用户名: 密码: 验证码:
碳包裹纳米金属及其合金粒子的制备和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳包裹纳米金属粒子是一种新型的纳米复合材料,其性质相对稳定的碳层可以保护金属粒子不发生物理、化学变化,防止金属纳米粒子长大和团聚,甚至可以将碳层的性能赋予被包裹的粒子,使其在电子、磁记录、电波屏蔽/吸收、催化剂、抗菌剂、生物医学等方面有广泛的应用前景,因此这一材料在上个世纪九十年代一出现便成为研究的热点。本文采用一种新的制备方法,即以阳离子交换树脂(D113)为碳源,金属离子为金属源,首次采用离子交换的方法将金属离子引入到聚合物中,得到含金属的聚合物前驱体,然后在400-700℃热解制备碳包裹纳米金属及合金粒子,本文的制备方法具有工艺简单、纳米金属粒度可控、容易操作、成本低等特点。
     深入研究了制备工艺条件对碳包裹纳米金属粒子形态的影响,并结合X射线衍射仪、元素分析仪、红外光谱、电子显微镜等现代分析手段对材料的结构、性能进行详细分析;初步分析了其形成机理;并研究了其催化性能、磁性能和吸波性能。
     400-700℃热解载镍和载钴的前驱体(Ni/D113,Co/D113)可获得碳包裹面心立方结构(fcc)的纳米镍、钴粒子,未发现镍、钴的氧化物和碳化物,镍、钴粒子的晶粒尺寸随着热解温度的升高不断增大。而在同样的条件下热解载铁树脂(Fe/D113),热解产物中铁的晶体结构与热解温度有关,400℃热解产物为铁的氧化物;500℃热解产物为体心立方结构(bcc)的单质铁;600-700℃的热解产物为bcc单质铁和铁的碳化物(Fe_3C)。400-700℃热解载铁、镍D113前驱体(Fe-Ni/D113)和载铁、钴D113前驱体(Fe-Co/D113)分别获得了碳包裹fcc结构铁镍合金和bcc结构铁钴合金纳米粒子。颗粒的点阵常数随合金颗粒中铁含量的增加而增大;纳米合金的晶粒随热解温度的升高而增大。
     包裹纳米粒子的壳层碳结构因热解温度的不同而不同,400-500℃时,壳层碳为无定型碳;600-700℃时,400-500℃热解形成的无定型碳壳层石墨化,同时被包裹金属粒子明显长大。通过对形成机理进行分析认为,600-700℃热解过程中,核金属对壳层的无定型碳具有催化石墨化作用;而被包裹粒子的长大是由于被包裹金属对外层的无定型碳产生催化石墨作用时,导致核金属的裸露,相互融并引起的。
     采用热分析法考察了碳包裹纳米金属及合金粒子对高氯酸铵(AP)热分解的催化作用。结果表明,碳包裹纳米金属及合金粒子使AP的高温分解温度大幅下降,高温分解的表观活化能降低,热分解反应的速率加快,分解放热量提高。同时探讨了对AP催化热分解的机理。
     碳包裹纳米金属及合金粒子的磁性与被包裹纳米金属和合金粒子的尺寸有关。矫顽力H_c大于相应的块体材料,先随试样中粒子尺寸的减小而增大,在达到单畴尺寸D_s附近的极值后,随试样中粒子尺寸的减小而减小;比饱和磁化强度M_s小于相应的块体材料,随试样中粒子尺寸的增大而单调增大,并逐渐接近块体材料的值;碳包裹纳米合金粒子的磁性还与粒子的合金成分有关。
     500℃制得的碳包裹纳米铁、镍、铁钴合金和铁镍合金粒子为吸收剂(质量分数为50%);石蜡为粘结剂,采用弓形法电磁波反射吸收测试结果表明,涂层厚为2mm时,碳包裹纳米铁粒子的吸波性能最好,在11.7GHz频率时吸收峰值R_(min)为-10 dB,频宽△dB可达6.0 GHz;当涂层厚为1.0 mm左右时,R_(min)向高频方向移动,频宽下降。
Carbon-encapsulated nano metal particle is a new type ofnano-composite material.The role of the carbon coating in this material is to isolate the particles from eachother, thus avoiding the drawbacks caused by interactions between closely compactedunits, such as the oxidation of the bare nano metal particles. Moreover, the carboncoating can endow these particles with other properties, and then to be able to bewidely used as electronic, magnetic recording, electromagnetic shield/absorbing materials,catalysts, antibacterial materials and biomedicine etc. Since the first finding ofCarbon-encapsulated nano metal particle, it has attracted a great deal of researchinterest. In this thesis, a novel method for the preparation of carbon-encapsulated nanometal particle was proposed, in which D113 resin, a kind of cation exchange resin, wasused as carbon source and metal salt as metal source in order to preparecarbon-encapsulated nano metal (Ni, Co, Fe) and alloy (Fe-Ni, Fe-Co) particles viapyrolysis in the range of 400-700℃. Simplicity, low cost, and controllability ofparticle size are the favorable features of this preparation method.
