用户名: 密码: 验证码:
纳米金属的制备及其在处理典型有机污染物中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氯酚类化合物常见于各种化工废水,易在环境介质中积累,在环境各介质中均检测到以较高浓度存在,对人类健康及生态环境构成长期威胁。由于其高毒性和难降解性,美国环境保护局将氯酚类污染物列为最优先控制的污染物。偶氮染料是指分子中含有偶氮基(-N=N-)的一类染料,种类很多,色谱齐全,是最大的一类工业合成有机染料,仅在生产过程中就有近15%排入水体。绝大多数偶氮染料具有很强的生物毒性和致癌性。所以,对氯酚和偶氮染料的降解研究具有重要的现实意义。近年来,纳米金属以其独特的性能优势,已成功应用于地下水及土壤环境污染物的修复处理,显示出良好的应用前景。
     本论文采用液相还原法制得分散纳米金属Fe,并采用阳离子交换树脂为载体,液相还原法制得负载纳米金属Fe、Ni、Fe-Ni及Fe-Pd,采用扫描电子显微镜(SEM)对合成的纳米金属进行表征,显示出纳米粒子均为球形且粒径在10-200 nm。以三氯酚(TCP)和偶氮染料作为目标污染物降解,考察了溶液pH,温度,H2O2浓度,纳米金属粒子的加入量,及复合金属中Ni(或Pd)的含量百分比、盐度等对TCP和偶氮染料降解率的影响。研究结果表明:
     1.在实验优化条件下,50 mL的反应体系(含10 mL 1.10 mmol/L的TCP,10mL 50 mmol/L HClO4,1.0 mL 80 mmol/L的H2O2,0.4 mL 7 mmol/L纳米铁),经过20 min超过95%的TCP被降解。酸性条件下,TCP的降解效果较好,pH=3时最佳。反应温度对H2O2发生均裂产生?OH的影响较大,随着温度的升高,TCP的降解率随之增加。
     2.负载纳米零价金属Fe、Ni、Fe-Ni、Fe-Pd均能够较好的降解偶氮染料。酸性条件下,负载纳米Fe降解偶氮染料,除橙黄I、酸性嫩黄G、酸性黄17的降解率分别为96.1%、53.3%、39.3%,其他各染料的降解率均达100%。尤其是复合金属Fe-Ni、Fe-Pd比Fe、Ni具有更快的降解率。
     3.溶液pH、温度、盐度、负载纳米金属的加入量,及负载纳米金属中Ni(或Pd)的含量都是影响反应降解率的重要因素。溶液的酸度越大、温度越高、投加的纳米金属量越大、及Ni(或Pd)的含量越高,降解率越高;盐度对偶氮染料的降解有一定的抑制作用,盐度越高,偶氮染料的降解率越低。
     4.本研究采用阳离子交换树脂作为载体负载纳米零价金属,然而其不只是载体,还是反应产物Fe2+的收集者,可以大大减少释放到水溶液中的Fe2+的含量,避免其对环境造成不利影响。所制备的纳米材料经过活化再生,可循环使用,仍具有较高活性及较长的使用寿命。
Chlorophenols can be found in various chemical waste waters and can exist in various media of the environment with relatively high concentration. They are easy to accumulate in the surroundings and endangered human as well as ecological environment over a long period of time. Azo dyes, which contain one or more azo bonds (-N=N-), have many different types and full range of chromatography, are a major class of synthetic, colored organic compounds. During the dyeing production process, about 15% of them end up in wastewaters. Most azo dyes are highly carcinogenic and toxic. Therefore, the degradation research of chlorophenols and azo dyes has important practical significance. Recent years, for the unique property advantages, nano-metals have been used to remedy groundwater and soil pollutants, and show a good prospect.
     Dispersed nanoparticles Fe0 was obtained through chemical reduction, and using cation exchange resin as carrier, through chemical reduction we obtained loaded nanoparticles Fe、Ni、Fe-Ni、Fe-Pd. The degradation of 2,4,6-trichlorophenol (TCP) by hydrogen peroxide catalyzed by dispered nano-iron and the degradation of azo dyes in aqueous solutions by loaded nanoscale Fe、Ni, and Fe-Ni、Fe-Pd bimetallic nanoparticles were investigated. Scanning electron microscopy (SEM) of as-synthesized nanoparticles showed the presence of spherical particles having a size of 10-200 nm.The influences of pH, temperature, the concentration of H2O2, ionic strength, the amount of nanoparticles Fe、Ni、Fe-Ni、Fe-Pd and Ni (or Pd) loading in the bimetallic metals on the degradation of TCP and azo dyes were investigated. Batch experiments showed that:
     1. Under optimal conditions of the experiment: 50 mL of the reaction system (containing 10mL 1.10mmol/L of the TCP, 10mL of 50 mmol/L HClO4, 1.0 mL 80 mmol/L of H2O2, 0.4 mL 7mmol/L nano-iron), over 95% of TCP can be degraded in 20min. In acidic condition the degradation of TCP showed high degradation activity. Reaction temperature had a great impact on the occurrence homolysis of H2O2, as the temperature rised, the chlorophenol degradation efficiency increased.
