用户名: 密码: 验证码:
爆轰制备碳纳米材料及其形成机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上世纪80年代中期富勒烯的发现,以及90年代初碳纳米管和碳包覆纳米金属材料的发现,掀起了碳材料领域的研究热潮,多种制备方法应用到碳纳米材料的制备合成中,使这种古老而又新颖的材料得到了长足发展。其中,爆轰法以速度快、效率高、能耗低以及操作工艺简单等优势在众多的纳米材料制备方法中独树一帜,成为碳纳米材料制备研究所使用的新方法。本文利用爆轰法制备碳纳米材料,主要是对纳米金刚石、微/纳米石墨、碳包覆磁性金属的制备方法及机理进行探讨,工作内容及成果有:
     1.论文中对合成纳米金刚石的常用方法进行了综述;利用水包覆的方法爆轰制备出纳米金刚石,并研究了提纯工艺;通过X射线衍射(XRD)、透射电镜(TEM)以及Raman光谱等分析方法系统的表征了爆轰产物及提纯后的产物,证实了爆轰产物中含有多晶结构的纳米金刚石粉末。
     2.对目前用来制备纳米石墨粉的方法进行了综述分析,并从原材料的选取上将当前纳米石墨粉的制备方法划分为两类:一类是通过天然石墨制备纳米石墨,另一类是由富碳材料合成纳米石墨。论文中提出了爆轰裂解可膨胀石墨制备石墨微粉的方法,并通过XRD、扫描电镜(SEM)以及比表面与孔隙度分析仪等分析表征方法对爆轰产物进行表征,结果证明爆轰产物的成分为纯度较高的石墨,其直径在1~10μm之间,吸附性能提高至天然石墨粉的5倍以上;文中还提出了爆轰裂解天然石墨制备纳米石墨片的方法,即:在天然石墨中加入强氧化性酸,形成稳定的石墨层间化合物(GraphiteIntercalation Compounds,GICs),加入炸药后对该爆炸性混合物进行爆轰处理,利用XRD、TEM、Raman光谱以及比表面与孔隙度分析对产物进行表征,结果表明,所制备出石墨薄片的厚度分布在5~200nm之间,并随反应前GICs阶数的高低而有所差异,爆轰后孔径分布于3~8nm的孔数量大大增加,在4nm周围达到最大值,而孔径在3nm以下的孔数量有相对减少趋势,利用该方法获取的爆轰石墨比表面积增大至天然石墨的7~9倍以上。
     3.参照Gaite等人针对石墨提出的“一电子模型”,利用Thomas-Fermi方程,推导得出石墨层片之间碳原子相互作用的力常数k的表达式,与文献从实验中获得的力常数值对比可知,所得表达式计算出的k值与实验值非常吻合,以此为基础建立了HNO_3GICs的结构单元模型和体积单元模型,对GICs的裂解过程进行分析后,提出了两种炸药模型用以提供石墨层片分离的驱动力:液体炸药模型和层间化合物炸药模型;利用一种简单的爆轰产物P-V关系,通过非线性拟合得出了JWL状态方程的六个参数,再利用LS-DYNA程序对石墨层片的运动过程进行近似模拟,得到裂解时石墨层间距与时间的对应关系。
     4.在真空爆炸容器中,利用爆轰法制备出碳包覆磁性金属材料,通过XRD、TEM、Raman光谱以及磁强计等表征方法,对碳包金属进行了系统表征。结果表明:碳包金属的包覆结构完整,经过浓盐酸浸泡后仍大量存在,而且在常温下都显示出超顺磁性以及一定的软磁特性。对碳包铁的形成条件进行研究后得到:爆轰压力越高,铁核的结晶度越好,但包覆结构越差;对爆炸容器抽取真空时,真空度越高,爆轰产物的包覆结构越好,而且当氧含量增多时,碳易转变为无定形态;在真空条件下爆轰处理含有Fe、Co、Ni等元素的化合物时,只有Fe可以作为生成富勒烯的触媒。
The research fever in carbon materials was caused by the discovery of fullerenes in 1985, carbon nanotubes in 1991 and carbon encapsulated metal nanoparticles in 1993. Afterwards, lots of synthesis methods were used for preparing carbon materials which resulted in the old but novel material being developed immensely. Among these methods, detonation technique has the advantage of low-cost, effective and convenient so that it can be used in many nanomaterials preparation or synthesis. Detonation technique is used in this paper to prepare nanosized carbon materials which mainly include nanodiamond, micro/nanographite and carbon encapsulated metal nanoparticles. Meanwhile, the corresponding mechanism research is also been carried out. The main content and the featured research results contain:
     1. The commonly used methods to prepare nanodiamond at present were analyzed in this paper. Nanodiamond was synthesized by detonation technique and the purification technology was also studied. With the help of X-ray diffraction (XRD), transmission electron microscope (TEM) and Raman spectra, the detonation soot and the purified powders were characterized systemically. The results indicated that the synthesized nanodiamonds were polycrystalline.