     The structural morphologies of the carbon-encapsulated nano metal and alloyparticles are investigated by XRD, IR, SEM, TEM, HRTEM etc and the effects ofpreparation conditions on morphologies of Carbon-encapsulated nano metal and alloyparticle are studied. The formation mechanism is also discussed. Catalytic, magnetic andelectromagnetic absorbing properties are studied as well.
     Carbon-encapsulated Ni and Co nano-particles are prepared by pyrolysis of Ni/D113and Co/D113 precursors from 400℃to 700℃. It reveales that the nickel and cobaltparticles existe mainly in the form of fcc Ni and Co phase, and no evidence of Ni and Cooxides or carbides are observed, and it is found that the particles sizes of Ni and Coincrease with the increasing of pyrolytic temperature. But when Fe/D113 precursor ispyrolysed in the range of 400-700℃, the crystal structure of the iron particle is different.The products are mainly iron oxides andα-Fe as Fe/D113 precursor pyrolysed at 400℃and 500℃respectively, and as the pyrolytic temperature increases to the range of600-700℃,α-Fe and Fe_3C are observed. Carbon-encapsulated fcc iron-nickel and bcciron-cobalt alloy nano-particles are prepared by pyrolysis of Fe-Ni/D113 and Fe-Co/D113precursors from 400℃to 700℃. The lattice constant of the nano alloy particle increaseswhen increasing the Content of Fe in the nano alloy particles, and the nano alloy particle sizes increase when increasing the pyrolytic temperature.
     It is found that the structure of the carbon coating is amorphous carbon in thecarbon-encapsulated nano metal and alloy particle when pyrolytic temperature is in therange of 400-500℃, and the amorphous carbon coating changes to graphite whenpyrolytic temperature is in the range of 600-700℃. And the size of encapsulatednanoparticle increases as well. A mechanism reflecting these changes is proposed.
     The catalysis of these carbon-encapsulated nano metal and alloy particles on thethermal decomposition of NH_4ClO_4 (AP) is investigated by thermal analysis. Resultsindicate that the carbon-encapsulated metal nano and alloy particles lower the higher peaktemperature of AP thermal decomposition. Thermal decomposition dynamics test showsthat the carbon-encapsulated nano metal and alloy particles can lower the activation energyof AP higher temperature decomposition effectively, and increase reaction rate constant ofAP decomposition as well. In addition, the catalytic mechanism of AP thermaldecomposition is discussed.
     The experimental results show that magnetism of carbon-encapsulated nano metaland alloy particles depends on the nano metal and alloy particle size, which is largelyinfluenced by pyrolysis temperatures. The coercivities H_c of the samples at roomtemperature are much higher than those of the corresponding bulk material, and H_cincreases with the decrease of the particle size firstly, and H_c reaches maximum valuewhen the particle size is about single-domain size (D_s). As the particle size is less than D_s,H_c decreases with the decrease of the particle size. The saturation magnetization M_s ofcarbon-encapsulated nano metal and alloy particles increase with pyrolytic temperatureincreasing, and are less than those of bulk materials. Moreover magnetism ofcarbon-encapsulated nano alloy particles is influenced by the constituent of alloy particles.
     Electromagnetic absorbing property tests of carbon-encapsulated iron, nickel, FeNiand FeCo alloy nano particles pyrolysed at 500℃indicate that carbon-encapsulatediron nano-particles has more strongly electromagnetic absorbing efficiency than theothers. For 50% mass fraction in wax and 2 mm-thickness of carbon-encapsulated ironnano-particles, at f=11.7 GHz, R_(min)=-10dB and△dB=6.0 GHz.
引文
1.张立德.纳米材料[M].北京:化学工业出版社,2000.
    2.张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    3.李玲,向航.功能材料与纳米技术[M].北京:化学工业出版社,2002.
    4.张志焜,崔作林.纳米技术与纳米材料[M].国防工业出版社,2000.
    5.徐国财,张立德.纳米复合材料[M].北京:化学工业出版社,2002.
    6.张立德,牟季美.纳米材料学[M].沈阳:辽宁科学技术出版社,1994.
    7.戴遐明,王加龙等.离子技术在高性能粉体制备中的应用[J].中国粉体技术.1999,5(6):31-36.
    8.李亚利,梁勇,胡壮俐等.激光诱导气相合成Si_3N_4/SiC纳米粉实验工艺研究[J].材料科学与工艺.1993,1(4):60-65.
    9. Vlssokov G P. Advanced topics in materials science and engineering[J]. J Mater Sci. 1998, 23: 2415-2423.
    10. Harld eifert. Production methods and applications of low impurity metal nanopowders [J]. Powder Metallurgy. 2000, 4(4): 310-315.