     2. Zero-valent metal particles Fe, Ni, Fe-Ni, Fe-Pd could well degraded azo dyes. Under acidic conditions using Fe, in addition to Orange I, Acid Yellow G, Acid Yellow 17 which degradation rate were 96.1%, 53.3%, 39.3%, the degradation rate of other dyes was complete 100% within 60min. Especially using Fe-Ni, Fe-Pd had even better degradation efficiency. The bimetallic Fe-Ni、Fe-Pd nanoparticles demonstrated an enhanced degradation rate compared to Fe、Ni nanoparticles.
     3. The results showed that the solution pH, the addition of Fe(or Ni, Fe-Ni, Fe-Pd), and the Ni (or Pd) loading in Fe-Ni (or Fe-Pd) nanoparticles were the main factors that influenced the degradation rate of azo dyes. With increasing acidity, temperature, nanoparticles addition, the Ni (or Pd) loading, the degradation rate increased rapidly. The existence of Na2SO4 could inhibit the decolorization of azo dyes in some extent.
     4. In this study, cation exchange resin as a carrier loaded zero-valent nano-metal particles, but it was not just a carrier, but also collectors of the reaction product Fe2+, which could significantly prevent Fe2+ releasing into the solution, to avoid its adverse impact to the environment. More importantly, after the activation of renewable, these nanoparticles showed a significantly long life span with sustained reactivity.
引文
Alessi D S, Zhao H L.Synergistic Effect of Cationic Surfactants on Perchloroethylene Degradation by Zero-ValentIron[J]. Environ Sci Technol, 2001, 35(18):3717.
    Alok D.Bokare, Rajeev C.Chikate, Chandrashekhar V.Rode, Kishore M.Paknikar. Iron-nickel bimetallic nanoparticles for reductive degradation of azo dye Orange G in aqueous solution[J]. Applied Catalysis B:Environmental,2008,79:270-278.
    Anchez-lopez J C, Justo A, Femandez, et al. Preparation and thermal evolution of vapour-condensed nanocrystalline iron[J]. Philos Mag B,1997,76(4):663-667.
    Bermejo E, Becue T, Lacour C, et al. Synthesis of nanoscaled iron particles from freeze-dired precursors[J]. Powder Technology, 1997, 94(1): 29-34.
    Bin H, kobayashi K F, Shingu P H. Mechanical alloying and consolidation of alumiuum-iron system[J]. Journal of Japan Institute of Light Metals, 1988, 38(3): 165-171.
    CANTRELL K J, KAPLAN D I, WIETSMA T W. Zero-valent iron for the in situ remediation of selected metals in groundwater[J]. Journal of Hazardous Materials, 1995, 42:201-212.
    Cao X, Koltypin Y, Kataby G, et al. Controlling the particle size of amorphous iron nanoparticles[J]. Mater Res, 1995, 10(11): 2952-2957.
    Chen Shiaoshing, Hsu Hongder, Xie L, et a1. A New Method to Produce Nanoscale Iron for Nitrate Removal[J]. Jounal of Nanoparticle Research, 2004, 6:639-647.
    Chen Xing. Hydrothermal synthesis and super paramagnetic behaviors of a series of ferrite nanoparticles[J].Chinese Journal of Inorganic Chemistry, 2002(5): 460.
    Choukroun R, De-caroD, Mateo S. Use of wanadocence as an organometallic reducing agent for the preparation of ultrafine magnetic iron power and organized iron particles from iron salts[J]. New J. Chem, 1998, 22(11):1295-1299.
    Clark C J, Rao P S C, Annable M D. Degradation of perchloroethylene in cosolvent solutions by zero-valent iron[J]. Journal of Hazardous Materials B, 2003, 96:78.
    Cui Z L,Zhang Z K,Hao C C.Structures and properties of nano-particles prepared by hydrogen plasma method[J].Thin Soild Films,1998, 318(1-2):76-82.