     2. The present techniques of preparing graphite nanopowders were synthetically described and divided into two categories by the used raw material. One was preparing graphite nanopowders from natural graphite and the other was synthesizing from rich carbon material. A method for preparing graphite micron powders by detonating the mixture of explosive and expandable graphite was proposed in this paper. The detonation soot was characterized by XRD, scanning electron microscope (SEM), specific surface area and porosity analysis. The results indicated that the detonation soot was made up of high purity graphite powders of which the diameter distributed between 1 and 10μm. Moreover, the specific surface area of the detonation soot was more than 5 times of natural graphite. A method for preparing graphite nanosheets by detonating natural graphite was also proposed. Here, strong oxidative acid was added into the natural graphite to form stable graphite intercalation compounds (GICs). Subsequently, an explosive was added in with a special ratio and then the mixture was detonated. The detonation soot was characterized by XRD, TEM, Raman spectra, specific surface area and porosity analysis. The results indicated that the thickness of the as-prepared graphite nanosheets distributed between 5 and 200 nm and varied with the stage number of GICs. In the detonation soot, the amount of pores that the diameters distributed between 3 and 8 nm were increased greatly. Meanwhile, the amount of the pore diameters that distributed at about 4 nm reached the maximum value. In addition, the pores of which the diameter distributed below 3 nm had the tendency to be reduced. The specific surface area of these detonation soot enlarged to 7~9 times of the natural graphite.
     3. The expression of force constant k, which reflected the interlayer force between carbon atoms in adjacent graphite layers, was derived out with Thomas-Fermi (TF) equation reference to Gaite's "one-electron model". After comparison with the force constant values from experiments, the calculated value was satisfactory. Unit structure model and unit volume model of HNO_3 GICs were built. According to the analysis of GICs decomposition process, we put forward two explosive models. Then we can nonlinear fit six parameters of JWL equation of state according to a simple P-V relationship of explosion products. With these parameters, the simulation to graphite layer movement was done by LS-DYNA program and the layer distance-time curve was obtained.
     4. Carbon encapsulated metal nanoparticles were synthesized by detonation technique in the vacuum detonation vessel. The nanoparticles were thoroughly characterized with XRD, TEM, Raman spectroscopy and magnetometer. The results indicated that the nanoparticles showed the properties of superparamagnetism and soft magnetic. The coating structure nanoparticles were complete though treated with concentrated hydrochloric acid. Moreover, the higher the detonation pressure the better the crystallinity of iron and the higher the vacuum degree the better the encapsulated structure. Furthermore, carbon transformed to amorphous carbon with the increase of oxygen content. In addition, when the detonation was initiated on the condition of vacuum, Fe could act as catalyst in producing fullerenes while Co and Ni could not.
引文
[1]沈曾民.新型炭材料.北京:化学工业出版社,2003.