    11.郭广生,李强,王志华等.激光蒸凝法制备氧化铜纳米粒子[J].无机材料学报.2002,17(3):230-234.
    12.曹茂盛.超微颗位制备科学与技术[M].哈尔滨:哈尔滨工业大学出版社,1998.
    13.王彦平,汪浩,朱鹤孙.直流电弧等离子体法制备TiO_2纳米超细粉[J].高技术通讯.1998,(2):42-44.
    14.王世敏,徐组勋,傅晶.纳米材料制备技术[M].北京:化学工业出版社.2001.
    15.殷亚东,张志成,徐相凌等.纳米材料的辐射合成法制备[J].化学通报.1998,12:21-25.
    16.王菊香,赵询,潘进等.超生电解法制备超细金属粉的研究[J].材料科学与工程.2000,18(4):70-74.
    17.张立德.超微粉体制备与应用技术[M].北京:中国石化出版社,2001.
    18. Adschiri T. Applications of supercritical fluids in the powder processing[J]. Powder and Particle. 1998, 16: 89-100.
    19. Yang J, Li D, Wang H Z. Effect of particle size of starting material TiO_2 on morphology and properties of layeres titanates[J]. Mater Lett. 2001, 50(4): 230-234.
    20.刘长久,叶乃清,刁汉明.纳米氧化镍氢氧化镍复合电极材料的制备及其电化学性能[J].应用化学.2001,18(4):335-337.
    21. McCormick P G, Tsuzuki T, Robinson J S, Ding J. Nanopowders synthesized by mechanochemical processing [J]. Adv. Mater., 2001, 13 (12-13): 1008-1010.
    22.金春飞,景苏,忻新泉.低热固态化学反应与材料合成[J].无机化学学报.2002,18(9):859-870.
    23.李凤生.超细粉体技术[M].北京:国防工业出版社,2000.
    24.阎子峰.纳米催化技术[M].北京:化学工业出版社,2003.
    25.李凤生,杨毅.纳米/微米复合技术及应用[M].北京:国防工业出版社,2002.
    26.李凤生,杨毅.纳米功能复合材料及应用[M].北京:国防工业出版社,2003.
    27. Leslie-Pelecky D L, Pdeke R D. Magnetic properties of nanostructured material[J]. CHem Mater. 1996, 8: 1770-1783.
    28. Wang X H, Xiong G Wang X. Preparation and magnetic properties of nanocrystalline BaFe_(12)O_(19) and Ba(CoTi)(x)Fe_(12)-2xO_(19) powders by the stearic acid gel method[J]. J. Mater Sci Lett. 1997, 16: 1606-1608.
    29. Pandya P B, Joshi H H, Kulkarmi R Q. Magnetic and structural properties of CuFe_2O_4 prepared by the co-precipitation method[J]. J Mater Sci Lett. 1991, 10: 474-476.
    30.邓建国,王建华,贺传兰.纳米微波吸收剂研究现状与进展[J].宇航材料工艺.2002,5:5-9.
    31.张玉龙,李长德,杨淑丽.纳米隐身材料研究进展[C].第二届全国健身功能材料学术研讨会.2004,179-188.
    32.张卫东,冯小云,孟季兰.国外隐身材料研究进展[J].宇航材料工艺.2000,3:1-4.
    33.钱海霞,能惟皓.纳米复合隐身材料研究进展[J].宇航材料工艺.2002,2:8-11.
    34.闰玉生.医学纳米材料应用的研究进展[C].全国第三属纳米材料和技术应用会议论文集.2003,737-740.
    35.马垠智,曹宏明.铁碳复合磁靶向缓释药物载体材料的制备-制备条件对铁碳复合材料磁性能的影响[J].功能材料.2004,4(35):423-425.
    36. Chen W J, Wong S S. Effect of acid-base interaction on magnetic dispersion containing Fe metal particles[C]. IEEE TRANSACTIONS ON MAGNETICS, 1991, 27(6): 4648-4650.
    37.王其样,宋宝珍,李洪钟.α-Fe金属磁记录粉表面化学改性[J].无机材料.2002,17(5):953-958.
    38. Zhou J F, Yang J J, Zhang, Z J. Study on the structure and tribological properties of surface-modified Cu nanoparticles[J]. Materials Research Bulletin. 1999, 34(9): 1361-1367.
    39. Papisov I M. The complexes of macromolecules and metal nanoparticles: pseudo-template synthesis and behavior[J]. Macromol Symp. 2003, 204: 237-250.
    40. Rong M Z, Zhang M Q, Hong B W, et al. Surface modification of magnetic metal nanoparticles through irradiation graft polymerization[J]. Applied Surface Science. 2002, 200 (1-4): 76-93.