    CZAPLICKA M. Sources transformations of chlorophenols in the natural environment[J]. Science of the Total Environment, 2004, 322:21-29.
    Daroczi L, Beck M T, Beke D L, et al. Production of Fe and Cu nanocrystalline particles by thermaldecomposition of ferro-and copper-cyanides[J]. Mater Sci Forum, 1998, 269-272:319-324.
    Del Bianco L, Herando A, Navarro E,et al. Fe/PTFE nanometer composites prepared by high energy ball milling[J]. J Phys IV, 1998, 8:107-110.
    DIXIT S, HERINGJ G. Comparison of arsenic(V) and arsenic (III) sorption onto iron oxide minerals : implications for arsenic mobility[J]. Environ Sci Technol., 2003(37):4182-4189.
    Dombek T, Davis D, Stine J, et al. Degradation of terbutylazine (2-chloro-4-ethylamino-6-terbutylamino-1,3,5-tirazine) deisopropyl atrazine (2-amino-4-chloro-6-ethylamino-1,3,5-triazine) and chloirnated dimehtoxy triazine (2-chloro-4,6-dimethoxy-1,3,5-triazine) by zero-valent iron and electrochemical reduction[J]. Environmental Pollution, 2004, 129:275.
    Dong X.L., C.J. Choi, B.K. Kim.Structural and magnetic characterization of Fe nanoparticles synthesized by chemical vapor condensation process[J]. J Appl. Phys., 2002, 92(9):5380-5385.
    Engelmann M D, Hutcheson R, Kristy Henschied.Simultaneous determination of total polychlorinated biphenyl and Dichlorodiphenyltrichloroethane (DDT) dechlorination with Fe/Pd and Mg/Pd bimetallic particles and flame ionization detection gas chromatography[J]. Microchemical Journal, 2003, 74:25.
    EPA822-Z-99-001 U. S. Environmental protection agency[M]. Washington: Office of water, 1999. Herrera F., Lopez A., Mascolo G., Albers P., Kiwi J.. Catalytic combustion of Orange II on hematite-surface species responsible for the dye degradation[J]. Applied Catalysis B: Environ, 2001, 29:147-162.
    Francis Cheng, Rosy Muftikian. Reduction of Nitrate to Ammoia by Zero-valent iron[J]. Chemosphere, 1997, 35(11):2689-2695.
    G.A. Somorjai.Introduction to Surface Chemistry and Catalysis[M]. Wiley/Interscience, New York, 1994, p.362.
    GAOJ S, ELLIOTTD W, ZHANGW X. Perchlorate reduction by nan oscaleiron particles[J]. Journal of Nanoparticle Research, 2005(7):499-506.
    Gavriliuk A G, Voitkovsky V S, Tsiok O B, et a1. M?ssbauer and x‐ray investigations of oxidized ultrafine iron particles treated with high‐pressure and electrodischarge pulses[J].J Appl Phys, 1993, 73(10): 6410-6411.
    G.C.C.Yang, H.L.Lee, Chemical reduction of nitrate by nanosized iron:kinetics and pathways[J]. Water Res. 2005, 39:884-894.
    Ghar F, Hermanutz F, Oppermann W.Ozonation-an important technique to comply with new German laws for textile wasterwater treatment[J]. Water Sci Technol, 1994, 30:255-263.
    Charles P.Gibson, Kathy J.Putzer.Synthesis and Characterization of Anisometric Cobalt Nanoclusters[J].Science, 1995, 267(5202):1338-1340.
    Gillham R W﹑O’Hannesin S F. Enhanced degradation of halogenated aliphatics by zero-valent iron[J]. Ground Water, 1994, 32(6): 958-967.
    Gleiter H, Biminger R, Klein HP, et al. Nanocrystalline Materials[J]: An Approach to a Novel Solid Structure with Gaslike Disorder Phys.Lett.A, 1984,102:365-369.
    Gleiter H. State of the art and perspectives[J]. Nanostructured Materials, 1995, 16:3. Graham L J, JOVANOVICH G. Dechlorination of pchlorophenol on a Pd/Fe catalyst in a magnetically stabilized fluidized bed:implications for sludge and liquid remediation[J]. Chemical Engineering Science, 1999, 54:3085-3093.
    Grittini C, et al. Rapid Dechlorination of Polychlorinated Biphenyls on the Surface of Pd/Fe Bimetallic System [J]. Environ. Sci. & Technol., 1995, 29(11): 2898-2900.
