用户名: 密码: 验证码:
瞬间热解法制备碳包覆纳米金属颗粒的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳包覆纳米金属颗粒(Carbon-encapsulated metal nanoparticles,CEMNPs)是一种新型的纳米碳/金属复合材料,由于这种材料特殊的结构特点,即数层石墨片层紧密围绕纳米金属有序排列,纳米金属粒子处于核心位置,形成核壳结构,使其在磁记录材料、环境治理、生物医学以及能源材料如锂离子电池负极材料和燃料电池材料等方面获得广泛应用。
     目前,已经有多种方法可用来制备碳包覆纳米金属颗粒,其中电弧放电法为最早的制备方法,而该方法的反应条件较为苛刻,产率低且难以控制产物的结构,热解法成为另一种被人们广泛应用于制备碳包覆纳米金属颗粒的方法,而这种方法不适宜进行连续的工业生产,同时产物中伴有大量的副产物,提纯过程较为复杂。溶胶凝胶法以其对产物的可控性强,颗粒大小均一而备受青睐,而复杂的产物后处理工序及原料的高成本,也是该方法无法应用于生产工艺化。
     针对其它各种制备方法存在的缺点,本论文采用一种新型制备方法——瞬间热解法,这种方法的特点是加热速度快,高温驻留时间短,冷却迅速,再加上反应区周围的空间温度梯度,对粒子的“冷淬”作用,可以获得纯度高、粒径小、表面活性好的纳米粒子。
     本论文主要以瞬间热解法,通过探索利用不同金属催化剂和不同碳源,来制备不同金属基的碳包覆纳米金属颗粒。并在详细考察制备工艺参数对不同产物形成、转化及其形态结构影响的基础上,利用TEM、HREM、XRD、SEM、TG/DSC、VSM、电化学测试等测试分析手段研究了材料的形貌、结构和性能,并与制备工艺相关联,实现材料的可控合成。
     研究结果表明,分别以二茂铁及芳烃重油、乙酰丙酮镍及甲醇、氯化亚锡及工业乙醇为原料,采用瞬间共热解法,通过调节工艺参数,可制备得到碳包覆铁纳米颗粒、碳包覆镍纳米颗粒和碳锡纳米复合材料。
     结果表明:采用该方法制备的碳包覆纳米金属颗粒形状为近球形颗粒,粒径均一,其中碳包覆镍纳米磁性颗粒的粒径集中在10-30nm范围,碳包覆铁纳米磁性颗粒粒径则在50-60nm范围,其磁性能测试表明该产物在室温下具有顺磁性,同时磁性能随颗粒金属含量的变化而改变。
     制备得到的碳锡纳米复合材料具有特殊的电性能,在恒流以及变化大电流充放电条件下的循环特性,该材料反映出了不受电流波动的充放电特性,其大电流及频繁变化电流是材料电池容量的稳定性要远高于文献所报道的其他电池材料,这为我们探索如何制备高频变电流下充放电性能稳定的材料,提供了很好的依据。
Carbon-encapsulated metal nanoparticles (CEMNPs) are a new kind of carbon/metal nanocomposite, becuase the special structure of this materials in which graphite layers arrange around metal nanocrystals located in the center to form core-shell structure. This materials have broad applications in magnetic recording industry, environmental renovation, biomedicine and the field of energy such as lithium batteries and fuel cells.
     To date, several approaches have been developed for synthesizing carbon encapsulated metal nanoparticles, in which the arc-discharge technique is the first widely used approach, however such a synthetic method has limitations in terms of the harsh synthetic conditions required, generally low yields produced and the difficult structure control. The second widely used approach to prepare carbon encaosulated metal nanoparticles is co-pyrolysis method, however, these pyrolysis techniques are not suitable for continuous production in a large scale and they usually lead to the formation of by-products which are not Purificated easily. Sol-gel method are of considerable interest owing to their easy control and homogeneous particle size, but it would not to be used in industrial production due to its complicated impurition by physical or chemical methods and high cost of raw materials.
     In this paper, we report a new technique for the synthesis of CEMNPs compare with the drawbacks of the other approache. The advantages of this method conclude the fast speed of heading, short time in high temperature zone , cooling fast and the effect of "cold quenching" to the nanoparticles in reactiong area, which prepared the nanoparticles have high purity, small size and high surface activity.
     The research focused on the preparation of different kind of CEMNPs by instant pyrolysis method of all kinds of metallic catalyst and different carbon materials. The effect of the synthesis parameters on the formation and transformation of CEMNPs were investigated in detail. The morphology, structure and particular properties of the product were characterized via TEM, HREM, XRD, SEM, TG/DSC, VSM measurements and electrochemical tests and analysis, and the relationship between them and synthesis parameters were studied to realize the controllable preparation of the product.
