用户名: 密码: 验证码:
固体颗粒杂质影响活塞环—缸套润滑、磨损的理论及试验装备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活塞环-缸套是内燃机中最重要、最关键的运动副,对内燃机的动力性、经济性和可靠性有决定性的影响。本学位论文结合国家自然科学基金资助项目“磨料磨损过程数字仿真及其磨损机理研究”,结合云南省机械工业发展的强烈需求,旨在进一步提升云南省优势机械产品之一内燃机的产品质量,促进技术进步,增强市场竞争力。论文以活塞环-缸套摩擦副为研究对象,选择云内动力公司代表性产品4100型内燃机为具体工程对象,全面系统地研究了润滑油中固体颗粒杂质影响内燃机活塞环-缸套润滑、磨损的理论及其试验装备。论文的主要工作如下:
     第一章,介绍了课题研究背景与意义,分别阐述了固体颗粒杂质对润滑、磨损影响的研究现状,活塞环-缸套摩擦学研究现状,固体颗粒杂质对活塞环-缸套润滑、磨损影响的研究现状,固体颗粒杂质检测系统的研究现状,活塞环-缸套摩擦副试验装备的研究现状。在此基础上,提出了论文的主要研究内容。
     第二章,分析了润滑油中固体颗粒杂质形成原因,研究了固体颗粒杂质几何形态特征参数描述,得到了与固体颗粒实际形态比较符合且便于使用的几何形态描述参数,以润滑油中常见的固体颗粒杂质石英砂、氧化铝、氧化铁为分析对象,进行了几何形状参数测定实验。采用铁谱分析技术观察和分析了云内动力4100型内燃机润滑油中的颗粒杂质。研究了润滑油颗粒杂质的数量特征描述、检测方法以及浓度平衡理论,分析了固体颗粒杂质数量变化规律建模方法,重点研究了支持向量机建模理论,对使用中的云内4100型内燃机进行抽样,获得固体颗粒杂质浓度实验数据,并应用支持向量机理论实现了固体颗粒杂质数量变化规律的建模。
     第三章,研究了固体颗粒对表面的作用数学模型,提出了一种针对固体颗粒的颗粒-表面接触数学模型,该模型考虑了弹性、弹塑性和塑性三种变形状态和在三种变形状态转化临界点的变形连续性和光滑性。根据润滑油中颗粒含量关系,建立了多个固体颗粒条件下的作用模型,实现了多个颗粒宏观作用的量化表达,为实际应用奠定了基础。最后,对固体颗粒与摩擦副表面作用进行了数值模拟研究:进行了固体颗粒微观接触过程的有限元分析,进行了固体颗粒冲击摩擦副表面过程的有限元分析,初步研究了基于分子动力学的微颗粒微观切削作用过程的数值模拟,进行了固体颗粒微观接触过程热效应有限元分析,从不同视角反映固体颗粒与摩擦副表面作用的变化过程和变化状态,探索了新的方法和手段。
     第四章,从固体颗粒的存在而使润滑油变成了固-液两相流的角度出发,通过实验,研究了云内CD级40号专用柴油机润滑油,在含有三种类型的固体颗粒杂质时而引起润滑油粘度、闪点和燃点变化的两相流效应。重点讨论了活塞环-缸套润滑理论,在此基础上,建立了考虑颗粒杂质影响的活塞环-缸套润滑数学模型,分析了非线性二阶偏微分润滑模型的求解方法,为解决由于考虑了颗粒影响造成求解收敛更困难的难题,提出了解析解形式的活塞环-缸套润滑简化实用模型。针对云内动力4100型内燃机在进气、压缩、做功和排气整个实际工作行程中活塞环-缸套的润滑特性受颗粒杂质影响的情况进行了定量理论计算与分析。
     第五章,分析了微切削作用机制和表面塑性变形机制的固体颗粒杂质机械效应。研究了综合两种机制的磨损模型,在此基础上,建立了固体颗粒对活塞环-缸套磨损的数学模型,并应用所建立的模型对云内动力4100型内燃机活塞环-缸套摩擦副进行了磨损量的理论计算分析,得到了内燃机在给定运行时间及颗粒条件下,活塞环、缸套的磨损量以及缸套不同位置的磨损量变化。
     第六章,分析了固体颗粒杂质热效应及其可能引发粘着磨损的机理,研究了固体颗粒与接触表面的瞬时温度数学模型和固体颗粒热效应作用下产生粘着磨损的数学模型。在此基础上,分别建立了固体颗粒与缸套表面、固体颗粒与活塞环表面的瞬时温度数学模型以及热效应作用下活塞环-缸套发生粘着磨损的数学模型,并应用所建立的模型对云内动力4100型内燃机活塞环-缸套摩擦副进行了由于固体颗粒热效应而产生的局部温升的理论计算和粘着磨损理论计算,得到了内燃机在给定运行时间及颗粒条件下,缸套表面不同位置处和不同位置处的颗粒因热效应在压缩行程和膨胀作功行程中而产生的瞬时温度变化量,得到了缸套表面不同位置处因固体颗粒热效应而产生的粘着磨损量。
     第七章,成功地应用旋转体视显微检测理论对润滑油中固体颗粒的三维外型进行检测,研究了润滑油中固体颗粒杂质三维外型微检测系统,验证了该系统对润滑油中固体颗粒的三维外型检测的可行性。研制了往复式活塞环-缸套试验机,该试验机采用模块化、积木式设计思想,配置可拆换的两部分装置:一是以内燃机实际使用的活塞环-缸套为摩擦副试件且能模拟实际运动形式的实验装置,二是可方便进行固体颗粒杂质影响活塞环-缸套润滑、磨损实验的装置。并基于国产低成本力控工控组态软件,开发了试验机数据采集与监测系统,在线测量与监控实验数据,实现对实验过程中数据变化的完全记录,弥补了同类试验装置不能自动监测实验数据的缺陷。
     第八章,模拟4100型内燃机活塞环-缸套的实际运动形式,进行了润滑油含固体颗粒和不含固体颗粒时活塞环-缸套的摩擦磨损比较实验,研究了活塞环-缸套的摩擦力、磨损量、摩擦功耗等摩擦学特性以及与载荷、速度、时间等因素的关系,揭示了它们之间的相互关系规律和影响程度大小,总体分析了固体颗粒杂质的影响。然后根据固体颗粒影响活塞环-缸套润滑的理论研究,分别对试验机活塞环-缸套摩擦副试件在不同实验条件下应用理论模型计算润滑性能和活塞环、缸套试件的磨损量,与相应的实验数据进行对比分析,验证了理论的有效性和可信性。
     第九章,对论文的主要研究工作和创新点作了总结,并对未来的研究工作进行了展望。
Piston ring and cylinder liner are important components in an internal combustion engine due to their crucial effects on internal combustion engine such as dynamic, economical efficiency, reliability and durability. Supported by the project of national nature science fund of china-"Study On Simulation And Mechanism Of Abrasive Wear Process", and meet development demand of mechanical industry and improve quality of engine products in Yunnan province, considered piston ring and cylinder liner of 4100 serial products of internal combustion engine as subject investigated, contaminant Solid particles in lubricant oil influencing lubrication and wear of piston ring and cylinder liner of internal combustion engine was systematically researched in this thesis.