    Guido Busca,Silvia Berardinelli, Carlo Resini,Laura Arrighi,Technologies for the removal of phenol from fluid streams:A short review of recent developments[J]. J.Hazard.Mater, 2008,160: 265-288.
    Hsing-lung Lien, Zhang Weixian. Nanoscale lron Particles for Complete Reduclion of Chlorinated Ethenes[J]. Colloids and Surface A, 2001,191:97-105.
    Huang Chinpao, Wang Huang wen. Nitrate reduction by metallic iron[J]. Wat Res, 1998, 32 (8):2257-2264.
    Huang Yong H, Zhang Tian C. Effects of Low pH on Nitrate Reduction by Iron Powder[J]. Water Research, 2004, 38: 2631-2642.
    IASUDDIN A B M, KANEL S R, CHOI H C. Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal[J]. Env iron Sci Technol, 2007, (41):2022-2027.
    J.Arana, E. Telio Rendo, J.M. Dona Rodriguez, J.A.Herrera Melian, O.Gonzalez Diaz, J. Perez Pena[J]. Chemosphere 2001, 44:1017-1023.
    Jean-Luc D, Jean D, Jacques R et al. Long term behavior of corona resistant insulation[J]. Chem Matter, 2000, 12:946-955.
    Jing Fan,YanHui Guo,Jianji Wang,Maohong Fan.Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles[J].Journal of hazardousMaterial,2009,166:904-910.
    Joo S H. FeitzR J. Waite T D. Oxidative Degradation of the Carbothioate Herbicide, Molinate Using Nanoscale Zero-valentiron[J]. Environ Sci Technol, 2004, 38(7): 2247.
    Jovanovic G N, Znidarsic P P, Sakrittichai P, et al. Dechlorination of P-Chlorophenol in a Microreactor with Bimetallic Pd/Fe Catalyst[J]. Ind Eng Chem Res,2005,44(14):5106.
    Julie Stauffer. Water crisis-method of solving fresh water pollution[M]. Beijing: Science Press, 2000. KANEL S R, MANNINGB, CHAR LETL, et al. Removal of arsenic(III) from groundwater by nanoscale zero-valent iron[J ]. Env iron Sci T echnol, 2005, 39:1291-1298.
    Keum Y S, Li Q X. Reductive Debromination of Polybrominated Diphenyl Ethers by Zerovalent Iron[J]. Environ Sci Technol, 2005, 39(5):2286.
    KORTE N E, ZU TMAN J L, SCHLOSSER RM, et al. Field application palladized iron for the dechlorination of trichloroethene[J]. WasteManagement, 2000, 20:687-694.
    Kubatova A,Herman J. Subcritical (hot/liqued) water dechlorination of PCBs (Aroclor1254) with metal additives and in waste paint[J]. Environ. Sci. Technol., 2003, 37(24):5762.
    L Kuhn Theil, A Bojesen, L Timmermann, M Meedom Nielson and S M?rup.Structural and magnetic properties of core-shell iron-iron oxide nanoparticles[J].Journal of Physics: Condensed Matter, 2002, 14(49):13551.
    Li F, Vipulanandan C, Moh anty K K. Microemulsion and solution approaches to nanoparticle iron production for degradation of trichloroethylene[J]. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 2003, 223:103-l12.
    LIAO C J,CHUNG T L,CHEN W L,et al.Treatment of pentachlorophenol-coraaninated soil using nano-scale zero-valent iron with hydrogen peroxide[J].Journal of Molecular Catalysis A:Cherrical, 2007, 265:189-194.
    Lien H, Zhung W X. Reaction of Chlorinated Methanes with Nanoscale Metal particles in Aqueous Solution[J]. Environ Eng, 1999, 125(11):1042-1047.
    Lien, H.L, Zhang, W. X. Transformation of chlorinated methanes by nanoscale iron particles[J]. J. Environ. Eng., 1999, 1042-1047.
    LIU Y H, YANG F L, YUE P, et al. Catalytic dechlorinadon of chlorophenols in water by palladium/iron [J]. Water Research,2001,35:1887-1890.
    Liu Y Q, Majetich S A,Tilton R D,eta1.TCE Dechlorination Rates, Pathways, and Efficiency of Nnaoscale Iron Particles with Different Properties[J]. Environ Sci Technol, 2005, 39(5):1345.
    Lowry G V, Johnson K M. Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution[J]. Environ Sci Technol, 2004, 38(19): 5208-5215.