    [2]温斌.催化法制备纳米金刚石和新金刚石的研究:(博士学位论文).大连:大连理工大学,2004.
    [3]成会明.新型炭材料的发展趋势.材料导报,1998,12(1):5-9.
    [4]Shenderova O A,Zhirnov V V,Brenner D W.Carbon nanostructure.Critical Reviews in Solid State and Materials Science,2002,27(3/4):227-356.
    [5]Heinmann R B,Evsyukov S E,Koga Y.Carbon allotropes:a suggested classification scheme based on valence orbital hybridization.Carbon,1997,35:1654-1658.
    [6]张宝平,张庆明,黄凤雷.爆轰物理学.北京:兵器工业出版社,2001.
    [7]Sun G L,Li X J,Yan H H,et al.Production of nanosized graphite powders from natural graphite by detonation,Carbon(2008),doi:10.1016/j.carbon.2007.12.01.
    [8]李瑞勇,李晓杰,赵峥,等.爆轰合成纳米γ-氧化铝粉体的实验研究.材料与冶金学报,2005,4(1):27-30.
    [9]曲艳东,李晓杰,张越举,等.硫酸亚钛爆轰制备纳米TiO2粒子,功能材料,2006,11(37):1838-1840.
    [10]孙贵磊,闫鸿浩,李晓杰.爆轰制备球形纳米γ-Fe_2O_3粉末.材料开发与应用,2006:21(5):5-7.
    [11]孙贵磊,李晓杰,闫鸿浩.碳包覆铁碳化合物的爆轰合成与表征.功能材料(增刊),2007,38(6):2167-2169.
    [12]Xie X H,Li X J,Zhao Z,et al.Growth and morphology of nanometer LiMn_2O_4 powder.Powder Technology,2006,169(3):143-146.
    [13]王小红,李晓杰,张越举,等.爆轰法制备纳米MnFe_2O_4的实验研究.高压物理学报,2007,2(21):173-177.
    [14]罗涛.微尺度碳材料的制备和结构、性能表征:(博士论文学位).合肥:中国科学技术大学,2006.
    [15]郭志猛.超硬材料与工具.北京:冶金工业出版社,1996.
    [16]张栋,胡晓刚,仝毅,等.纳米金刚石用做润滑添加剂的研究进展.2006,21(2):50-53.
    [17]张传安,乔玉林,池俊成,等.含纳米金刚石润滑油减摩抗磨添加剂的摩擦学性能.中国表面工程,2002,2:29-32.
    [18]秦宇,王光祖.发展中的中国纳米金刚石应用技术.超硬材料工程,2007,19(4):38-42.
    [19]王光祖,张运生,郭留希,等.纳米金刚石的应用.金刚石与磨料磨具工程,2003,4:41-44
    [20]黄海栋,涂江平,干路平,等,片状纳米石墨的制备及其作为润滑油添加剂的摩擦磨损性能.摩擦学学报,2005,25(4):312-316.
    [21]黄友艳,伍明华.纳米石墨的制备、应用和表面修饰研究进展化工时刊,2006,20(8):48-53.
    [22]文潮,金志浩,李迅,等.炸药爆轰制备纳米石墨粉储放氢性能实验研究.物理学报,2004,53(7):2384-2388.
    [23]张洪艳,王海泉,陈国华.新型导电填料—纳米石墨微片.塑料,2006,35(4):42-45.
    [24]黄仁和,王力.纳米石墨薄片及聚合物/石墨纳米复合材料制备与功能特征研究.功能材料,2005,36(1):6-14.
    [25]杨健松,李玉峰,赖奇.膨胀石墨的研究与开发利用.攀枝花学院学报,2006,23(6):99-102.
    [26]邱介山,孙玉峰,周颖,等.淀粉基碳包覆铁纳米胶囊的合成及其磁学性能.新型炭材料,2006,21(3):202-205.
