用户名: 密码: 验证码:
激光冲击碳材料合成纳米金刚石的相变机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以激光为能量源的金刚石制备方法因可获得纯度高、粒径小、分布范围窄的纳米金刚石而表现出强大的生命力,但由于激光与材料的相互作用是一个极端非平衡过程,许多实验参数在瞬间发生急剧变化,很难进行实时分析与监控,因此,在激光作用下其它碳材料向金刚石转变的物理、化学机制目前尚不十分清楚。本文从实验及计算机模拟两方面对激光作用下碳材料相变机理进行了深入研究。
     首先从碳原料的结构、尺寸、激光功率密度和工作介质四个方面对激光作用下碳材料相变的关键影响因素进行了实验和分析。研究结果表明:(1)在较低功率密度激光作用下,石墨是炭黑向金刚石转变的中间相,即石墨比炭黑更易于转变为金刚石;(2)随着晶体尺寸的减小,石墨的形成热增大,稳定性降低,导致微晶石墨比片状石墨更易于发生向金刚石的转变;(3)激光功率密度越高,加热效率越高,热损失越小,石墨表面温度越高,随后的冷却速率越高,越有利于发生碳的相变;(4)由于空蚀现象的存在,水中激光利用效率要高于空气中的激光利用效率,同时,在激光作用下,水介质分解、离化形成的H+、OH-等活性粒子对金刚石的形核、长大过程具有促进作用。
     为了能够对碳材料相变的动力学过程进行模拟,在对现有分子动力学软件进行系统分析的基础上,按照面向对象软件工程规范,设计开发了适合于模拟碳材料原子间相互作用的分子动力学模拟软件CMMD(carbon material molecular dynamics)。该软件的特色在于提供了适合于描述碳材料原子之间相互作用的势函数,从而能够模拟共价键的形成和断裂,反映碳材料相变的微观过程。在该软件的设计中采用了MVC架构模式,将体系结构设计为三层,即表现层、控制与转换层和模型层;并使用面向对象的标准C++语言、GCC编译器、MPI、Qt和GLUT在RedHat Linux操作系统上编程,完成了CMMD。
     分析了脉冲激光与石墨相互作用的物理机制,提出石墨对激光的吸收具有非金属的特征,而对激光的能量传递则具有金属的特征,用自由电子的经典模型来描述激光与石墨的能量耦合过程,用分子动力学方法对脉冲激光作用下石墨的升温和降温过程进行模拟。结果表明,在功率密度为109W/cm2的纳秒脉冲激光作用下,石墨晶格在极短的时间内快速升温(晶格温度可达5100K)以致熔化形成液态碳。在随后的降温过程中,sp2、sp3杂化的碳原子共存,即石墨与金刚石同时形核、长大,但sp2杂化的碳原子在系统中占有主导地位。由于系统的冷却速率高达1011K/s,在降温结束后,石墨结构与金刚石结构得以共存。该模拟结果揭示了激光诱导的碳材料相变遵循熔化—结晶机制,而非固态相变机制。
Diamond synthesis methods by laser irradiation are promising because they can obtain nanodiamond with high purity, fine granularity and uniformity. However, the interaction between laser and carbon materials is an extreme non-equilibrium process in which many experimental parameters vary too rapidly to be monitored in real time. Until now, the transformation mechanisms from the other carbon materials to diamond are still unclear. Study on the phase transformation mechanisms of carbon materials under laser irradiation were carried out by using both experiments and computer simulations in this paper.
     First, four critical factors (the structure, size of original carbon materials, laser power density and liquid medium) were studied which play important roles in the laser-induced phase transformation process of carbon materials. Experimental results demonstrated that: (1) Under laser with low power density, graphite is the intermediate phase in the transformation from carbon black to diamond, and graphite is easier to transform into diamond by laser irradiation than carbon black. (2) As the size of crystals decreases, the formation heat of graphite increases and its stability descends. As a result, microcrystalline graphite is more advantageous in the synthesis of nanodiamond than crystalline flake graphite. (3)As the power density increases, the heat efficiency of laser increases and the heat loss decreases. This leads to higher graphite surface temperature and faster cooling velocity which benefit to the carbon phase transformation. (4)Due to the cavitation damage, the laser efficiency in water is higher than that of in air. Besides, the H+、OH- produced from water decomposition promote the forming and growth of diamond nucleus.