    Lucking F. Iron powder, graphite and activated carbon as catalyst for the oxidation of 4-chlorophenol with hydrogen peroxide[J]. Wat. Res. 1998, 32:2607-2614.
    Malow T R, Koch C C. Grain growth in nanocrystalline iron prepared by mechanical attrition[J]. Acta Mater, 1997, 45(5):2177-2186.
    Malow T R, Koch C C, Miraglia P Q, et al. Compressive mechanical behavior of nanocrystalline Fe investigated with an automated ball indentation technique,Materials Science and Engineering A, 1998, 252 (1):36-43.
    Matheson L J, TratnyekP G. Reductive dehalogenation of chlorinated methanes by iron metal[J]. Environ Sci Technol, 1994, 28(12):2053.
    Mattews R W. Photo Oxidation of organic material in aqueous suspensions of titanium dioxide. Wat. Res.1996, 24:653-666.
    Mcllroy D.N., D.A. Zhang, M.G. Norton, W.L. O'Brien, M.M. Schwicker, G.R. Harp. Synthesis and reactivity of Fe nanoparticles embedded in a semi-insulating matrix[J]. J.Appl. Phys.,2000, 87(10):7213-7217.
    Miao Li, Chuanping Feng, Weiwu Hu, Zhenya Zhang, Norio Sugiura. Electrochemical degradation of phenol using electrodes of Ti/RuO2-Pt and Ti/IrO2-Pt[J]. J.Hazard.Mater, 2009, 162: 455-462.
    Michael Modell, Magdalena Svanstr?m, Morgan Fr?ling, William A,Peters and Jefferson Tester. Environmental assessment of supercritical water oxidation of sewage sludge[J]. Resources, Conservation and Recycling, 2004, 41(4):321-338.
    Muthukumer M, Selvakumar N. Studies on the effect of inorganic salts on decolouration of acid dye effluents by ozonation[J]. Dyes and Pigments,2004,62:221-228.
    Natter H, Schmelzer M, Effler L M, et al. Electrochemical deposition under oxidizing conditions(EDOC):a new synthesis for nanocrystalline metal oxides[J]. J Phys Chem B, 2000, 104(11):67.
    Oliver J, Kotu K, Jin M. Wet oxidation of TNT red water and bacterial toxicity of treated waste[J]. Wat. Res.,1994, 28(2):283-290.
    Oliver S, Markus E, Scherer M, et a1. Degradation of TCE with iron: The role of CompetingChromate and Nitrate Reduction[J]. Ground water,2000,38(3):403-409.
    PONDER S M, DARAB J G, MALLOUK T E. Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron[J]. Environ Sci Technol, 2000, 34:2564-2569.
    Qin Bo-xiong, Liu Gang, Fan Rong-huan, Yang Chun-ge xiong. Manufacture of Video Mini-cassettes by Evaporation of Nanomaterials[J].Transaction of Tianjin University,1996,29(2):315.
    Quinn J. Field Demonstration of DNAPL Dehalogenation Using Emulsiifed Zero-Valent Iron[J]. Environ Sci Technol, 2005, 39(5):1318.
    Rathi A, Rajor HK, Sharma R K. Photodegradation of direct yellow-12 using UV/H2O/Fe2+[J]. Jounral of Hazardous Mateirals, 2003,102(2-3):231-241.
    ROSY M, FEMANDO Q, KORTE N. A method for the rapid dechlorination of low molecular weight chlorinated hydrocarbons in water[J].Water Research,1995,29:2434-2439.
    Santos A, Ardisson J.D., Tambourgi E.B, Macedo W.A. A.. Synthesis of granular Fe-Al2O3 by the sol-gel method[J]. Journal of Magnetism and Magnetic Materials,1998,177-181(1):247-248.
    Santos A, Ardisson J.D., Viegas A.D.C.Schmidt J.E.,Persiano A.I.C., Macedo W.A.A., Structure and magnetism of granular Fe–Al2O3 [J]. Journal of Magnetism and Magnetic Materials,2001, 226-230(2):1861-1863.
    Sayles G D, You G, Wang M, et al. DDT, DDD and DDE dechloriiqaion by zero-valent iron[J]. Environ Sci Technol., 1997, 31:3448-3454.
    Schrick B, Blough J L, Jones A D et al., Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles[J]. Chem Mater, 2002, 14:5140–5147.
    Sergei P, Marina K, Anna K. Photocatalytic oxidationof aromatic of romatic aminocompounds in aqueous solutions and groundwater form abandoned military bases[J].Wat.Sci.Tech.,1997, 35:265-272.