    [27]霍俊平,宋怀河,陈晓红.碳包覆纳米金属颗粒的合成研究进展.化学通报,2005,1:23-29.
    [28]仝毅,马峰,恽寿榕,等.超微金刚石和静压金刚石的制备、特性及应用.材料导报,1999,13(5):28-30
    [29]Welhama N J,Berbenni V,Chapmanc P G.Effect of extended ball milling on graphite.Journal of Alloys and Compounds,2003,349(1/2):255-263.
    [30]霍俊平,宋怀河,陈晓红,等.碳包覆纳米金属颗粒的形成及应用.炭素技术,2006,25(3):22-27
    [31]Whitfielda M D,Lansleya S P,Gaudin O,et al.Diamond photoconductors:operational lifetime and radiation hardness under deep-UV excimer laser irradiation.Diamond and Related Materials,2001,10(3/7):715-721.
    [32]刘吉平,孙洪强.碳纳米材料.北京:科学出版社,2004.
    [33]Bundy F P,Hall H T,Strong H M,et al.Man-made diamonds.Nature,1955,176:51-55.
    [34]DeCarli P S,Jamieson J S.Formation of Diamond by Explosive Shock.Science,1961,133:1821-1822.
    [35]Derjaguin B V,Fedoseev D V.Scientific American,1975,233(5):102-103.
    [36]Fedoseev D V,Bukhovets V L,Yarshavskaya I G,et al.Transition of graphite into diamond in a solid phase under the atmospheric pressure.Carbon,1983,21:237-241.
    [37]Abadurov G A,Bavina T V,Breusov O N.Method of producing diamond and/or diamond-like modifications of boron nitride.US Patent 4.483.836.
    [38]Lewis R S,Ming T,Wacker J F.Interstellar diamond in meteorites.Nature,1987,326:160-162.
    [39]Greiner N R,Phillips D S,Johnson J D,et al.Diamond in detonation soot.Nature,1988,333:440-441.
    [40]徐康,薛群基.炸药爆炸法合成的纳米金刚石粉.化学进展,1997,9(2):201-208.
    [41]Ogale S B,Malshe A P,Kanetkar S M,et al.Formation of diamond particulates by pulsed ruby laser irradiation of graphite immersed in benzene.Solid state communications,1992,84:371-373.
    [42]Regueiro M N,Monceau P,Hodeau J L.Crushing C_(60)to diamond at room temperature.Nature,1992,355:237-239.
    [43]Ma Y Z,Zou G T,Yang H B,et al.Conversion of fullerenes to diamond under high pressure and high temperature.Applied Physics Letters,1994,65(7):822-823.
    [44]Cao L M,Gao C X,Sun H P,et al.Synthesis of diamond from nanotubes under high pressure and high temperature.Carbon,2001,39:287-324.
    [45]Dubrovinskaia N,Dubrovinsky L,Langenhorst F,et al.Nanocrystalline diamond synthesized from Cue.Diamond and Related Materials,2005,14:16-22.
    [46]徐康,金增寿,魏发学,等.炸药爆炸法制备超细金刚石粉末.含能材料,1993,1(3):19-21.
    [47]Viecelli J A,Bastea S,Glosli J N,et al.Phase transformations of nanometer size carbon particles in shocked hydrocarbons and explosives.Journal of chemical physics,2001,115(6):2730-2736.
    [48]Gruen D M,Liu S,Krauss A R et al.Fullerenes as precursors for diamond film growth without hydrogen or oxygen additions.Applied Physics Letters,1994,64(12):1502-1504.
    [49]Fedoseev D V,Bukhovets V L,Varshavskaya I G,et al.Transition of graphite into diamond in a solid phase under the atmospheric pressure.Carbon,1983,21:237-241.
    [50]Wei B,Zhang J,Liang J,et al.The mechanism of phase transformation from carbon nanotube to diamond.Carbon,1998,36(7/8):997-1001.