    41. Kratschmer W, Lamb L D, Fostiropoulos K, et al. Solid C60: a new form of carbon [J]. Nature. 1990, 347: 354-358.
    42. Iijima S. Helical microtubules of graphitic carbon[J]. Nature. 1991, 354(6348): 56-58.
    43. Iijima S, Ichihashi T, Ando Y. Pentagons heptagons and negative curvature in graphite microtubule growth[J]. Nature. 1991, 356(6372): 776-778.
    44. Ruoff RS, Lorents DC, Chan B, Malhotra R, Subramoney S. Single-crystal metals encapsulated in carbon nanoparticles[J]. Science. 1993, 259(5093): 346-348.
    45. Pascual J I, Mendez J, Gomez-Herrero J, et al. Properties of metallic nanowires from conductance quantization to localization[J]. Science. 1995, 267 (5205): 1793-1795.
    46. Saito Y, Yoshikawa T, Inagakim M, Tomita M, Hayashi T. Growth and structure of graphitic tubules and polyhedral particles in arc-discharge[J]. Chem Phys Lett. 1993, 204(3-4): 277-282.
    47. Saito Y, Matsumoto T. Carbonnano-cages created as cubes[J]. Nature. 1998, 392(6673): 237.
    48. Saito Y, Okuda M, Yoshikawa T, Kasuya A, Nishina Y. Correlation between volatility of rare-earth-metals and encapsulation of their carbides in carbon nanocapsules[J]. J Phys Chem. 1994, 98(27): 6696-6698.
    49. Satio Y, Yoshikawa T, Okuda M, et al. Carbon nanocapsules encaging metals and carbides[J]. J Phys Chem Solid. 1993, 54(12): 1849-1860.
    50. Saito Y. Nanoparticles and filled nanocapsules[J]. Carbon. 1995, 33(7): 979-988.
    51. Dong X L, Zhang Z D, Jin S R, et al. Characterization of Fe-Ni(C) nanocapsules synthesized by arc discharge in methane[J]. J Mater Res. 1999, 14(5): 1782-1790.
    52. Dong X L, Zhang Z D, S Jin R, et al. Carbon-encapsulated Fe-Co(C) nanocapsules prepared by arc discharge in methane[J]. J of Applied Physics. 1999, 86(12): 6701-6706.
    53. Zhang Z D, Zheng J G, Skorvanek I, et al. Shell/core structure and magnetic properties of carbon-encapsulated Fe-Co(C) nanocapsules[J]. J Phys Condensed Matter. 2001, 13: 1921-1929.
    54. Zhang Z D, Yu J L, Zheng J G et al. Structure and magnetic properties of boron-oxide-encapsulated Fe(B) nanocapsules prepared by arc discharge in diborane[J]. Phys Rev B. 2001, 64: 024404.
    55. Dravid V P, Host J J, Teng M H, et al. Controlled-size nanocapsules[J]. Nature. 1995, 374(6523): 602.
    56. Host J J, Block J Dravid V P, et al. Effect of annealing on the structure and magnetic properties of graphite encapsulated nickel and cobalt nanocrystals[J]. J Appl Phys. 1998, 83(2): 793-801.
    57. Jiao J, Seraphin S. Carbon-encapsulated nanoparticles of Ni, Co, Cu, and Ti[J]. J. Appl. Phys. 1998, 83(5): 2442-2448.
    58. Jun Jiao, Supapan Seraphin. Preparation and properties of ferromagnetic carbon-encapsulated Fe, Co, and Ni nanoparticles[J]. J Appl Phys. 1996, 80 (1): 103-108.
    59. Scott J H, Majetich S A. Morphology, structure, and growth of nanopaticles produced in a carbon arc[J]. Phys Rev B. 1995, 52(17): 12564-12571.
    60. Majetich S A, Artman J O. Preparation and propertyes of carbon-encapsulated magnetic nanocrystallites[J]. Phys Rev B. 1993, 48(22): 16845-16848.
    61. McHenry M E, Majetich S A, Artman J O, et al. Superparamagnetism in carbon-encapsulated Co particles produced by the Kratschmer carbon arc process[J]. Phys Rev B. 1994, 49(16): 11358-11363.
    62. Bingshe Xu, Junjie Guo, Xiaomin Wang. Synthesis of carbon nanocapsules containing Fe, Ni or Co by arc discharge in aqueous solution[J]. Carbon. 2006, 44(13): 2631-2634.
    63. Nolan P E, Lynch D C, Cutler A H. Catalytic disproportionation of CO in the absence of hydrogen: encapsulating shell carbon formation [J]. Carbon. 1994, 32(3): 477-483.
    64. Nolan P E, Schabel M J, Lynch D C, et al. Hydrogen control of carbon deposit morphology[J]. Carbon. 1995, 33(1): 79-85.