     In chapter 1, the background and significance of the research are introduced. The development trend and current research situations were expatiated, which included solid particle influencing lubrication and wear, piston ring and cylinder liner tribology, solid particle influencing lubricating and wear of piston ring and cylinder liner, solid particle detection and measuring system and testing equipment of piston ring and cylinder liner, and then the study contents of this dissertation were proposed.
     In chapter 2, the origin of contaminant Solid particles in lubricant oil existing between piston ring and cylinder liner was explained, and solid particle geometric shape descriptor was studied, the shape descriptor got is according to real geometric shape. Shape measuring of general solid particle in lubricant oil such as SiO_2, Al_2O_3 and Fe_2O_3 was tested to verify the shape descriptor and geometric shape of solid particles come from lubricant oil samples of 4100 internal combustion engine of Yunnan province internal combustion engine company was analyzed and observed based on ferrography analysis experiments. The change trend in quantity of solid particle in lubricant oil, solid particles detecting technology and concentration balance theory were analyzed, model building methods of solid particle concentration change trend, particularly model by support vector machines theory were studied and used successfully to establish particle concentration change trend model of lubricant oil of 4100 internal combustion engine in use.
     In chapter 3, based on contact analysis, a new contact model of solid particle and friction surface was put forward, which considered three deformation states such as elastic, plastic and elasto-plastic behavior, and deformation continuity law and smooth curve theory in state transition, and then the model of many solid particles was also established according to the quantity of solid particles in lubricant oil for macroscopic view. In order to disclose changing process and state and get intermediate data which are not be attained by current experiment, numerical simulation of solid particle acting on worn surface were researched, which were the finite element methods that were used to analyze micro contact process, impacting process and heat effect of solid particle on worn surface, and which is molecular dynamics simulation that was used to analyze micro cutting process of micro particle.