    [51]Banhart F,Ajayan P M.Carbon onions as nanoscopic pressure cells for diamond formation.Nature,1996,382:433-443.
    [52]Wesolowski P,Lyutovich Y,Banhart F,et al.Formation of diamond in carbon onions under MeV ion irradiation.Applied Physics Letters,1997,71(14):1948-1950.
    [53]Li Y D,Qian Y T,Liao H W,et al.A reduction-pyrolysis-catalysis synthesis of diamond.Science,1998,281:246-247.
    [54]温斌,李廷举,张兴国,等.强磁场碳黑催化法制备纳米新金刚石粉.2004,62(23):2361-2364.
    [55]李世才,池军智,黄风雷等.影响超细金刚石尺寸长大的限制机理.北京理工大学学报,1997,17(5):552.
    [56]陈鹏万,恽寿榕,黄风雷,等.爆轰合成纳米超微金刚石的提纯方法研究.2000,31(1):56-65.
    [57]许并社.纳米材料及应用技术.北京:化学工业出版社,2004.
    [58]陈鹏万,恽寿榕,黄风雷,等.爆轰合成纳米超微金刚石的Raman光谱表征.高压物理学报,1999,13(1):59-63.
    [59]Wada N,Solin SA.Raman Efficiency Measurements of Graphite.Physica,1981,105:353-361.
    [60]周刚.利用炸药中的碳爆轰合成超细金刚石的研究:(博士学位论文).北京:北京理工大学,1995.
    [61]张家埭.碳材料工程基础.北京:冶金工业出版社,1992.
    [62]李士贤.石墨.北京:化学工业出版社,1991.
    [63]王恩信.材料化学原理.南京:东南大学出版社,1997.
    [64]Wissler M.Graphite and carbon powders for electrochemical applications.Journal of Power Sources,2006,156(2):142-150.
    [65]杨国华.炭素材料(上册).北京:中国物资出版社.1999.
    [66]欧忠文,徐滨士,丁培道,等.纳米润滑材料应用研究进展,2000,14(8):28-30.
    [67]张更超,应富强.超细粉碎技术现状及发展趋势,2003,5:35-37.
    [68]郑水林.超细粉碎原理、工艺设各及应用.北京:中国建材工业出版社,1993.
    [69]杨杭生,吴国涛,张孝彬,等.机械球磨对石墨结构的影响.物理学报,2000,49(3):522-526.
    [70]Chen X H,Cheng F Q,Wang J X,et al.Distortion of Graphite Structure under Ball Milling.Journal of Inorganic Material,2002,17(3):579-584.
    [71]Kim B G,Choi S K,Chung H S,et al.Grinding characteristics of crystalline graphite in a low-pressure attrition system.Powder Technology,2002,126(1):22-27.
    [72]Welhama N J,Berbenni V,Chapmanc P G.Effect of extended ball milling on graphite.Journal of Alloys and Compounds,2003,349(1/2):255-263.
    [73]Hentsche M,Hermann H,Gemming T,et al.Uanostructured graphite prepared by ball-milling at low temperatures.Carbon,2006,44(4):812-814.
    [74]李晓杰,闫鸿浩,孙贵磊.爆轰裂解可膨胀石墨制备石墨微粉的方法.中国,ZL 200510046940.0.
    [75]李晓杰,闫鸿浩,孙贵磊,等.爆轰制备片状纳米石墨粉的方法.中国,CN 200710010117.8.
    [76]Suslick K S.On the origin of sonoluminescence and sonochemistry.Ultrasonics,1990,28:280-290.
    [77]Chen G H,Weng W G,Wu D J,et al.Preparation and characterization of graphite nanosheets from ultrasonic powdering technique.Carbon,2004,42(4):753-759.
    [78]陈国华,吴大军,叶葳,等.电化学插层对石墨晶层的剥离作用.新型炭材料.1999,14(4):59-62.