     The result show that carbon encapsulated iron nanoparticles, carbon encapsulated nickel nanoparticles and composite nanopaticles of carbon and Sn were obtained by instant pyrolysis method with ferrocene and. aromatic heavy oil, nickel acetylacetonate and methanol, stannous chloride and industrial ethanol, respectively.
     The conclusion implied that the shape of the carbon encapsulated nanoparticles prepared by this method is spherical and the size of the particles is homogeneous. The average size of carbon encapsulated nickel nanoparticles range from 10nm to 30nm, while the average size of carbon encapsulated iron nanoparticles is about 50nm to 60nm. At the same time the magnetic property of the products are paramagnetic at room temperature, which changed with the metal content of the particles.
     By the tests and analysis of electrochemical, it was concluded that the composite of the carbon and Sn materials had special electrochemical properties which showed the stability at change rate of current.
引文
[1]Wei Ming Zhang,Jin Song Hu,Yu Guo Guo,et al.Tin-Nanoparticles Encapsulated in Elastic Hollow Carbon Spheres for High-Performance Anode Material in Lithium-Ion Batteries[J].Advanced materials,2008,20:1160-1165
    [2]C Yu,J S Qiu.Preparation and magnetic behavior of carbon-encapsulated cobalt and nickel nanoparticles from starch[J].Chemical engineering research and design,2008,86:904-908
    [3]Liu B H,Ding J,Zhong Z Y,et al.Large-scale preparation of carbon-encapsulated cobalt nanoparticles by the catalytic method[J].Chem.Phys.Lett.,2002,358:96-102
    [4]S.Fiorito,A.Serafino,F.Andreola.Effects of fullerenes and single-wall carbon nanotubes on murine and human macrophages[J].carbon,2006,44:1100-1105.
    [5]Iijima S.Helical microtubules of graphitic carbon[J].Nature,1991,354:56-58
    [6]Iijima S,Ichihashi T,Ando Y.Pentagons heptagons and negative curvature in graphite microtubule growth[J].Nature,1992,356:776-778
    [7]Ruoff R,Lorents D C,Chan B,et al.Single-crystal metals encapsulated in carbon nanoparticles[J].Science,1993,259:346-348
    [8]Seraphin S.,Zhou D.,Jiao J.,Fillling the carbon nanocages[J].J.Appl.phys.,1996,80:2097-2104
    [9]Seraphin S,Zhou D,Jiao J,et al.Yttrium carbide in nanotubes[J].Nature,1993,362:503-503
    [10]Jiao J,Seraphin S,Wang X,et al.Preparation and properties of ferromagnetic carboncoated Fe,Co,and Ni nanoparticles[J].J.Appl.Phys.,1996,80:103-108
    [11]Xiangcheng Sun,A.Gutierrez,M.Jose Yacaman,et al.Investigations on magnetic properties and structure for carbon encapsulated nanoparticles of Fe,Co,Ni[J].Materials Science and Engineering,2000,286:157-160
    [12]Dravid V P,Host J J,Teng M H,et al.Controlled-size nanocapsules[J].Nature,1995,374:602-602
    [13]Zhang Q L,O'Brien S C,Heath J R,et al.Reactivity of large carbon clusters:spheroidal carbon shells and their possible relevance to the formation and morphology of soot[J].J.Phys.Chem.,1986,90:525-528
    [14]Kroto H W,McKay K.The formation of quasi-icosahedral spiral shell carbon particles[J].Nature,1988,331:328-331
    [15]许并社,闫小琴,王晓敏,等.电弧放电中纳米洋葱状富勒烯生成机理的研究[J].材料热处理学报,2001,22:9-12
    [16]Saito Y,Yoshikawa T,Inagakim M,et al.Growth and structure of graphitic tubes and polyhedral particles in arc-discharge[J].Chem.Phys.Lett.,1993,204:277-282
    [17]Hayashi T,Hirono S,Tomita M,et al.Magnetic thin films of cobalt nanocrystals encapsulated in graphite-like carbon[J].Nature,1996,381:772-774
    [18]Chen H,Huang R B,Tang Z C,et al.Single titanium crystals encapsulated in carbon nanocages obtained by laser vaporization of sponge titanium in benzene vapor[J].Appl.Phys.Lett.,2000,77:91-93
    [19]Nolan P E,Lynch D C,Cutler A H.Cataytic disproportionation of CO in the absence of hydrogen: encapsulating shell formation[J]. Carbon, 1994, 32: 477-483
    [20] Nolan P E, Schabel M J, Lynch D C, et al. Hydrogen control of carbon deposit morphology[J]. Carbon, 1995, 33: 79-85
    [21] P. Singjai, K. Wongwigkarn, Y. Laosiritaworn, et al. Carbon encapsulated nickel nanoparticles synthesized by a modified alcohol catalytic chemical vapor deposition method[J]. Current Applied Physics,2007,7 :662-666
    [22] Jieshan Qiu, Qixiu Li, Zhiyu Wang et al. CVD synthesis of coal-gas-derived carbon nanorubes and nanocapsules containing magnetic iron carbide and oxide[J] .Carbon, 2006,44 :2565-2568
    [23] Nolan P E, Lynch D C, Cutler A H. Graphite Encapsulation of Catalytic Metal Nanoparticles[J]. Carbon, 1996, 34: 817-819
    [24] Lu Y, Zhu Z P, Liu Z Yu. Carbon-encapsulated Fe nanoparticles from detonation-induced pyrolysis of ferrocene[J]. Carbon, 2005, 43:369.