     In chapter 4, on the view of two phase fluid due to lubricant oil containing solid particles, two phase effect that changed value of viscosity, flashing point and ignition point under condition of lubricant oil containing three different type solid particles were tested for Yunnan internal combustion engine company special lubricant oil of CD grade No.40. Based on lubrication theories of piston ring and cylinder liner researched mainly, the lubrication model that considered solid particle influencing lubrication of piston ring and cylinder liner was established, and then numerical solution method was introduced to solve the model of second-order partial differential equation. In order to solve the puzzle of convergence and conveniently compare two type lubrication condition of containing solid particles or not, a new simplification and utility lubrication model was established. On condition of lubricant oil containing solid particles lubrication performance of piston ring and cylinder liner in the four stroke of intake, compression, expansion and exhaust were calculated and analyzed for 4100 serial products of Yunnan internal combustion engine company.
     In chapter 5, based on wear model of mechanical effect that combines micro cutting mechanism and plastic deform mechanism, the piston ring and cylinder liner wear model that considered solid particle influencing was established, and then piston ring wear, cylinder liner wear and wear distribution in cylinder liner on condition of given run time, concentration and size of solid particle were calculated and analyzed for 4100 serial products of Yunnan internal combustion engine company.
     In chapter 6, the mechanism of adhere wear generated by heat effect was discussed, and the flashing contact temperature mathematical model for solid particle on friction surface and adhere wear volume model generated by solid particle heat effect were established, and then Instantaneous contact temperature mathematical model for solid particle on cylinder liner surface, solid particle on piston ring surface and adhere wear volume model of cylinder liner surface and piston ring surface which are generated by solid particle heat effect were also established. Using the theoretical models the piston ring and cylinder liner of 4100 serial products of Yunnan internal combustion engine company were calculated and analyzed on condition of given run time, concentration and size of solid particle. Instant contact temperature increment of cylinder liner surface and particle on different cylinder liner position generated by heat effect were got, and adhere wear volume distribution in cylinder liner generated by heat effect was got.
     In chapter 7, micro measuring system for three-dimensional geometric shape measuring of solid particle in lubricant oil was successfully developed based on three dimension rotational stereo measuring theory and was tested that it is feasible. Aim at do special experiments of lubrication performance and wear effected by solid particles, Reciprocating type Piston ring and cylinder liner test machine was designed and developed, which comprises of two exchangeable components and can be use to simulate real movement of piston ring and cylinder liner in an internal combustion engine and do experiments of solid particles influencing lubrication and wear of piston ring and cylinder liner. Based on Likong industrial configuration software made in china the data collection and monitor system of testing machine was also developed, which can be used to measure and monitor experiment data on line and record changing data in experiment process. So shortage of similar test equipment that can not automatically monitor test data was remedied.
     In chapter 8, simulated real movement of piston ring and cylinder liner of 4100 serial internal combustion engine, friction and wear of piston ring and cylinder liner on condition that lubricant oil containing solid particles or not were compared by experiments. The results show that solid particles influence tribological performance such as friction force, wear of piston ring and cylinder liner and friction loss. The relationship between tribological performance and load, velocity and run time was also investigated by experiments. Based on theory research achievement in advance chapters, applied theoretical models to calculate friction force related to lubrication performance and wear of specimen made from piston ring and cylinder liner under different experiment conditions in test machine, compared with corresponding test data, the theoretical models were proved that they are effective and confidence.
     In chapter 9, the study contents and conclusions of the dissertation have been summarized and the further research works have been forecast.
引文
[1]Fessler R.US department of energy workshop on industrial research needs for reducing friction and wear.Argonne National Laboratory;1999.
    [2]Andersson BS.Company perspectives in vehicle tribology-Volvo.In:17th Leeds-Lyon Symposium on Tribology-Vehicle Tribology.Tribology series,18.Oxford,UK:Elsevier Ltd;1991,p.503-506.
    [3]Bell JC.Gasoline engine valve train design evolution and the antiwear requirements of motor oils.J Engine Tribology,Proc Inst Mech Engrs,Part J 1998;212(J4):243-257.