    [79]Willmott P R,Huber J R.Pulsed laser vaporization and deposition.Reviews of Modern Physics,2000,72(1):315-328.
    [80]Yang L,May P W,Yin L,et al.Growth of diamond nanocrystals by pulsed laser ablation of graphite in liquid.Diamond and Related Materials,2007,16(4/7):725-729.
    [81]陈岁元,董维国,刘常升,等.脉冲激光液相沉积法制备纳米石墨.东北大学学报(自然科学版),2002,22(11):1079-1082.
    [82]文潮,金志浩,关锦清,等.炸药爆轰法制备纳米石墨粉.稀有金属材料与工程,2004,33(6):628-631.
    [83]姚惠生,黄风雷,仝毅.以水为保护介质爆轰法合成纳米石墨.含能材料,2005,13(5):330-332.
    [84]徐向菊,余雪里,夏晓红,等.CVD法制备纳米石墨棒.新型炭材料,2006,21(3):273-276.
    [85]Zhu M Y,Wang J J,Ronald A,et al.Synthesis of carbon nanosheets and carbon nanotubes by radio frequency plasma enhanced chemical vapor deposition.Diamond and Related Materials,2007,16(2):196-201.
    [86]孟国军,吴翔,刘芳德,等.纳米石墨碳溶胶与纳米石墨碳粉的制备技术研究.纳微粉体研究与技术应用研讨会,北京,2002.
    [87]Kuang Q,Xie S Y,Jiang Z Y,et al.Low temperature solvothermal synthesis of crumpled carbon nanosheets.Carbon,2004,42(8/9):1737-1741.
    [88]Sun G L,Li X J,Yah H H.Detonation of expandable graphite to make micron-size powder.New Carbon Materials,2007,22(3):242-246.
    [89]Sun G L,Li X J,Yan H H,et al.Preparation and characterization of graphite nanosheets from detonation technique.Materials letters,2007,62(4/5):703-706.
    [90]魏兴海,张金喜,史景利,等.无硫高倍膨胀石墨的制备及影响因素探讨.新型炭材料,2004,19(1):45-48.
    [91]赖盛刚,奚滕编.膨胀石墨密封材料及其制品.北京:中国石化出版社,1994.
    [92]解强,边炳鑫.煤的炭化过程控制理论及其在煤基活性炭制备中的应用.北京:中国矿业大学出版社,2002.
    [93]时虎.石墨的开发及其应用.化工科技市场,2001,12:24-27.
    [94]Enoki T,Suzuki M,Undo M.Graphite Intercalation Compounds and Applications.New York:Oxford University,2003.
    [95]He C N,Zhao N Q,Shi C S,et al.A practical method for the production of hollow carbon onion particles.Journal of Alloys and Compounds,2006,425(1):329-333.
    [96]陈诵英,孙予军,丁云杰,等.吸附与催化.郑州:河南科学技术出版社,2001.
    [97]严济民,张启元,吸附于凝聚-固体的表面与孔.北京:科学出版社,1979.
    [98]Nakajima T,Matsuo Y.Formation process and structure of graphite oxide.Carbon,1994,32(3):469-475.
    [99]Pierson H O.Handbook of carbon,graphite,diamond and fullerenes.New Jersey:Noyes Publication,1993.
    [100]关华,潘功配,周遵宁,等.可膨胀石墨发烟剂对毫米波衰减性能的实验研究.火工品,2004,2:1-3.
    [101]刘国钦,闫珉.利用细鳞片石墨制备膨胀石墨的研究.新型炭材料.2002,17(2):13-18.
    [102]McAllister M J,Li J L,Adamson D H,et al.Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite.Chemistry of Materials,2007,19:4396-4404.
    [103]廉慧珍,童良,陈恩义.建筑材料物相研究基础.北京:清华大学出版社,1996.
    [104]祁嘉义.基础化学.北京:高等教育出版社.2003.
    [105]汤文辉,张若棋.物态方程理论及计算概论.长沙:国防科技大学出版社,1999.
