]Kane CL, Mele EJ, Johnson AT, Luzzi DE, Smith BW, Hornbaker DJ, Yazdani A. Theory of scanning tunneling spectroscopy of fullerene peapods. Physical Review B 2002;66:235423.
    [82] Pichler T, Kukovecz A, Kuzmany H, Kataura H, Achiba Y. Quasicontinuous electron and hole doping of C[sub 60] peapods. Physical Review B (Condensed Matter and Materials Physics) 2003;67:125416.
    [83] Liu X, Pichler T, Knupfer M, Golden MS, Fink J, Kataura H, Achiba Y, Hirahara K, Iijima S. Filling factors, structural, and electronic properties of C60 molecules in single-wall carbon nanotubes. Phisical Review B 2002;65:045419.
    [84] Hornbaker DJ, Kahng SJ, Misra S, Smith BW, Johnson AT, Mele EJ, Luzzi DE, Yazdani A. Mapping the One-Dimensional Electronic States of Nanotube Peapod Structures. Science 2002;295:828.
    [85] Guan L, Suenaga K, Shi Z, Gu Z, Iijima S. Direct Imaging of the Alkali Metal Site in K-Doped Fullerene Peapods. Physical Review Letters 2005;94:045502.
    [86] Li YF, Kaneko T, Hatakeyama R. Photoinduced electron transfer in C-60encapsulated single-walled carbon nanotube. Applied Physics Letters 2008;92:183115.
    [87] Bandow S, Chen G, Sumanasekera GU, Gupta R, Yudasaka M, Iijima S, Eklund PC. Diameter-selective resonant Raman scattering in double-wall carbon nanotubes. Physical Review B 2002;66:075416.
    [88] Bandow S, Hiraoka T, Yumura T, Hirahara K, Shinohara H, Iijima S. Raman scattering study on fullerene derived intermediates formed within single-wall carbon nanotube: from peapod to double-wall carbon nanotube. Chemical Physics Letters 2004;384:320.
    [89] Bandow S, Hirahara K, Hiraoka T, Chen G, Eklund P, Iijima S. Turning peapods into double-walled carbon nanotubes. Mrs Bulletin 2004;29:260.
    [90] Hernandez E, Meunier V, Smith BW, Rurali R, Terrones H, Nardelli MB, Terrones M, Luzzi DE, Charlier JC. Fullerene coalescence in nanopeapods: A path to novel tubular carbon. Nano Letters 2003;3:1037.
    [91] Taylor R, Parsons JP, Avent AG, Rannard SP, Dennis TJ, Hare JP, Kroto HW, Walton DRM. Degradation of C60 by light. Nature 1991;351:277.
    [92] Juha L, Hamplov V, Kub醫 P, Koudoumas E, Couris S. Comparison of the efficiency of the laser photolysis of C60 and C70 fullerenes in solution. Chemical Physics Letters 1994;231:314.
    [93] Juha L, Krása J, Láska L, HamplováV, Soukup L, Engst P, Kubát P. Fast degradation of fullerenes by ultraviolet laser radiation. Applied Physics B: Lasers and Optics 1993;57:83.
    [94] Kalbac M, Kavan L, Juha L, Civis S, Zukalova M, Bittner M, Kubat P, Vorlicek V, Dunsch L. Transformation of fullerene peapods to double-walled carbon nanotubes induced by UV radiation. Carbon 2005;43:1610.
    [95] Guan L, Suenaga K, Okazaki T, Shi Z, Gu Z, Iijima S. Coalescence of C60 Molecules Assisted by Doped Iodine Inside Carbon Nanotubes. Journal of the American Chemical Society 2007;129:8954.
    [96] Britz DA, Khlobystov AN, Porfyrakis K, Ardavan A, Briggs GAD. Chemicalreactions inside single-walled carbon nano test-tubes. Chemical Communications 2005:37.
    [97] Kataura H, Y.Maniwa, M.Abe, Fujiwara A, Kodama T, Kikuchi K, Imahori H, Misaki Y, Suzuki S, Y.Achiba. Optical properties of fullerene and non-fullerene peapods. Appl. Phys. A 2002;74:349.