    65. Liu B H, Ding J, Zhong Z Y, et al. Large-scale preparation of carbon-encapsulated cobalt nanoparticles by the catalytic method[J]. Chemical Physics Letters. 2002, 358: 96-102.
    66. Patricia B Oliete, T. Cristina Rojas. Characterisation and magnetic behaviour of nickel nanoparticles encapsulated in carbon[J]. Acta Materialia. 2004, 52 (8): 2165-2171.
    67. Yuri Koltypin, Asuncion Fernandez, T. Cristina Rojas, etal. Encapsulation of nickel nanoparticles in carbon obtained by the sonochemical decomposition of Ni(C_8H_(12))_2[J]. Chem Mater. 1999, 11: 1331-1335.
    68.陈学刚,宋怀河,陈晓红等.纳米Fe/C复合材料的原位合成[J].材料研究学报.2002,16(2):146-150.
    69.陈学刚,宋怀河,陈晓红等.萘和二茂铁共热解制备纳米Fe/C材料的研究[J].新 型碳材料.2000,15(4):5-8.
    70.陈晓红,宋怀河,周成.二茂铁加压热解的研究[J].新型碳材料.2002,17(1):10-12.
    71. Huo J, Song H. Preparation of carbon-encapsulated iron nanoparticles by co-carbonization of aromatic heavy oil and ferrocene[J]. Carbon. 2004, 42(15): 3177-3182.
    72. Song HH, Chen XH, Chen XG, Zhang SY, Li HQ. Influence of ferrocene addition on the morphology and structure of carbon from petroleum residue[J]. Carbon. 2003, 41(15): 3037-3046.
    73. Song HH, Chen XH. Large-scale synthesis of carbon-encapsulated iron carbide nanoparticles by co-carbonization of durene with ferrocene[J]. Chem Phys Lett. 2003, 374(3-4): 400-404.
    74. Harris P J F, Tsang S C. A simple technique for the synthesis of filled carbon nanoparticles[J]. Chemical Physics Letters. 1998, 293(1-2): 53-58.
    75. Harris PJF, Tsang SC. Encapsulating uranium in carbon nanoparticles using a new technique[J]. Carbon. 1998, 36(12): 1859-1861.
    76. Tomita S, Hikita M, Fujii M, et al. A new and simple method for thin graphitic coating of magnetic-metal nanoparticles [J]. Chemical Physics Letters. 2000, 316(5-6): 361-364.
    77. Tomita S, Hikita M, Fujii M, et al. Formation of Co filled carbon nanocapsules by metal-template graphitization of diamond nanoparticles[J]. J Appl Phys. 2000, 88 (9): 5452-5456.
    78. Wu W, Zhu Z, Liu Z. Metal-carbon nano-materials prepared directly from pitch[J]. Carbon. 2002, 40(5): 787-803.
    79.吴卫泽,朱珍平,刘振宇.Fe/C复合纳米材料的制备研究[J].新型碳材料.2002,17(1):4-8.
    80. Wu W, Zhu Z, Liu Z. Amorphous carbon nano-materials prepared by explosion of oxidized pitch[J]. Carbon. 2002, 40(11): 2034-2037.
    81. Lu Y, Zhu Z, Liu Z. Carbon-encapsulated Fe nanoparticles from detonation-induced pyrolysis of ferrocene[J]. Carbon. 2005, 43(2): 369-374.
    82. Lu Y, Zhu Z, Liu Z. Catalytic growth of carbon nanotubes through CHNO explosive detonation[J]. Carbon. 2004, 42(2): 361-70.
    83. Liu Z, Ling L, Qiao W, Chunxiang Lu, Dong Wu, Lang Liu. Effects of various metals and their loading methods on the mesopore formation in pitch-based spherical activated carbon[J]. Carbon. 1999, 37: 1333-1335.
    84. Delaunay JJ, Hayashi T, Tomita M, Hirono S, Umemura S. CoPt-C nanogranular magnetic thin films[J]. Appl Phys Lett. 1997, 71(23): 3427-3429.
    85. Michal B, Andrzej H, Hubert L. Arc plasma route to carbon-encapsulated magnetic nanoparticles for biomedical applications[J]. Sensors and Actuators B. 2005, 109(1): 81-85.
    86. Collins P G, Zettl A, Bando H, et al. Nanotube nanodevice[J]. Science. 1997, 278 (5335): 100-103.
    87. Bubkle K, Gnewuch H, Hempstead M, et al. Optical anisotropy of dispersed carbon nanotubes induced by an electric-field[J]. App Phys Lett. 1997, 71 (14): 1906-1908.
    88. Miyanaga S, Yasuda H, Hiwara A, etal. Pyrolysis of polymer complexes leading toa ir-stable ultrafine metal particles uni-formly dispersed in a carbon matrix[J]. Macromol Sci-Chem. 1990, A27(9-11): 1347-1361.