    [25] Huaihe Song, Xiaohong Chen. Large-scale synthesis of carbon-encapsulated iron carbide nanoparticles by co-carbonization of durene with ferrocene[J]. Chemical Physics Letters, 2003,374:400-404
    [26] Junping Huo, Huaihe Song, Xiaohong Chen, et al. Structural transformation of carbon-encapsulated iron nanoparticles during heat treatment at 1000 ℃[J]. Materials Chemistry and Physics, 2007, 101:221-227
    [27] Junping Huo, Huaihe Song, Xiaohong Chen, et al. Formation and transformation of carbon-encapsulated iron carbide/iron nanorods[J].Carbon, 2006, 44: 2849-2867
    [28] G.H. Lee, S.H. Huh, J.W. Jeong, et al. Excellent magnetic properties of fullerene encapsulated ferromagnetic nanoclusters[J]. Journal of Magnetism and Magnetic Materials, 2002, 246:404-411
    [29] Junichi Nishijo, Chie Okabe, Osamu Oishi, et al. Synthesis, structures and magnetic properties of carbon-encapsulated nanoparticles via thermal decomposition of metal acetylide[J].Carbon, 2006, 44:2943-2949
    [30] Na Fan, Xicheng Ma, Zhicheng Ju, et al. Formation, characterization and magnetic properties of carbon-encapsulated iron carbide nanoparticles[J]. Materials Research Bulletin, 2008,43:1549-1554
    [31] Jian Nong Wang, Li Zhang, Fan Yu, et al. Synthesis of Carbon Encapsulated Magnetic Nanoparticles with Giant Coercivity by a Spray Pyrolysis Approach[J]. J. Phys. Chem. B, 2007,111:2119-2124
    [32] Jin Ho Bang, Kookil Han, Sara E. Skrabalak, et al. Porous Carbon Supports Prepared by Ultrasonic Spray Pyrolysis for Direct Methanol Fuel Cell Electrodes[J]. J. Phys. Chem. C, 2007,111: 10959-10964
    [33] Beruhauer M, Braun M, Huttinger K J. Kinetics of mesophase formation in a stirred tank reactor and properties of the products. V: Catalysis by ferrocene[J]. Carbon, 1994, 32: 1073-1085
    [34] C. Yu, J.S. Qiu. Preparation and magnetic behavior of carbon-encapsulated cobalt and nickel nanoparticles from starch[J]. chemical engineering research and design, 2008, 86:904-908
    [35] Wu W, Zhu Z, Liu Z. Preparation of carbon-encasulated iron carbide nanoparticles by an explosion method[J]. Carbon, 2003,41: 317-321
    [36]吴卫泽,朱珍平,刘振宇.Fe/C复合纳米材料的制备研究[J].新型炭材料,2002,17:4-8
    [37]Ugarte U,Chatelain A,Heer W A.Nanocapillarity and chemistry in carbon nanotubes[J].Science,1996,274:1897-9
    [38]Tsang S C,Chen Y K,Harris P J F.A simple chemical method of opening and filling carbon nanotubes[J].Nature,1994,372:159-62
    [39]Rong Xiang,Guohua Luo,Weizhong Qian,et al.Encapsulation,Compensation,and Substitution of Catalyst Particles during Continuous Growth of Carbon Nanotubes[J].Adv.Mater,2007,19:2360-2363
    [40]Scott J H and Majetich S A.Morphology,structure,and growth of nanopaticles produced in a carbon arc[J].Phys.Rev.B.,1995,52:12564-12571
    [41]Harris P J F.Carbon Nanotubes and Related Structures,New Materials for the Twenty-First Century[M].Cambridge University Press:Cambridge,2000.164
    [42]Awadalla Salah A.Magnetic Study of Nickel Particles Encapsulated in Carbon Nanoparticles[D],UMI Number:1382547,UMI Company,1997
    [43]Jiao J,Seraphin S,Wang X,et al.Preparation and properties of ferromagnetic carboncoated Fe,Co,and Ni nanoparticles[J].J.Appl.Phys.,1996,80:103-108
    [44]McHenry M E,Nakamura Y,Kirkpatrick S,et al.In Fullerenes:Physics,Chemistry,New Directions[M].ed.R S Ruoff and K M Kadish,PV 94-24,The Electrochemical Society Proceedings Series:Pennington,N J,1994.1463
    [45]Bonard J M,Seraphin S,Wegrowe J E,et al.Varying the size and magnetic properties of carbon-encapsulated cobalt particles[J].Chem.Phys.Lett.,2001,343:251-257