     Second, in order to simulate the dynamics process of carbon phase transformation, we designed and developed carbon material molecular dynamics software (CMMD) based on object-oriented software engineering after a systematic analysis of existing molecular dynamic software. The main feature of CMMD is that it provides potential functions suitable for describing of the interaction between carbon atoms, thus it can simulate the formation and breaking of covalent bonds. We use model-view-controller (MVC) pattern in the system design. The software architecture includes three layers: the presentation layer, the control and transform layer and the model layer. The software was developed under RedHat Linux by using standard C++ language, GCC compiler, MPI, Qt and GLUT.
     Third, the physical mechanism of the interaction between laser and graphite is discussed. Graphite exhibits nonmetal feature during laser absorption process, but exhibits metal feature during laser energy transferring. The free-electron model is used to describe the energy coupling of laser and graphite lattice. At last, the heating and cooling of laser-induced graphite lattice were simulated by using CMMD. The results show that graphite lattice is heated to a high temperature (near 5100K) and it melts in a very short time. Subsequently, the liquid carbon cools down. The sp2, sp3 atoms co-exist during the cooling process, that is, graphite and diamond nucleus form and grow synchronously, but the sp2 atoms are the majority in the system. Both graphite and diamond structures are reserved because of the high cooling speed (1011K/s). The study implied that graphite transforms to diamond in the solid-liquid-solid pattern rather than the solid-solid pattern under laser irradiation.
引文
[1] F. P. Bundy, H. T. Hall and H. M. Strong et al., Man-made Diamonds, Nature, 1955, 176: 51~55
    [2] 方啸虎,超硬材料基础与标准,北京:中国建材工业出版社,1998.34~36
    [3] B. J. Alder, R. H. Christian, Behavior of Strongly Shocked Carbon, Physical Review Letters, 1961, 7(10): 367~369
    [4] Wei Zhu, Brian R. Stoner and Brad E. Williams et al., Growth and Characterization of Diamond Films on Nondiamond Substrates for Electronic Applications, Proceedings of The IEEE,1991, 79(5): 621~646
    [5] W. G. Eversole, Synthesis of Diamond by Deposition on Seed Crystals, U.S. Patent, No: 3030187, 1962
    [6] B.V. Deryagin, D.V. Fedoseev and V.M. Lukyanovich et al., Filamentary Diamond Crystals, J.Cryst.Growth, 1968, 2: 380~384
    [7] J. J. Lander, J. Morrison, Low Energy Electron Diffraction Study of the (111) Diamond Surface, Surface Science, 1966, 4:241~246
    [8] S. Matsumoto, Y. Sato and M.Kamo et al., Vapor Deposition of Diamond Particles from Methane, J. Appl. Phys., 1982, 21: L183~L185
    [9] M. Kamo, Y. Sato, and S. Matsumoto et al., Diamond Synthesis from Gas Phase in Microwave Plasma, J. Cryst. Growth, 1983, 62: 642~644
    [10] 赵连城,王菁,杨建平等,脉冲激光纳米薄膜制备技术,红外与激光工程,2000,6
    [11] C. L. Marquardt, R.T. Williams and D.J. Nagel, Diamond-like films produced by laser ablation source of carbon ions, Materials Research Society Symposia Proceedings. Pittsburgh PA: 1985, 38: 325~329.