    89. Sun X C. Microstructure and magneticproperties of carbon-encapsulated nanoparticles[J]. Journal of Dispersion Science and Technology. 2003, 24(4): 557.
    90. Wegrowe J E, Wade T, Hoffer X, et al. Magnetoresistance of nanocontacts with constrained magnetic domain walls[J]. Physical Review B. 2003, 67(10): 418.
    91.何炳林,黄文强.离子交换与吸附[M].上海:上海科技教育出版社,1995.
    92.朱明华.仪器分析[M].第三版.北京:高等教育出版社,2000.
    93. Powder Diffraction File, Inorganic Volume. JCPDS International Centre for Diffraction Data, 1983.
    94. Lingaiah N, Uddin M A, Muto A. Vapour phase catalytic hydrodechlorination of chlorobenzene over Ni-carbon composite catalysts[J]. Journal of Molecular Catalysis A: Chemical. 2000, 161(1-2): 157-162.
    95. Oya A, Mochizuki M, Otani S, Tomizuka I. An electron microscopic study on the turbostratic carbon formed in phenolic resin carbon by catalytic action of finely dispersed nickel [J]. Carbon. 1979, 17(1): 71-76.
    96. Oya A, Otani S. Effects of particles size of calcium and calcium compounds on catalytic graphitization of phenolic resin carbon[J]. Carbon. 1979, 17(2): 125-129.
    97. Oya A, Otani S. Catalytic graphitization of carbons by various metals[J]. Carbon. 1979, 17(2): 131-137.
    98. Inagaki M, Okada Y, Vignal V, Konno H, Oshida K. Graphite formation from a mixture of Fe_3O_4 and polyvinylchloride at 1000℃[J]. Carbon. 1998, 26(11): 1706-1708.
    99. Wang X, Hu W, Liu Y, Long C, Xu Y, Zhou S, Zhu D, Dai L. Bamboo-like carbon nanotubes produced by pyrolysis of iron (Ⅱ) phthaloyanine[J]. Carbon. 2001, 39(10): 1533-1536.
    100.雷中兴,刘静,李轩科等.CVD法制备的碳包覆(Fe,Co)纳米粒子的结构及电磁特性.磁性材料及器件.2003,4(3-4):4-6.
    101.刘静,雷中兴,李平和等.碳包覆磁性金属纳米粒子的制备及表征.武汉科技大学学报(自然科学版).2003,26(2):123-125.
    102. Gray D P. American Institute of Physics Handbook[M]. New York: McGraw-Hill Book Company, 1972.
    103.王克秀,李葆萱,吴心平.固体火箭推进剂及燃烧[M].第1版,北京:国防工业出版社,1983.
    104. Singn N B, Ojha A K. Formation of copper oxide through NaNO_3-KNO_3 eutectic melt and its catalytic activity in the decomposition of ammonium perchlorate. Thermochim[J]. Thermochim Acta. 2002, 390: 67-72.
    105. Survase V, Gupta M, Asthana S N. The effect of Nd_2O_3 on thermal and ballistic properties of ammonium perchlorate based composite propellants[J]. Progress in crystal growth and characterization of materials. 2002, 45(1-2): 161-165.
    106. Gltov O G, Zarko V E, Beckstead M W. Agglomerate and oxide particles generated in combustion of Alex containing solid propellants[C]. 31st Int. Annual Conference of ICT, Karlsruhe, Germany, June 27-30, 2000: 130/1-130/15.
    107. Said A A, Qasmi R A. The role of copper cobaltite spinel Cu_xCO_(3-x)O_4 during the thermal decomposition of ammonium perchlorate[J]. Thermochim Acta. 1996, 275 (1): 83-91.
    108.郭万东译.固体推进剂超级燃速催化剂[J].飞航导弹.1996,(6):21-25.
    109.徐宏,刘剑宏,陈沛等.纳米氧化铁的制备及其对吸收药热分解催化作用的研究[J].火炸药学报.2002,25(3):51-52.
    110. Thomas P. Rudy. Iron oxide catalyst propellant and method for making same[P]. US: 4881994, 1989.
    111.马振叶,李凤生,崔平等.纳米Fe_2O_3的制备及其对高氯酸铵热分解的催化作用[J].催化学报.2003,24(10):795-798.
    112.马振叶,李凤生,陈爱四等.纳米Fe_2O_3/高氯酸铵复合粒子的制备及其热分解性能研究.化学学报.2003,62(13):1252-1255.
    113. Charavarthy R, Price E W, Sigman R K. Mechanism of burning rate enhancement of composite solid propellants by ferric oxide[J]. J Propul Power. 1997, 13 (4): 471-480.
    114.张晓宏.纳米氧化铅在双基推进剂中应用研究[D].北京理工大学,2000.6.
    115.徐宏,刘剑洪,陈沛等.纳米氧化铁的制备及其对吸收药催化作用的研究[J].火炸药学报.2002,(3):51-53.