    [4]Coy RC.Practical applications of lubrication models in engines.New Dir Tribology,MEP 1997:197-209.
    [5]Culley SA,McDonnell TF,Ball D J,Kirby CW,Hawes SW.The impact of passenger car motor oil phosphorus levels on automotive emissions control systems.SAE Pap no 961898;1996.
    [6]Dowson D,Higginson E.Elasto-hydrodynamic lubrication.Pergamon Press,Inc;1991.
    [7]Simon C.Tung,Michael L.McMillan.Automotive tribology overview of current advances and challenges for the future.Tribology International 37(2004):517-536
    [8]Nakasa M.Engine friction overview.Proceedings of International Tribology Conference.Japan:Yokohama;1995.
    [9]Spearot JA.Friction,wear,health,and environmental impacts-tribology in the new millennium.Akeynote lecture at the STLE Annual Meeting,Nashville,Tennessee,May,2000.
    [10]Hisakado T,tsukizoe T,Yoshikawa A H.lubrication mechanism of solid lubricants in oils.J.Lubr.Tech,1983,105(2):245-253
    [11]Gupta B k,Bhuahan B.Fullerene particles as an additive to liquid lubricants and greases for low friction and wear.Lubriction Engineering,1994,50(7):524-528
    [12]吕君英,龚凡,郭亚平.纳米粒子改善润滑油摩擦磨损性能机理的评述[J].应用科技,2004,3l(11):51-53
    [13]姜秉新,陈波水,董浚修.铜型添加剂摩擦修复作用的可行性研究[J].机械科学与技术,1999,18(3)475-477
    [14]刘维民,周静芳等.纳米颗粒的抗磨作用及其作为磨损修复添加剂的应用研究[J]. 中国表面工程,2001,3:21-23
    [15]郭延宝等.纳米铜作为润滑添加剂时的负磨损现象研究[J].中国表面工程,2004,2:15-17
    [16]柳学权等.修复型润滑添加剂的开发及应用[J].粉未治工业,2003,13(4)20-22
    [17]陈国需,李华峰.油润滑下金属摩擦副磨损表面在线自修复研究.中国工程院工程科技论坛:摩擦学工程科技论坛——润滑应用技术论文集,2004,104-111
    [18]Y.Y.Wu,W.C.Tsui,T.C.Liu Experimental analysis of tribological properties of lubricating oils with nanoparticle additives.Wear 262(2007) 819-825
    [19]H.G.Rylander,A Theory of Liquid-Solid Hydrodynamic Film Lubrication,ASLE Transactions,1966,9:264-271
    [20]Wan Y G T,Spikes H A,The Behavior of Suspended Solid Particles in Rolling and Sliding Elastohydrodynamic Contacts,STLE Transactions,1987,31(1):12-21
    [21]Hisakado T,Tsukizoe T,Lubrication Mechanism of Solid Lubricants in Oils,ASME Jour of Lubr.Tech,1983,105:245-253
    [22]Cusano C,Sliney H E,Dynamics of Solid Dispersions in Oil During the Lubrication of Point Contacts:Part 11-Molybdenum Disulfide,Tdb.Trans.1981,190-197
    [23]Hamer J C,Sayles R S,loannides E,Particle Deformation and Counterface Damage When Relatively Soft Particles Are Squashed Between Hard Anvils,STLE Tribology Trans,1989,32:281-288
    [24]Dai F,Khonsari M M,A Continuum Theory of a Lubrication Problem with Solid Particles,Appl.Mech.ofASME,1993,60:48-57
    [25]Tomimoto M,Mizuhara K,Yamamoto T,Effect of Particles on Lubricated Theoretical Analysis of Friction Caused by Particles in Journal Bearing,Tribology Transaction,2002,4 5(1):47-54
    [26]Yousif E Y,Somer M N,The Lubrication of Conical Journal Beatings with Bi-Phase(Liquid-Solid) Lubricants,Wear,1994,172:23-28
    [27]Makoto Tomimoto,Experimental Verification of a Particle Induced Friction Model in Journal Beatings,Wear,2003,254:749-762
    [28]Mizuhara K,Tomimoto M,Yamamoto T,Effect of Particles on Lubricated Friction,Tribology Transactions,2000,4 3(1):51-56.