    [106]Santos E,Villagra A.Thomas-Fermi Calculation of the Interlayer Force in Graphite.Physical Review B,1972,6(8):3134-3141.
    [107]Gaite E,Leal M,Santos E.Study of interplanar binding in graphite by extended Thomas-Fermi theory.Physical Review B,1985,31(12):8226-8231.
    [108]Leal M,Santos E.Calculation of Binding between Layers in Graphite by the Thomas-Fermi-Kirzhnits Method.I1Nuovo Cimento.1982,1D(5):716-724
    [109]Drickamer H G,Lynch R W,Clendenen R L,et al.X-ray diffraction studies of the lattice parameters of solids under very high pressure.Solid State Physics,1966,19:135-229.
    [110]Nicklow R,Wakabayashi N,Smith H G.Lattice Dynamics of Pyrolytic Graphite.1972,5(12):4951-4962.
    [111]Blakslee O L,Proctor D G,Seldin E J,et al.Elastic Constants of Compression-Annealed Pyrolytic Graphite,1970,41(8):3373-3382.
    [112]Greenwood N N,Earnshaw A.Chemistry of the Elements,second edition.Oxford:Butterworths-Heinemann,1997.
    [113]赵铮.颗粒增强铜基复合材料的爆炸压实和数值模拟研究:(博士学位论文).大连:大连理工大学,2007.
    [114]Mader C L.Numerical Modeling of Explosives and Propellants.New York:CRC Press,1998.
    [115]孙业斌,惠君明,曹欣茂.军用混合炸药.北京:兵器工业出版社,1995.
    [116]Meyer R.爆炸物手册.北京:煤炭工业出版社,1980.
    [117]李瑞勇.纳米氧化铝的爆轰合成及其晶型和尺寸的控制研究:(博士学位论文).大连:大连理工大学,2006.
    [118]Kroto H W,Heath J R,O'Brein S C,et al.C60:Buckminsterfullerene.Nature,1985,318:162-163.
    [119]Iijima S.Helical microtubles of graphitic carbon.Nature.1991,354:56-58.
    [120]成会明.碳纳米管制备、结构、物性及应用.北京:化学工业出版社,2002.
    [121]Bystrzejewski M,Cudzilo S,A Huczko,et al.Carbon encapsulated magnetic nanoparticles for biomedical applications:Thermal stability studies.Biomolecular Engineering,2007,24(5):555-558.
    [122]Cao H M,Huang G J,Xuan S F,et al.Synthesis and characterization of carbon-coated iron core/shell nanostructures.Journal of Alloys and Compounds,2008,448(1-2):272-276.
    [123]Bystrzejewski M,Lange H,Huczko A,et al.Study of the optical limiting properties of carbon-encapsulated magnetic nanoparticles.Chemical Physics Letters,2007,444(1-3):113-117.
    [124]许海燕.纳米生物医学研究的进展与发展趋势.中国生物医学工程学报,2005,24(6):643-654.
    [125]Host J J,Block J A,Parvin K.Effect of annealing on the structure and magnetic properties of graphite encapsulated nickel and cobalt nanocrystals.Journal of Applied Physics,1998,83(2):793-801.
    [126]Si P Z,Zhong Z D,Geng D Y.Synthesis and characteristics of carbon-coated iron and nickel nanocapsules produced by arc discharge in ethanol vapor.Carbon,2003,41:247-251.
    [127]Jeyadevan B,Suzuki Y,Tohji K.Encapsulation of nano particles by surfactant reduction.Materials Science and Engineering:A,1996,217/218:54-57.
    [128]Seraphin S,Zhou D,Jiao J.Filling the carbon nanocages.Journal of Applied Physics.1996,80(4):2097-2104.
    [129]Schaper A K,Hou H,Greiner A.Copper nanoparticles encapsulated in multi-shell carbon cages.Applied Physics A,2004,78:73-77.