    [98] Kawasaki S, Hara T, Yokomae T, Okino F, Touhara H, Kataura H, Watanuki T, Ohishi Y. Pressure-polymerization of C-60 molecules in a carbon nanotube. Chemical Physics Letters 2006;418:260.
    [99] Chorro M, Rols S, Cambedouzou J, Alvarez L, Almairac R, Sauvajol JL, Hodeau JL, Marques L, Mezouar M, Kataura H. Structural properties of carbon peapods under extreme conditions studied using in situ x-ray diffraction. Physical Review B (Condensed Matter and Materials Physics) 2006;74:205425.
    [100] Sundqvist B. polymeric fullerene phases formed under pressure. Structure and Bonding 2004;109:85.
    [101] Rafailov PM, Thomsen C, Kataura H. Resonance and high-pressure Raman studies on carbon peapods. Physical Review B 2003;68.
    [102] Kuzmany H, Pfeiffer R, Hulman M, Kramberger C. Raman spectroscopy of fullerenes and fullerene-nanotube composites. Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences 2004;362:2375.
    [103] Kuzmany H, Pfeiffer R, Kramberger C, Pichler T, Liu X, Knupfer M, Fink J, Kataura H, Achiba Y, Smith BW, Luzzi DE. Analysis of the concentration of C-60 fullerenes in single wall carbon nanotubes. Applied Physics a-Materials Science & Processing 2003;76:449.
    [104] Chadli H, Rahmani A, Sbai K, Sauvajol JL. Raman active modes in carbon peapods. Physica a-Statistical Mechanics and Its Applications 2005;358:226.
    [105] Hirahara K, Bandow S, Suenaga K, Kato H, Okazaki T, Shinohara H, Iijima S. Electron diffraction study of one-dimensional crystals of fullerenes. Physical Review B 2001;64:115420.
    [106] Smith BW, Russo RM, Chikkannanavar SB, Luzzi DE. High-yield synthesis and one-dimensional structure of C-60 encapsulated in single-wall carbon nanotubes. Journal of Applied Physics 2002;91:9333.
    [107] Duesberg GS, Loa I, Burghard M, Syassen K, Roth S. Polarized Raman Spectroscopy on Isolated Single-Wall Carbon Nanotubes. Physical Review Letters 2000;85:5436.
    [108] Kataura H, Kumazawa Y, Maniwa Y, Ohtsuka Y, Sen R, Suzuki S, Achiba Y. Diameter control of single-walled carbon nanotubes. Carbon 2000;38:1691.
    [109] Pfeiffer R, Kuzmany H, Pichler T, Kataura H, Achiba Y, Melle-Franco M, Zerbetto F. Electronic and mechanical coupling between guest and host in carbon peapods. Physical Review B (Condensed Matter and Materials Physics) 2004;69:035404.
    [110] Suzuki M, Iida T, Nasu K. Relaxation of exciton and photoinduced dimerization in crystalline C60. Physical Review B 2000;61:2188.
    [111] Rao AM, Chen J, Richter E, Schlecht U, Eklund PC, Haddon RC, Venkateswaran UD, Kwon YK, Tomnek D. Effect of van der Waals Interactions on the Raman Modes in Single Walled Carbon Nanotubes. Physical Review Letters 2001;86:3895.
    [112] Manuel Melle-Franco, Hans Kuzmany, Zerbetto F. Mechanical Interactions in All-Carbon Peapods. J. Phys. Chem. B 2003;107:6986.
    [113] Pfeiffer R, Kuzmany H, Kramberger C, Schaman C, Pichler T, Kataura H, Achiba Y, K黵 ti J, Z髄 yomi V. Unusual High Degree of Unperturbed Environment in the Interior of Single-Wall Carbon Nanotubes. Physical Review Letters 2003;90:225501.
    [114] Verberck B, Michel KH. Nanotube field of C[sub 60] molecules in carbon nanotubes: Atomistic versus continuous approach. Physical Review B (Condensed Matter and Materials Physics) 2006;74:045421.
    [115] Verberck B, Michel KH, Nikolaev AV. The C-60 molecules in(C60)(N)@SWCNT peapods: Crystal field, intermolecular interactions anddynamics. Fullerenes Nanotubes and Carbon Nanostructures 2006;14:171.