    [29]Dwyer-Joyce R S,The Effect of Lubricant Contamination on Rolling Beating Performance,Tribology Section London,U K,1994,57-59
    [30]Bartz W J,Oppel J,Lubricating Effectiveness of Oil-Soluble Additives and Molybdenum Disulfide Dispersed in Mineral Oil,Lubr.Eng.,1980,36:579-585
    [31]Chinas-Castillo F,Spikes H A,The Behavior of Cooloidal Solid Particles in Elastohydrodynamic Contacts,Tribology Transactions,2000,43:387-394
    [32]M.M.Maru,R.S.Castillo,L.R.Padovese.Study of solid contamination in ball bearings through vibration and wear analyses.Tribology International 40(2007):433-440
    [33]Maru MM,Serrato-Castillo RS,Padovese LR.Influence of oil contamination on vibration and wear in ball and roller beatings.IndLubr Tribol(30):2007
    [34]Maru MM,Serrato-Castillo R,Padovese LR.Detection of solid contamination in rolling bearing operation through mechanical signature analysis.Twelfth international congress on sound andvibration,11-14 July 2005,Lisbon,Portugal.
    [35]Serrato-Castillo R,Maru MM,Padovese LR.Effect of lubricant oil viscosity and contamination on the mechanical signature of roller beatings.Twelfth international congress on sound and vibration,11-14 July 2005,Lisbon,Portugal.
    [36]Khonsari M M,Wang S H,On the Role of Particulate Contaminationin Scuffing Failure,Wear,1990,137:51-62
    [37]Nikas G K,Ioarmides E,Sayles R S,Thermal Modeling and Effects from Debris Particles in Sliding/Rolling EHD Line Contacts-A Possible Local Scuffing Mode,Tr biology of the ASME,1999,121:272-281
    [38]Nikas G K,Sayles R S,Thermoelastic Distortion of EHD Line Contacts During the Passage of Soft Debris Particles,Tribology of the ASME,1999,121:265-270
    [39]Khonsafi M M,WangS H,Qi Y L,A Theory of Thermoelastohydrodynamic Lubrication of Liquid-Solid Lubricated Cylinders,Tribology of the ASME,1990,112:259-265
    [40]江亲瑜,王松年,陈谌闻.齿轮胶合中的磨粒效应研究[J].大连铁道学院学报,1994,16(1):15-19.
    [41]杜令忠,徐滨士,董世运,等.含污染物油润滑条件下的磨粒磨损研究[J].润滑与密封,2004,164(4):39-42.
    [42]程西云,蒋箱,韦云隆,润滑油中磨屑尺寸对滑动摩擦副咬死性能影响的实验研究[J],润滑与密封,1999,4:12-14
    [43]曲建俊,宋宝玉,齐毓霖.含超细颗粒固液二相流对PSZ陶瓷与钢摩擦磨损特性的影响[J].润滑与密封,2000,6:44-46
    [44]张家玺,高群钦,朱均.内燃机缸套.活塞环摩擦学研究回顾与展望[J].润滑与密封.1999,05:26-29
    [45]Chui,Boon-Keat.Elastohydrodynamic modeling and measurement of cylinder-kit assembly tribological performance.Michigan State University,Ph.D.2005
    [46]Jaana Tamminen,Carl-Erik Sandstrom,Peter Andersson.Influence of load on the tribological conditions in piston ring and cylinder liner contacts in a medium-speed diesel engine.Tribology International 39(2006) 1643-1652
    [47]RINGPAK Documentation/User's manual,version 4.2,Ricardo Software,2003.