    [130]许并社,闫小琴,王晓敏,等.电弧放电中纳米洋葱状富勒烯生成机理的研究.材料热处理学报,2001,22(4):9-12.
    [131]孙玉峰.碳包覆金属纳米颗粒的制备及其应用研究:(大连理工大学硕士论文).大连:大连理工大学,2006.
    [132]Zhong Z Y,Chen H Y,Tang S B.Catalytic growth of carbon nanoballs with and without cobalt encapsulation.Chemical Physics Letters,2000,330(I/2):41-47.
    [133]Tsai S H,Lee C L,Chao C W.A novel technique for the formation of carbon-encapsulated metal nanoparticles on silicon.Carbon,2000,38(5):781-785.
    [134]Sano N,Akazawa H,Kikuchi T.Separated synthesis of iron-included carbon nanocapsules and nanotubes by pyrolysis of ferrocene in pure hydrogen.Carbon,2003,41(11):2159-2179.
    [135]Walter J,Shioyama H.Qusai two-dimensional palladium nanoparticles encapsulated into graphite.Physics Letters A,1999,254(I/2):65-71.
    [136]Oku T,Kuno M,Kitahara H.Formation,atomic structures and properties of boron nitride and carbon nanocage fullerene materials.International Journal of Inorganic Materials,2001,3:597-612.
    [137]邱介山,安玉良,李祀秀等.生物基碳包覆纳米材料(Mn,Co)的制备.物理化学学报,2004,20(3):260-264.
    [138]Hayashi T,Hirono S,Tomita M.Magnetic thin film of cobalt nanocrystals encapsulated in graphite-like carbon.Nature,1996,381:772-774.
    [139]Oyama T,Takeuchi K.Gas phase synthesis of Crystalline B4C encapsulated in graphtic particles by pulsed laser irradiation.Carbon,1999,37(3):433-436.
    [140]Wu W Z,Zhu Z P,Liu Z Y.Preparation of carbon-encapsulated iron carbide nanoparticles by an explosion method.Carbon,2003,41(2):317-321.
    [141]Lu Y,Zhu Z P,Liu Z Y.Carbon-encapsulated Fe nanoparticles from detonation-induced pyrolysis of ferrocene.Carbon,2005,43(2):369-374.
    [142]吴卫泽,朱珍平,刘振宇.热处理对爆炸法制备的碳包裹碳化铁纳米颗粒的影响.新型炭材料.2002,17(4):7-12.
    [143]Tuinstra F,Koenig JL.Raman spectrum of graphite,Journal of Chemical Physics,1970,53(3):1126-1130.
    [144]Boskovic B O.Stolojan V,Khan R U,et al.Large-area synthesis of carbon nanofibres at room temperature.Nature Materials,2002,1(3):165-168.
    [145]Nemanich R J,Solin S A.First- and second-order Raman scattering from finite-size crystals of graphite,Physical Review B,1979,20(2):392-401.
    [146]Basca W S,Heer Wade,Ugarte D,et al.Raman spectraoscopy of closed-shell carbon particles.Chemiscal Physical Letter,1993,211(4/5):346-352.
    [147]Rao A M,Richter E,Bandow S,Chase B,et al.Diameter-selective Raman scattering from vibrational modes in carbon nanotubes.Science,1997,275(5297):187-191.
    [148]Sajitha E P,Prasad V,Subramanyam S V,et al.Synthesis and characteristics of iron nanoparticles in a carbon matrix along with the catalytic graphitization of amorphous carbon.Carbon,2004,42(14):2815-2820.
    [149]孙贵磊,闫鸿浩,李晓杰,等.外界条件对爆轰制备纳米氧化铁的影响研究.真空,2007,44(5):13-15.
    [150]陈礼,吴勇华.流体力学与热工基础.北京:清华大学出版社,2002.
    [151]毕明树,冯殿义,马连湘.工程热力学(第二版).北京:化学工业出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700