    [12] J. Krishnaswamy, A. Rengan and J.Narayan et al., Thin-film Deposition by a New Laser Ablation and Plasma Hybrid Technique, Applied Physics Letters, 1989, 54(24): 2455~2457
    [13] D. L. Pappas, K. L. Saenger and J. Bruley et al., Pulsed Laser Deposition of Diamond-like Carbon Films, Journal of Applied Physics, 1992, 71(11): 5675~5684
    [14] F. L. Xiong, Y. Y. Wang and V. Leppert, Pulsed Laser Deposition of Amorphous Diamond-like Carbon Films, Journal of Materials Research, 1993, 8: 2265
    [15] J. Seth, R. Padiyath and D. H. Rasmussen et al., Laser-plasma Deposition ofDiamond Phase at Low Temperatures, Applied Physics Letters, 1993, 63(4): 473~475
    [16] M. C. Polo, J. Cifre and G. Sanchez et al., Pulsed laser deposition of diamond from graphite targets, Applied Physics Letters, 1995, 67(4): 485-487
    [17] S. B. Ogale, P. P. Patil and D. M. Phase et al., Synthesis of Meta-stable Phases via Pulsed-laser-induced Reactive Quenching at Liquid-solid Interfaces, Physical Review B, 1987, 36(16): 8237~8250
    [18] S. B. Ogale, A. P. Malshe and S. M. Kanetkar et al., Formation of Diamond Particulates by Pulsed Ruby Laser Irradiation of Graphite Immersed in Benzene. Solid. State. Commun., 1992, 84(4): 371~373
    [19] G. W. Yang, J. B. Wang and Q. X. Liu, Preparation of Nano-crystalline Diamonds Using Pulsed Laser Induced Reactive Quenching, Journal of Physics: Condensed Matter, 1998, 10(35): 7923-7927.
    [20] J. B. Wang, G. W. Yang, Phase Transformation between Diamond and Graphite in Preparation of Diamonds by Pulsed-laser Induced Liquid-solid Interface Reaction, Journal of Physics: Condensed Matter, 1999, 11(37): 7089-7094.
    [21] J. B. Wang, C. Y. Zhang, X. L. Zhong and G. W. Yang, Cubic and Hexagonal Structures of Diamond Nanocrystals Formed upon Pulsed Laser Induced Liquid-solid Interfacial Reaction, Chemical Physics Letters, 2002, 361(1-2): 86-90.
    [22] C. X. Wang, Y. H. Yang and G. W. Yang, Thermodynamical Predictions of Nanodiamonds Synthesized by Pulsed-laser Ablation in Liquid, Journal of Applied Physics, 2005, 97(6): 066104.
    [23] S. R. J. Pearce, S. J. Henley and F. Claeyssens et al., Production of Nanocrystalline Diamond by Laser Ablation at the Solid/Liquid Interface, Diamond and Related Material, 2004, 13(4-8): 661-665
    [24] D. V. Fedoseev, V. L. Bukhovets, I. G. Varshavskaya, A. V. Lavrentev and B. V. Derjaguin, Transition of Graphite into Diamond in a Solid Phase under the Atmospheric Pressure, Carbon, 1983, 21(3): 237-241.
    [25] M. Alam, T. Debroy, R. Roy and E. Breval, Diamond Formation in Air by the Feedoseev-Derjaguin Laser Process, Carbon, 1989, 27: 289-294.