    [48]Ting L L and Mayer J E.Piston Ring Lubrication and Cylinder Bore Wear Analysis,Part Ⅰ-Theory.Transaction of ASME,Journal of Lubrication Technology,1974,96(3):305-314
    [49]Ting L L and Mayer J E.Piston Ring Lubrication and Cylinder Bore Wear Analysis,Part Ⅱ-Theory Verification.Transaction of ASME,Journal of Lubrication Technology,1974,96(3):258-266
    [50]M.Priest,D.Dowson,C.M.Taylor.Predictive wear modelling of lubricated piston rings in a diesel engine Wear 231_1999.89-101
    [51]Chui,Boon-Keat.Computational Analysis Of Pistion Ring Wear And Oil Consumption For An Internal Combustion Engine,Michigan State University,M.D.2001
    [52]孔凌嘉.内燃机缸套—活塞环摩擦学系统研究[D].西安交通大学博士学位论文,1991
    [53]谢友柏,孔凌嘉.缸套.活塞环摩擦学系统磨损模型的建立及磨损预测.第五届全国摩擦学术会议摩擦学论文集(上),武汉,第五届全国摩擦学术会议,1992
    [54]刘煜,桂长林.发动机气缸套一活塞环摩擦力及摩擦功耗分析[J].西安工业学院学报,1994,14(4):303-308
    [55]刘煜,刘小君,桂长林.内燃机活塞环—缸套擦伤的理论分析与实验模拟[J].内燃机学报,1999,17(2):198-201
    [56]刘煜,谢友柏.内燃机缸套—活塞环混合润滑特性及摩擦力分析[J].内燃机学报,1995,13(3):299-305
    [57]刘煜,桂长林,谢友柏.活塞环—缸套二维润滑特性的研究[J].机械科学与技术,1997,16(4):603-611
    [58]刘煜,桂长林,谢友柏.活塞环—缸套润滑状态周向不均匀性的研究[J].内燃机学 报,1997,15(3):281-289
    [59]刘焜,桂长林,谢友柏.考虑活塞裙部润滑状态的活塞二阶运动分析及活塞设计参数的研究[J].机械工程学报,1998,34(3):19-25
    [60]刘焜,桂长林,谢友柏.活塞组摩擦及润滑特性的综合分析[J].摩擦学学报,1998,18(1):32-38
    [61]刘焜.缸套-活塞环系统摩擦、润滑特性的研究及磨损模型的建立[D],西安,西安交通大学博士学位论文,1995
    [62]桂长林.影响内燃机活塞环—缸套擦伤的因素及防擦伤的摩擦学设计[J].摩擦学学报,1998,18(3):283-288
    [63]桂长林,刘焜.内燃机活塞环—缸套摩擦功耗的设计计算方法之研究[J].摩擦学学报,1994,14(4):328-336
    [64]陆华才.基于摩擦学理论的缸套激光表面微造型参数优化的研究,江苏大学硕士学位论文,2005
    [65]李为松.缸套微坑加工技术的应用基础研究,中北大学硕士学位论文,2007
    [66]John J.Truhan,Charles B.Covington,Lois M.Wood,The classification of lubricating oil contaminants and their effect on wear in diesel engines as measured by surface layer activation,in:Proceedings of the First International Filtration Conference,Southwest Research Institute,San Antonio,TX,July,1996,p.239.
    [67]John J.Truhan,Jun Qub,Peter J.Blau.The effect of lubricating oil condition on the friction and wear of piston ring and cylinder liner materials in a reciprocating bench test.Wear 259(2005) 1048-1055
    [68]张家玺,刘焜,胡献国.纳米金刚石颗粒对发动机润滑油摩擦学特性的影响[J].摩擦学学报,2002,22(1):44-47
    [69]孟凡明,张优云.运动颗粒对活塞环润滑的影响[J].内燃机学报,2004,22(2):169-175.
    [70]王超.液固二相流体润滑状态下表面形貌特性变化的研究[D].合肥工业大学硕士学位论文,2002.5
    [71]王伟,刘昆,焦明华.液固二相流润滑下活塞环/缸套摩擦特性研究[J].合肥工业大学学报,2005,25(1):26-28.
    [72]陶斌岩.油品分析与状态监测[J].密封与润滑,1997(1):2-5.
    [73]李柱国.磨损监测油料分析技术及其应用[J].武汉交通科技大学学报.油液分析专辑,1994.9
    [74]姜旭峰,费逸伟,李华强,钟新辉.航空发动机滑油综合监测技术研究[J].润滑与密封,2005,168(2):110-112.
    [75]Product Review,Metalworking fluids.Industrial Lubrication and Tribology[J].1995,47(3):6-22.
    [76]Elliot S Nachtman,Scrope Kalpakjiam.Lubricants and Lubrication in Metalworking Qprations.NewYork and Base.Marcel Dekker Inc,1985.
    [77]严永年,杜大昌,蒋松.外军的润滑油状态监测技术.油液分析专辑,1994.9
    [78]叶晓洪,刘文杰,彭兰,何玉辉.油液监测分析技术在ST-6C柴油铲运机上的应用[J].矿山机械,2003(8):33-34.
    [79]严志军,朱新河,程东,刘一梅.油液监测技术在船舶设备状态监控中的研究和应用[J].中国设备工程,2007,2:52-55
    [80]姜旭峰,费逸伟,钱坤,胡役芹.滑油监测技术在航空发动机预防性维修中的应用[J].润滑与密封,2004,162(2):56-58.