    116.陈福泰.纳米级碳酸铅在NEPE推进剂中的应用[J].推进技术.2000,21(1):82-85.
    117.马凤国,季树田,吴文辉等.纳米氧化铅为燃烧催化剂的应用研究[J].火炸药学报.2000,23(2):13-15.
    118.洪伟良,刘剑洪,陈沛等.纳米CuO的制备及其对RDX热分解特性的影响[J].推进技术.2001,22(3):254-256.
    119.刘静峰,田德余,贾跃全.超微细Cu_2O对改善RDX/AP/HTPB推进剂燃烧性能的作用[J].含能材料.1996,4(2):80-84.
    120.洪伟良,刘剑洪,田德余等.纳米铜铬复合氧化物对RDX热分解的催化作用[J].推进技术.2003,24(1):83-86.
    121.徐宏,刘剑洪,陈沛等.纳米氧化镧对黑索今热分解的催化作用[J].推进技术.2002,23(4):329-331.
    122.洪伟良,赵凤起,刘剑洪等.纳米PbO和Bi_2O_3粉的制备及其对燃烧性能的影响[J].火炸药学报.2001,24(3):7-9.
    123.邓一,田德余,赵恂.超细CaCO_3与金属氧化物M_2O_3对Al/AP/HTPB推进剂燃烧的催化协同效应研究[J].火炸药学报.1997,(4):1-3.
    124.罗元香,陆路德,汪信等.纳米级过渡金属氧化物对高氯酸铵催化性能的研究[J].含能材料.2002,10(4):148-151.
    125.罗元香,汪信,陆路德等.纳米氧化铜的制备及应用研究进展[J].上海化工.2003,2:24-28.
    126.张汝冰,刘宏英,李凤生.复合纳米材料制备研究[J].火炸药学报.2000,23(1):59-62.
    127.邓鹏图.纳米过渡金属氧化物的制备及其在固体推进剂催化燃烧中的应用[D].国防科技大学,1997.10.
    128.江治,李疏芬,赵风起等.纳米金属粉对HMX热分解特性的影响[J].推进技术.2002,23(3):258-261.
    129.江治,李疏芬,赵凤起等.纳米镍粉对高氯酸铵热分解的影响[J].推进技术.2003,24(5):460-463.
    130.江治,李疏芬.纳米金属粉的制备及特性[J].固体火箭技术.2001,24(4):41-45.
    131.陈沛,赵凤起,杨栋等.纳米级金属粉对GAP热分解特性的影响[J].推进技术.2002,21(5):73-76.
    132.刘磊力,李凤生,谈玲华等.纳米Ni和NiB非晶合金的制备及对高氯酸铵热分解特性的影响[J].兵工学报.2004,25(4):428-430.
    133.赵凤起,覃光明,蔡炳源等.纳米材料在火炸药中的应用研究现状及发展方向[J].火炸药学报.2001,24(4):61-65.
    134. Al-Harthi A, Williams A. Effect of fuel binder and oxidiser particle diameter on the combustion of ammonium perchlorate based propellants[J]. Fuel. 1998, 77: 1451-1468.
    135. Singh G, Kapbor I P S, Mannan S M, Kaur J. Studies on energetic compounds part 8: thermolysis of salts of HNO_3 and HClO_4 [J]. J Hazardous Mater A. 2000, 79(1): 1-18
    136. Politer P, Lane P. Energetics of ammonium perchlorate decomposition steps[J]. J. Molecular Structure (Theochem). 1998, 454(2-3): 229-235.
    137.任务正,王泽山.火炸药理论与实践[M].第1版.北京:中国北方化学工业总公司出版,2001.
    138.云主惠,周政懋.热分解动力学数据分析[J].火炸药学报.1983,(2):34.
    139. Shadman Y F. Decomposition kinetics of rocket oxidizer ammonium perchlorate. AD746728, 1972.
    140. Pearson G S. Role of catalyst in the ignition and combustion of solid propellants[J] Combust Sci Techno. 1971, 3(4): 155-163.
    141. W.A.Rosser. Kinetics of decomposition of liquid ammonium nitrate[J]. J Phys Chem. 1963, 67: 1753.
    142. Bircumshaw L L, Newman B H. The thermal decomposition of ammonium perchlorate. Ⅰ. Introduction experimental analysis of gaseous products and thermal decompoition experiments[J]. Proc Roy Soc. 1954, 227: 115.
    143. Rosser W A, Inami S H. Thermal decomposition of ammonium perchlorate[J]. Combustion and Flame. 1968, 12(5): 427.
    144. Jacobsetc P W M. Mechanism of the decomposition of ammonium perchlorate[J]. Combustion and Flame. 1969, 13(4): 419-430.
    145. Brill T B, Brush P J, Patil D G. Thermal decomposition of energetic materials 60. Major reaction stages of a simulated burning surface of NH_4ClO_4 [J]. Combustion and Flame. 1993, 94 (1-2): 70-76.