    [116] Michel KH, Verberck B, Nikolaev AV. Anisotropic Packing and One-Dimensional Fluctuations of C[sub 60] Molecules in Carbon Nanotubes. Physical Review Letters 2005;95:185506.
    [117] Kataura H, Kumazawa Y, Maniwa Y, Umezu I, Suzuki S, Ohtsuka Y, Achiba Y. Optical properties of single-wall carbon nanotubes. Synthetic Metals 1999;103:2555.
    [118] Chadli H, Rahmani A, Sbai K, Hermet P, Rols S, Sauvajol JL. Calculation of Raman-active modes in linear and zigzag phases of fullerene peapods. Physical Review B (Condensed Matter and Materials Physics) 2006;74:205412.
    [119] Rols S, Cambedouzou J, Chorro M, Schober H, Agafonov V, Launois P, Davydov V, Rakhmanina AV, Kataura H, Sauvajol JL. How Confinement Affects the Dynamics of C[sub 60] in Carbon Nanopeapods. Physical Review Letters 2008;101:065507.
    [120] Matsuda K, Maniwa Y, Kataura H. Highly rotational C[sub 60] dynamics inside single-walled carbon nanotubes: NMR observations. Physical Review B (Condensed Matter and Materials Physics) 2008;77:075421.
    [121] Mao HK, Jephcoat AP, Hemley RJ, Finger LW, Zha CS, et al. Synchrotron X-ray Diffraction Measurements of Single-Crystal Hydrogen to 26.5 Gigapascals. Science 1988;239:1131.
    [122] Chou IM, Jennifer GB, Alexander FG, Ho-kwang M, Russell JH. In situ observations of a high-pressure phase of H2O ice. Science 1998;281:809.
    [123] Shen AH, Bassett WA, Chou IM, Syono Y, Manghnani MH. Terra Scientific Publishing Company (TERRA PUB). American Geophysical Union [Z] 1992;61.
    [124] Piermarini GJ, Block S. Ultrahigh pressure diamond-anvil cell and several semiconductor phase transition pressures in relation to the fixed point pressure scale. Rev. Sci. Instru. 1975;46:973.
    [125] Forman RA, Piermarini GJ, Barnett JD, Block S. Pressure Measurement Made by the Utilization of Ruby Sharp-Line Luminescence. Science 1972;176:284.
    [126] Piermarini GJ, Block S, Barnett JD, Forman RA. Calibration of the pressure dependence of the R[sub 1] ruby fluorescence line to 195 kbar. Journal of Applied Physics 1975;46:2774.
    [127] Moret R, Launois P, Wagberg T, Sundqvist B, Agafonov V, Davydov VA, Rakhmanina AV. Single-crystal structural study of the pressure-temperature-induced dimerization of C-60. European Physical Journal B 2004;37:25.
    [128] Sakai M, Nakamura A. Pressure-dependent photopolymerization kinetics in C-60 crystals: Observation of exponential dependence on intermolecular distance. Physical Review B 2001;64:art. no.
    [129] Meletov KP, Christofilos D, Ves S, Kourouklis GA. Pressure-induced orientational ordering in C_{60} single crystals studied by Raman spectroscopy. Physical Review B 1995;52:10090.
    [130] Wang XB, Shen ZX, Tang SH, Kuok MH. Near infrared excited micro-Raman spectra of 4 : 1 methanol-ethanol mixture and ruby fluorescence at high pressure. Journal of Applied Physics 1999;85:8011.
    [131] Zou YG, Liu BB, Yao MG, Hou YY, Wang L, Yu SD, Wang P, Li B, Zou B, Cui T, Zou G, Wagberg T, Sundqvist B. Raman spectroscopy study of carbon nanotube peapods excited by near-IR laser under high pressure. Physical Review B 2007;76.
    [132] Saito R, Takeya T, Kimura T, Dresselhaus G, Dresselhaus MS. Finite-size effect on the Raman spectra of carbon nanotubes. Physical Review B 1999;59:2388.