    [81]张艳,李晓雷,周文新.磨粒形貌三维图像分析技术的发展趋势[J].润滑与密封,2001,1(3):60-62.
    [82]周仲荣,雷源忠,张嗣伟.摩擦学发展前沿[M].北京:科学出版社,2006:146
    [83]坚持科技创新,实现可持续发展.扬州企协通讯,2005年8月12日
    [84]施洪生,郭炎,高晓军,等.缸套/活塞环摩擦学性能试验机的设计研究[J].润滑与密封.2004,163(3):76-79
    [85]庞远智.关于城区汽车空滤器使用的探讨[J].汽车研究与开发,2000,5:55-56
    [86]Mark L Hentsehel,Neil W Page.Selection of Descriptors for Particle Shape Characterization,Part PartSystCharact,2003,20:25-38.
    [87]C F Mora,AK H Kwan.Sphericity,shape factor,and convexity measurement of coarse aggregate for concrete using digital image processing.Cement and Concrete Research,2000,30:351-358.
    [88]涂新斌,王思敬.图像分析的颗粒形状参数描述[J].岩土工程学报,2004,26(5):659-662
    [89]张鄂.铁谱技术及其工业应用[M].西安:西安交通大学出版社,2001,10
    [90]毛美娟,朱子新,王峰.机械装备油液监控技术与应用[M].北京:国防工业出版社,2006,9
    [91]唐启义.实用统计分析及其DPS数据处理系统[M].北京:科学出版社,2002
    [92]Michael H.Christopher J.Applied linear regression models[M].Beijing:Higher education press,2005.
    [93]邓聚龙.灰预测与灰决策[M].武汉:华中科技大学出版社,2002
    [94]邓聚龙.灰色系统基本方法[M].武汉:华中科技大学出版社,2005
    [95]刘思峰,党耀国,方志耕.灰色系统理沦及其应用[M].北京:科学出版社,2004
    [96]罗佑新.灰色系统理论及其在机械工程中的应用[M].国防科技大学出版社2001
    [97]张树京.时间序列分析简明教程[M].北京:清华大学出版社,2003
    [98]周开利.神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社,2005
    [99]Vapnik V.The nature of statistical learning theory[M].New York:Springer Verlag,1995.
    [100]杨志民.不确定性支持向量机原理及应用[M].北京:科学出版社,2007
    [101]Cristianini,N.支持向量机导论[M].北京:电子工业出版社,2004
    [102]林茂六,陈春雨.基于傅立叶核与径向基核的支持向量机性能之比较[J].重庆邮电学院学报,2005,17(6):647-650
    [103]赵永武,吕彦明,蒋建忠.新的粗糙表面弹塑性接触模型[J],机械工程学报,43(3):96-101
    [104]TABOR D.The hardness of metals[J].Oxford:Oxford University Press,1951.
    [105]KOGUT L,ETSION I.Elastic-plastic contact analysis of a sphere and rigid flat[J].Joumal ofAppliedMechanics,2002,69:657-662.
    [106]JOHNSON K L.Contact mechanics[J].Cambridge:Cambridge University Press,1985.
    [107]Warren M,Garrison J.Abrasive wear resistance,the effects of ploughing and the removal of ploughed material.Wear,1987,114:239-247
    [108]Overney R,Meyyer E,Frommer J.Friction measurement on phasesporated thin films with a modified atomic force microscope.Nature,1992,359(6 391):133-135
    [109]Ruan J,Bhushan B.Atomic-scale and microscale friction studies of graphite and diamond using friction force microscopy.J.Appl.Phys.,1994,76(9):5022-5035
    [110]Ludema K C.Mechanism-based modeling of friction and wear.Wear,1996.200:1-7
    [111]Tarassov S Y Kolubaev A V.Effect of friction on subsurface layer microstructure in austeniticandmartensiticsteels.Wear,1999.231:228-234
    [112]Greenwood J A.Rowe G W Deformation of surface asperities during bulk plastic flow.J.Appl.Phys.,1965,36(2):667-665
    [113]Wu C W.Zheng L Q.A general expression for plasticity index.Wear,1987.121:161-172
    [114]樊瑜瑾,杨晓京,李浙昆,刘剑雄.磨粒磨损中微观接触过程的有限元分析[J].机械工程学报,2005,41(4):35-37.