    [26] S. Fahy, S. G. Louie and M. L. Cohen, Pseudopotential Total-energy Study of the Transition from Rhombohedral Graphite to Diamond, Physical Review B, 1986, 34(2): 1191~1199
    [27] S. Scandolo, M. Bernasconi and G. L. Chiarotti et al., Pressure-induced Transformation Path of Graphite to Diamond, Physical Review Letters, 1995, 74(20):4015~4018
    [28] Y. Tateyama, T. Ogitsu and K. Kusakabe et al., Constant-pressureFirst-principles Studies on the Transition States of the Graphite-diamond Transformation, Physical Review B, 1996, 54(21): 14994~15001
    [29] 樊新民,孔见,孙斐,材料科学与工程中的计算机技术,徐州: 中国矿业大学出版社, 2000.135~139
    [30] J. Xing, H. L. Scott, Diamond Film Growth by Chemical Vapor Deposition: a Molecular Simulation, Physical Review B, 1993, 48(7): 4806~4810
    [31] C. C. Battaile, D. J. Srolovitz and J. E. Butler, Morphologies of Diamond Films from Atomic-scale Simulations of Chemical Vapor Deposition, Diamond and Related Materials, 1997, 6(9): 1198~1206
    [32] F. H. Stillinger, T. A. Weber, Computer Simulation of Local Order in Condensed Phases of Silicon, Physical Review B, 1985, 31(8):5262~5271
    [33] B. Pailthorpe, P. Mahon, Molecular Dynamics Simulations of Thin Film Diamond, Thin Solid Films, 1990, 193/194:34~41
    [34] S. Skokov, C. S. Carmer, Reconstruction of (100) Diamond Surfaces Using Molecular Dynamics with Combined Quantum and Empirical Forces, Physical Review B, 1994, 49(8): 5662~5671
    [35] D. R. Alfonso, Molecular-dynamics Simulations of Methyl-radical Deposition on Diamond (100) Surfaces, Physical Review B, 1993, 48(16):12235~12239
    [36] W. J. Zhu, Z. Y. Pan and Y.K. Ho et al., Impact-induced Chemisorption of C2H2 on Diamond (001) Surfaces: a Molecular Dynamics Simulation, Nuclear Instruments and Methods in Physics Research B, 1999, 153(1-4): 213~217
    [37] J. Steinbeck, G. Braunstein and M. S. Dresselhaus et al., A Model for Pulsed Laser Melting of Graphite, Journal of Applied Physics, 1985, 58(11): 4374~4382
    [38] C. X. Wang, Y. H. Yang and Q. X. Liu et al., Phase Stability of Diamond Nanocrystals upon Pulsed-laser-induced Liquid-solid Interfacial Reaction: Experiments and Ab Initio Calculations, Applied Physics Letters, 2004, 84(9): 1471~1473
    [39] 王茂章,杨全红,成会明,碳的结构极其同素异性体,炭素技术,2001,1:23~28
    [40] 沈曾民,新型碳材料,北京:化学工业出版社,2003.23~24
    [41] 苟清泉,固体物理学简明教程,北京:人民教育出版社,1978,55~61
    [42] 时志强,王成扬,樊丽萍等, 含菱形相的天然石墨用做锂离子电池负极材料,天津大学学报(自然科学与工程技术版),2005, Vol.38(2) :154~158
    [43] 陈光华,金刚石薄膜的制备与应用,北京:化学工业出版社,2004.2~5
    [44] 刘首鹏,人工裁剪石墨制备纳米器件和碳纳米管:[硕士学位论文],北京;中国科学院物理研究所,2005
    [45] 费允杰,金刚石和碳纳米管的性质研究:[博士学位论文],北京;中国科学院物理研究所,2002
    [46] G. S. Painter, D. E. Ellis and A. R. Lubinsky, Ab Initio Calculation of the Electronic Structure and Optical Properties of Diamond Using the Discrete Variational Method, Physical Review B, 1971, 4(10): 3610~3622
    [47] R. Berman, F. Simon, Diamond Graphite Equilibrium Line in Their Phase Diagram, Zeit. Für Electrochemie, 1955, 59: 333~338
    [48] F. P. Bundy, W. A. Bassett and M. S. Weathers et al., The Pressure-temperature Phase and Transformation Diagram for Carbon; Updated Through 1994, Carbon, 1996, 34(2): 141~153
    [49] 刘志杰,非平衡定态相图在 CVD 低压金刚石生长过程中的应用:[博士学位论文],上海;复旦大学,1999
    [50] 郑重知,朱传征,张五昌,物理化学,上海:上海科学技术出版社,1985.443
    [51] 张灿云,常温下脉冲激光沉积立方氮化硼薄膜和金刚石的纳米成核热力学研究:[硕士学位论文],湖南;湘潭大学,2003
    [52] T. Jawhari, A. Roid and J. Casado, Raman Spectroscopic Characterization of Some Commercially Available Carbon Black Materials,Carbon, 1995, 33(11): 1561~1565.