    146. Beckstead M W, Hightower J D. Surface temperature of deflagrating ammonium perchlorate crystals[J]. AIAA J. 1967, 5(10): 1785.
    147.刘子如,阴翠梅,孔扬辉,等.高氯酸铵的热分解[J].含能材料.2000,8(2):75-79.
    148. Land J E. A study of the decomposition mechanism of ammonium perchlorate. AD 466956, 1965.
    149. P W M Jacobs. Sublimation of ammonium perchlorate[J]. J Phys Chem. 1968, 72: 202-207.
    150. Jacobs P WM. The thermal decomposition of ammonium perchlorate[J]. J Chem Soc. 1959, 3: 837.
    151.阴翠梅,刘子如,孔扬辉等.高氯酸铵高压下的分解动力学[J].固体火箭技术.2000,23(3):41-43.
    152. Singh G, Felix S P. Studies of Energetic Compounds, Part 29[J]. Combustion and Flame. 2003, 132: 422-432.
    153. Alivisatos A P Semiconductor clusters, nanocrystals, and quantum dots[J]. Science. 1996, 271 (5251): 933-937.
    154. Klimov V L, Mikhailovsh A A. Optical gain and stimulated emission in nanocrystal quantum dots[J]. Science. 2000, 290(5490): 314-317.
    155. Charles K. Theory of the Structure of Ferromagnetic Domains in Films and Small Particles[J]. Physical Review. 1946, 70(11): 965-971.
    156. Li L S, Walda J, Manna, L, Alivisatos A P. Semiconductor nanorod liquid crystals[J]. Nano Letters. 2002, 2(6): 557-60.
    157. Wu X Y, Liu H J, Liu J Q, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots[J]. Nature Biotechnology. 2003, 21(1): 41-46.
    158. Duan X F, Niu C M, Sahi V, et al. High-performance thin-film transistors using semiconductor nanowires and nanoribbons[J]. Nature. 2003, 425(6955): 274-278.
    159. Rodriguez-Viejo J, Mattoussi H, Heine J R, et al. Evidence of photo and electrodarkening of (CdSe)ZnS quantum dot composites[J]. Appl Phys. 2000, 87(12): 8526-8534.
    160. Bruchez M J, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels[J]. Science. 1998, 281(5385): 2013-2016.
    161. Salah A A. Magnetic sludy of nickel particles encapsulaled in carbon nanoparticles[Thesis]. UMI company, UMI Number: 1382547, 1997.
    162. Harris P J F. Carbon Nanotubes and Related Structures, New Materials for the Twenty-First Century [M]. Cambridge: Cambridge UniversiLy Press, 2000. 164.
    163.都有为,徐明祥,吴坚等.镍超细微颗粒的磁性[J].物理学报.1992,41(1):149-154.
    164.戴道生,钱昆明.铁磁学[M].北京:科学出版社.1987.
    165. Khanna S N. Magnetic behavior of clusters of ferro-magnetic transition metals[J]. Physical Review Letters. 1991, 67( 6): 742-745.
    166. Li X G, Chiba A, Takahashi S. Preparation and magnetic properties of ultrafine particles of FeNi alloys[J]. Journal of Magnetism and Magnetic Materials. 1997, 170(3): 339-345.
    167. Li M, Hu Y, Fang J. Current Stares and Future Trends of Electromagnetics Wave Absorbent with NanoStructure [J]. Materials Review. 2002, 16 (9): 15-17.
    168. Fu X. Research into Function of Absorbing Wave of Metallic Magnetic Ultrafine Powders [J]. Journal of Xian Mining Institute. 1999, 19(1): 92-96.
    169.吴明忠.雷达波材料的现状和发展趋势[J].磁性材料及器件.1997,26(2):26-30
    170.曹可广.国外微波隐身材料的发展及现状[J].技术教育学报.1997,8(1):42-45
    171.侯文学,张晓光.可见光、激光、毫米波与红外的复合隐身技术[J].航大电子对抗.2003,(3):34-37.
    172.陈利民,元家钟,朱雪琴等.纳米γ-(Fe,Ni)合金颗粒的微观结构及其微波吸收特性.兵器材料科学与工程.1999,22(4):3-6.
    173.SJ20155-1992:射频辐射吸收体(微波吸收材料)的通用规范.
    174.曾样云,马铁军,李家俊.吸波材料(RAM)用损耗介质及RAM技术发展趋势[J].材料导报.1997,11(3):57.
    175.焦桓,罗发,周万城.纳米吸波材料的研究与发展趋势[J].宇航材料工艺.2001(5):9-11.
    176.张克立,从长杰,郭光辉等.纳米吸波材料的研究现状与展望[J].武汉大学学报(理学版).2003,49(6):680-684.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700