    [133] Skakalova V, Maultzsch J, Osvath Z, Biro LP, Roth S. Intermediate frequency modes in Raman spectra of Ar+-irradiated single-wall carbon nanotubes. Physica Status Solidi-Rapid Research Letters 2007;1:138.
    [134] Caillier C, Machon D, San-Miguel A, Arenal R, Montagnac G, Cardon H, Kalbac M, Zukalova M, Kavan L. Probing high-pressure properties of single-wall carbon nanotubes through fullerene encapsulation. Physical Review B 2008;77:125418.
    [135] Photoinduced polymerization of solid C(60) films. Science 1993;259:955.
    [136]王霖.不同形状的富勒烯纳米单晶的合成、物性及高压相变研究.超硬材料国家重点实验室:吉林大学, 2006.
    [137] Fan J, Yudasaka M, Yuge R, Futaba DN, Hata K, Iijima S. Efficiency of C60 incorporation in and release from single-wall carbon nanotubes depending on their diameters. Carbon 2007;45:722.
    [138] Zhang M, Yudasaka M, Bandow S, Iijima S. Thermogravimetric analysis for the array of C-60 molecules formed in single-wall carbon nanotube. Chemical Physics Letters 2003;369:680.
    [139] Heiney PA, Fischer JE, McGhie AR, Romanow WJ, Denenstein AM, McCauley Jr JP, Smith AB, Cox DE. Orientational ordering transition in solid C60. Physical Review Letters 1991;66:2911.
    [140] Zou Y, Liu B, Yao M, Hou Y, Wang L, Yu S, Wang P, Li B, Zou B, Cui T, Zou G, Wagberg T, Sundqvist B. Raman spectroscopy study of carbon nanotube peapods excited by near-IR laser under high pressure. Physical Review B (Condensed Matter and Materials Physics) 2007;76:195417.
    [141] Yao MG, Liu BB, Zou YG, Wang L, Cui T, Zou GT, Li JX, Sundqvist B. Effect of rare-earth component of the RE/Ni catalyst on the formation and nanostructure of single-walled carbon nanotubes. Journal of Physical Chemistry B 2006;110:15284.
    [142] Tian Y, Chassaing D, Nasibulin AG, Ayala P, Jiang H, Anisimov AS, Kauppinen EI. Combined Raman spectroscopy and transmission electron microscopy studies of a NanoBud structure. Journal of the American Chemical Society 2008;130:7188.
    [143] Dresselhaus MS, Dresselhaus G, Jorio A. Raman spectroscopy of carbon nanotubes in 1997 and 2007. Journal of Physical Chemistry C 2007;111:17887.
    [144]成会明.纳米碳管制备、结构、物性及应用:化学工业出版社, 2002.
    [145] Davydov VA, Kashevarova LS, Rakhmanina AV, Senyavin VM, Céolin R, Szwarc H, Allouchi H, Agafonov V. Spectroscopic study of pressure-polymerized phases of C60 Physical Review B (Condensed Matter and Materials Physics)2000;61:11936.
    [146] Rao AM, Eklund PC, Marques J-LHaL, Nunez-Regueiro M. Infrared and Raman studies of pressure-polymerized C60. Physical Review B 1997;55:4766.
    [147] Wagberg T, Soldatov A, Sundqvist B. Spectroscopic study of phase transformations between orthorhombic and tetragonal C-60 polymers. European Physical Journal B 2006;49:59.
    [148] Yao MG, Wang ZG, Liu BB, Zou YG, Yu SD, Lin W, Hou YY, Pan SF, Jin MX, Zou B, Cui T, Zou GT, Sundqvist B. Raman signature to identify the structural transition of single-wall carbon nanotubes under high pressure. Physical Review B 2008;78.
    [149] Gao B, Duan XJ, Zhang J, Wu TJ, Son HB, Kong J, Liu ZF. Raman spectral probing of electronic transition energy E-ii variation of individual SWNTs under torsional strain. Nano Letters 2007;7:750.
    [150] Zhang YY, Son H, Zhang J, Kong J, Liu ZF. Laser-heating effect on Raman spectra of individual suspended single-walled carbon nanotubes. Journal of Physical Chemistry C 2007;111:1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700