    [115]莫维尼,Moaveni,S.ANSYS理论与应用[M-I.北京:电子工业出版社,2005
    [116]张波.ANSYS有限元数值分析原理与工程应用[M].北京:清华大学出版社,2005
    [117]邓凡平.ANSYS10.0有限元分析自学手册[M].北京:人民邮电出版社2007
    [118]王国强.实用工程数值模拟技术及其在ANSYS上的实践[M].西安:西北工业大学出版社,2001
    [119]李裕春.ANSYS 10.0/LS-DYNA基础理论与工程实践[M].北京:中国水利水电出版社,2006
    [120]尚晓江.ANSYS/LS-DYNA动力分析方法与工程实例[M].北京:中国水利水电出版社,2006
    [121]何涛.ANSYS10.0/LS-DYNA非线性有限元分析实例指导教程[M].北京:机械工业出版社,2007
    [122]白金泽.LS-DYNA3D理论基础与实例分析[M].北京:科学出版社,2005
    [123]杨晓京,陈子辰,傅建中.分子动力学模拟在微系统研究中的应用[J].中国机械工程,2003,14:34-37
    [124]杨晓京,陈子辰,樊瑜瑾,李浙昆.磨粒磨损中微观切削过程分子动力学模拟[J].农业机械学报,2007,38(5):161-164.
    [125]温诗铸.纳米摩擦学[M].北京:清华大学出版社,1996:60-79
    [126]Heermann D W,Qin K Ch.Computer simulation methods in theory physics.Beijing:publishing company of Beijing university,1996:16-34(in Chinese).
    [127]郑林庆.摩擦学原理[M].北京:高等教育出版社,1994
    [128]张朝晖.ANSYS热分析教程与实例解析[M].北京:中国铁道出版社,2007
    [129]张国智.ANSYS 10.0热力学有限元分析实例指导教程[M].北京:机械工业出版社,2007
    [130]杨晓京,陈子辰,樊瑜瑾,李浙昆.磨粒微观滑动接触过程热效应的有限元分析.润滑与密封[J],2007,32(8):1-4.
    [131]Dai F,Khonsari M M.A continuum theory of a lubrication problem with solid particles.ASME JAppl Mech,1993,60:48-57.
    [132]Zhang H H,Zhou M G,Hua D Y.Elasto—hydmdynamic lubrication with micmpolar lubrication and its numerical solution for line contacts.Appl Mech Anniversary,1991.
    [133]林建忠.流.固两相拟序涡流及稳定性[M].北京:清华大学出版社,2003
    [134]FREI B,HUBER H.Characteristics of different pump types operating with ice slurry[J].Intemational JournalofRefrigeration,2005,28(1):92-97.
    [135]西安交通大学内燃机教研室.内燃机原理[M].北京:农业机械出版社.1981
    [136]温诗铸,黄平著.摩擦学原理[M].北京:清华大学出版社.2002
    [137]J.F.Achard.Wear.Control Handbook[M],Washington,A SME,1980,35-80.
    [138]E.Rabinowicz.Friction and Wear of Materials[M].New York:.John Wiley & Sons,1965.23-105.
    [139]G..Sundararajan.A new model for two-body abrasive wear based on the localization of plastic deformation,Wear,1987,No.117:1-35
    [140]籍国宝。摩擦磨损原理[M].北京:农业出版社,1992,44-45
    [141]A.A.Torrance.Modelling abrasive wear.Wear 258(2005) 281-293
    [142]Khonmri M M.Wang S H.On the role.of particulate contamination in scuffing failure,wear.1990,137:51-62.
    [143]刘盛.旋转体视显微检测理论及装置研究[D].浙江大学博士学位论文,2004
    [144]杨晓京,陈子辰刘盛.基于旋转体视的润滑油固体颗粒污染物三维外型检测[J].润滑与密封,2007,32(10):8-11.
    [145]Huei-Yung Lin,Computer vision techniques for complete 3D model reconstruction,PhD thesis,State University of New York at Stony Brook,2002:11-8
    [146]李亚萍,黄崇超,实四元数组与三维旋转[J],武汉水利电力大学学报,1995,28(6):607-612
    [147]H.C.Longuet-Higgins.A computer algorithm for reconstructing a scene from two projections.Nature,vol.293:133-135,1981
    [148]三维力控ForceControl V6.0介绍.机电一体化,2007.13(4):11-11
    [149]力控组态软件用户手册.北京三维力控有限公司,2007
    [150]http://www.advantech.com.cn/

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700