    [53] E. D. Obraztsova, M. Fujii and S. Hayashi et al., Raman Identification of Onion-like Carbon, Carbon , 1998, 36: 821~828
    [54] F. Tuinstra, J. L. Koenig, Raman Spectrum of Graphite, Journal of Chemical Physics, 1970, 53(3): 1126~1130
    [55] 李炳炎,炭黑生产与应用手册,北京:化学工业出版社,2000, 78
    [56] P.A.Buffat, Electron Microscopy for the Characterization of Atmospheric Particles , Analusis, 1999, 27(4): 340~346
    [57] N. W. Winter, F. H. Ree, Carbon Particle Phase Stability as a Function of Size, Journal of Computer-aided Materials Design, 1998, 5: 279~294
    [58] 丘军林,程祖海等,工业激光技术,武汉:华中科技大学出版社,2002, 384
    [59] 雷卡林,王绍水,材料的激光加工,北京:科学出版社,1982:10~20
    [60] 陈晓虎,王珉,一种新的金刚石合成方法——强激光冲击合成金刚石的初步研究,南京航空航天大学学报,1998,30(1):100~105
    [61] 陈笑,徐荣青,沈中华等,激光对水和空气中靶材的作用机制研究,南京理工大学学报:自然科学版,2004,28(3):248~252
    [62] C. D. Ohl, O. Lindau and W. Lauterborn, Luminescence from Spherically and Aspherically Collapsing Laser Induced Bubbles, Physical Review Letters, 1998, 80(2): 393~396
    [63] G. Ciccotti, W. G. Hoover, Molecular Dynamics Simulation of StatisticalMechanical Systems, Amsterdam: North-Holland, 1986.
    [64] C. R. A. Catlow, S. C.Parker and M. P. Allen, Computer Modeling of Fluids, Polymers and Solids, Dordrecht: Kluwer Academic Publishers, 1990.
    [65] M. P. Allen, D. J. Tildesley, Computer simulation of liquids, Oxford: Clarendon Press, 1987
    [66] J. M. Haile, Molecular dynamics simulation, New York: Wiley, 1992
    [67] G. Ciccotti, D. Frenkel, I. R. McDonald, Simulation of liquids and solids, Amsterdam: North-Holland, 1987
    [68] D. C. Rapaport, The Art of Molecular Dynamics Simulation - 2nd edition, United Kingdom: Cambridge University Press, 2004
    [69] R. Car, M. Parrinello, Unified Approach for Molecular Dynamics and Density-Functional Theory, Physical Review Letters, 1985, 55(22): 2471~2474
    [70] D. A. McQuarrie, Statistical Mechanics, New York: Harper and Row, 1976.
    [71] R. Carles, N. Saint-Cricq and J. B. Renucci et al., Second-order Raman Scattering in InAs, Physical Review B, 1980, 22(10): 4804~4815
    [72] M. S. Daw , M. I. Baskes, Embedded-atom Method: Derivation and Application to Impurities, Surfaces, and Other Defects in Metals. Physical Review B, 1984, 29(12): 6443~6453
    [73] J.Tersoff, New Empirical Approach for the Structure and Energy of Covalent Systems, Physical Review B, 1988, 37(12): 6991~7000
    [74] D. W. Brenner, Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor Deposition of Diamond Films, Physical Review B, 1990, 42(15): 9458~9471
    [75] http://www.ccp5.ac.uk/
    [76] http://www.ks.uiuc.edu/Research/namd/
    [77] http://www.earth.ox.ac.uk/~keith/moldy.html.
    [78] http://www.accelrys.com/products/cerius2/
    [79] http://www.accelrys.com/products/mstudio
    [80] http://www.gromacs.org/
    [81] R. S. Pressman, Software Engineering: A Practitioner's Approach, New York: McGraw-Hill, 2004
    [82] A. W. Brown, Large Scale Component Based Development, New Jersey: Prentice Hall, 2000
    [83] W. H. Press, S. A. Teukolsky and W. T. Vetterling et al., Numerical Recipes in C: The Art of Scientific Computing, Cambridge: Cambridge University Press, 1992
    [84] L. Verlet, Computer ‘Experiment' on Classical Fluids (I) ThermodynamicalProperties of Lennard-Jones Molecules, Physical Review, 1967, 159(1): 98~103.