    [46]Subramoney S,Ruoff R S,Lorents D C,et al.Magnetic separation of GdC_2 encapsulated in carbon nanoparticles[J].Carbon,1994,32:507-513
    [47]Seshadri R,Sen R,Subbanna G N,et al.Iron,cobalt and nickel nanoparticles encapsulated in carbon obtained by the arc evaporation of graphite with the metals[J].Chem.Phys.Lett.,1994,231:308-313
    [48]Hihara T,Onodera H,Sumiyama K,et al.Magnetic properties of iron in nanocapsules[J].Jpn.J.Appl.Phys.,1994,33(1A):L24-25
    [49]Sun X C,Antonio Toledo J.Magnetic and microstructural properties of the assembly of Ni(C) nanoparticles[J].Curr.Appl.Phys.,2002,2:113-116
    [50]Wei-Ming Zhang,Jin-Song Hu,Yu-Guo Guo,et al.Tin-Nanoparticles Encapsulated in Elastic Hollow Carbon Spheres for High-Performance Anode Material in Lithium-Ion Batteries[J].Adv.Mater.,2008,20:1160-1165
    [51]Gaelle Derrien,Jusef Hassoun,Stefania Panero,et al.Nanostructured Sn-C Composite as an Advanced Anode Material in High-Performance Lithium-Ion Batteries[J].Adv.Mater,2008,18:2336-2340
    [52]L.Zhang,J.Zhang,D.P.Wilkinson,H.J.Wang,Progress in preparation of non-noble electrocatalysts for PEM fuel cell reactions[J].J.Power Sources,2006,156(2):171-182
    [53]Eric N.Coker,William A.Steen,James E.Miller.Zeolite-templated Pt/C electrocatalysts[J].Microporous and Mesoporous Materials,2007,104(3):236-247
    [54]Song Huanqiao,Qiu Xinping,Li Fushen,et al.Ethanol electro-oxidation on catalysts with TiO_2 coated carbon nanotubes as support[J].Electrochemistry Communications,2007,9(6):1416-1421
    [55] Seok Kim, Soo-Jin Park. Electroactivity of Pt-Ru/polyaniline composite catalyst-electrodes prepared by electrochemical deposition methods[J]. Solid State Ionics, 2008,178 (38):1915-1921
    [56] Raghuram Chetty, Keith Scott. Direct ethanol fuel cells with catalysed metal mesh anodes[J]. Electrochimica Acta, 2007, 52(12): 4073-4081
    [57] Bashyam, R.; Zelenay, P. A class of non-precious metal composite catalysts for fuel cells[J]. Nature, 2006, 443(7): 63-66.
    [58] Takehisa Fukui, Hajime Okawa, Tadashi Hotta,et al. Synthesis of CoO/Ni Composite Powders for Molten Carbonate Fuel Cells[J]. Communications of the American Ceramic Society,2001,84:233-235
    [59] Panyam J, Sahoo S K, Prabha S, et al. Fluorescence and electron microscopy probes for cellular and tissue uptake of poly(d,llactide-co-glycolide) nanoparticles[J]. Int. J. Pharm, 2003, 262: 1-12
    
    [60] Michal B, Andrzej H, Hubert L. Arc plasma route to carbon-encapsulated magnetic nanoparticles for biomedical applications[J]. Sensors and Actuators, 2005, 109: 81-85
    [61] Fiorito S, Serafino A, Andreola F, et al. Effects of fullerenes and single-wall carbon nanotubes on murine and human macrophages[J]. Carbon, 2006, 44: 1100-1109
    [62] Elias K L, Price R L, Webster T J. Enhanced functions of osteoblasts on nanometer diameter carbon fibers[J]. Biomaterials, 2002, 23: 3279-3287
    [63] Price R L, Waid M C, Haberstroh K M, et al. Selective bone cell adhesion on formulations containing carbon nanofibers[J]. Biomaterials, 2003, 24: 1877-1887
    [64] Webster T J, Ergun C, Doremus R H, et al. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics[J]. J. Biomed. Mater., Res., 2000, 51: 475-483
    [65] Dobson J. Magnetic Nanoparticles for Drug Delivery[J]. Drug Develop. Res., 2006, 67: 55-64
    [66] Che R, Chen Q, Duan X F, et al. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes[J]. Adv. Mater., 2004, 16: 401-405

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700