    [85] L. Verlet, Computer ‘Experiment' on Classical Fluids (II) Equilibrium Correlation Functions, Physical Review, 1968, 165(1): 201~214.
    [86] D. Beeman, Some Multistep Methods for Use in Molecular Dynamics Calculations, Journal of Computational Physics, 1976, 20(2): 130~139
    [87] W. C. Swope, H. C. Andersen and P. H. Berens et al., A Computer Simulation Method for the Calculation of Equilibrium Constants for the Formation of Physical Clusters of Molecules: Application to Small Water Clusters, The Journal of Chemical Physics, 1982, 76(1): 637~649
    [88] C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, NJ: Prentice-Hall, 1971
    [89] D. E. Harrison, Jr., W. L. Gay and H. M. Effron, Algorithm for the Calculation of the Classical Equations of Motion of an N-Body System, Journal of Mathematical Physics, 1969, 10(7): 1179~1184
    [90] http://www.csm.ornl.gov/pvm/
    [91] A. Geist, A. Beguelin and J. Dongarra et al., PVM3 User’s Guide and Reference Manual, Oak Ridge National Laboratory Technical Report ORNL/TM-12187, 1994.
    [92] http://www-unix.mcs.anl.gov/mpi/
    [93] W. Gropp, E. Lusk and N. Doss et al., A High-performance, Portable Implementation of the MPI Message Passing Interface Standard, Parallel Computing, 1996, 22: 789~828
    [94] http://www.microsoft.com/windows/directx/default.mspx
    [95] D. Shreiner, M. Woo and J. Neider et al., OpenGL Programming Guide: The Official Guide to Learning OpenGL, Version 1.4, Boston: Addison-Wesley Professional, 2003
    [96] P. Ward, Qt Programming for Linux and Windows 2000, New Jersey: Prentice Hall, 2000
    [97] http://www.opengl.org/resources/libraries/
    [98] http://www.redhat.com/
    [99] http://www.mcs.anl.gov/mpi/mpich/
    [100] E. A. Taft, H. R. Philipp, Optical Properties of Graphite, Physical Review, 1965, 138(1): 197~202
    [101] 黄昆,韩汝琦,固体物理学,北京:高等教育出版社,1988.116~140
    [102] H. C. Andersen, Molecular Dynamics Simulations at Constant Pressure and/or Temperature, The Journal of Chemical Physics, 1980, 72(4): 2384~2393
    [103] 倪晓昌,王清月,飞秒、皮秒激光烧蚀金属表面的有限差分热分析,中国激光,2004,31(3):277~280
    [104] H. Hakkinen, U. Landman, Superheating, Melting, and Annealing of Copper Surfaces, Physical Review Letters, 1993, 71(7): 1023~1026
    [105] Y. Baskin, L. Meyer, Lattice Constants of Graphite at Low Temperatures, Physical Review, 1955, 100(2): 544
    [106] H. R. Leider, O. H. Krikorian and D. A. Young, Thermodynamic Properties of Carbon up to the Critical Point, Carbon, 1973, 11(5): 555~563
    [107] A. I. Lutcov, V. I. Volga and B. K. Dymov, Thermal Conductivity, Electric Resistivity and Specific Heat of Dense Graphites, Carbon, 1970, 8(6): 753~760
    [108] H. J. C. Berendsen, J. P. M. Postma and W. F. van Gunsteren et al., Molecular Dynamics with Coupling to an External Bath, The Journal of Chemical Physics, 1984, 81(8): 3684~3690
    [109] G. Galli, R. M. Martin, Carbon: The Nature of the Liquid State, Physical Review Letters, 1989, 63(9): 988~991
    [110] N. A. Marks, D. R. Mckenzie and B. A. Pailthorpe et al., Microscopic Structure of Tetrahedral Amorphous Carbon, Physical Review Letters, 1996, 76(5): 768~771

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700