    SeungheeChoe, Sang-HyunLee, Yoon-YoungChnag,et a1. Rapid reductive desturction of hazardous organic compounds by nanoscale Fe0[J]. Chemosphere, 2001, 42: 367-372.
    Sokmen M, Ozkan A. Decolourising textile wastewater with modified titania:the effects of inorganic anions on the photocatalysis[J].Journal of Photochemistry﹠ Photobiology A:Chemistry,2002,147:77-81.
    Song H, Carraway E. Reduction of Chloirnated Ethanes by Nanosized Zero-Valent Iron: Kinetics, Pathways and Effects of Reaction Conditions [J]. Environ Sci Technol, 2005, 39(16):6245.
    Srikanth H., Hajndl R., Chirinos C., Sander J.,Sampath A.,Sudarshan T.S..Magnetic studies of polymer-coated Fe nanoparticles synthesized by microwave plasma polymerization[J].Appl. Phys. Lett., 2001, 79(21): 3503-3505.
    SUN B, COLE J R, SANFORD R A, et al. Isolation and characterization of Desulfovibrio dechloractivorans sp. Nov, a marine dechlorination of zcetate to the reductive dechlorination of 2-chlorophenol[J]. Appl Environ Microbial, 2000, 66:2408-2413.
    Suslick K S, Choe S B, Cichowlas A A, et al.Sonochemical synthesis of amorphous iron[J].Nature, 1991,353(6343):414.
    Sylwia Mozia, Maria Tomaszewska and Antoni W. Morawski.Photodegradation of azo dye Acid Red 18 in a quartz labyrinth flow reactor with immobilized TiO2 bed[J]. Dyes and Pigments, 2006, 6:22.
    Thomas D.Thoronton, Phillip E.Savage.Kinetics of phenol in supercritical water[J].AlChE Journal,1992,38(3):321-327.
    Wang C B, Zhang W X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs[J]. Environ Sci Technol, 1997, 31(7):2154-2156.
    Wang Chuan bao, Zhang Wei xian. Synthesizing Nanoscale lron Particles for Rapid and Complete Dechlorlnation of TCE and PCBs[J]. Environ Sci Technol, 1997, 31(7):2154-2156.
    Wang Jianlong, Qian Yi. Microbial degradation of 4-chlorophenol by microorganisms entrapped in carrageenan–chitosan gels[J]. Chemosphere, 1999, 38:3109-3144.
    Wei-xian Zhang, Chun-bao Wang, Hsing-Lung Lien. Treatment of chlorinated organic contaminants with nanoscale bimetallic particles[J].Catalysis Tody,1998,40:387-395.
    Westerhoff Paul, James Jennifer. Nitrate Removal in Zero-valent lron Packed Columns [J].Water Research, 2003, 37:1818-1830.
    Wu L F, Stephen M C. Removal of trichloroethylene from water by cellulose supported bimetallic Ni/Fe nanoparticles[J].Chemosphere,2006,63:285-292.
    X.Li, D.W. Elliott, W. Zhang. Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects[J]. Crit. Rev. Solid State Mater. Sci., 2006, 31:111-122.
    Xinhua Xu,Jingjing Wo,Jinghui Zhang,Yanjun Wu,Yong Liu. Catalytic dechlorination of p-NCB in water by nanoscale Ni/Fe[J].Science Direct,2009,242:346-354.
    Y. Dong, J. Chen, C. Li, H. Zhu. Decoloration of three azo dyes in water by photocatalysis of Fe(III)eoxalate complexes/H2O2 in the presence of inorganic salts[J]. Dyes Pigments, 2007, 73:261-268.
    Y.H. Liou, S.L. Lo, C.J. Lin, W.H. Kuan, S.C. Weng, Chemical reduction of an unbuffered nitrate solution using catalyzed and uncatalyzed nanoscale iron particles[J]. J.Hazard.Mater. 2005, 127:102-110.
    Yi L, Hadjipanayis G C, Sorensen C M, et a1. Structural and magnetic properties of ultrafine Fe-Pd particles[J]. Journal of Applied Physics, 1994, 75(10): 5885-5887.
    Yit-Hong Tee, Eric Grulke, Dibakar Bhattacharyya. Role of Ni/Fe nanoparticle composition on the degradation of trichloroethylene from water[J]. Ind Eng Chem Res, 2005, 44(18): 7062-7070.
    Yoshiaki Sawada, Yoshiteru Kageyama, Masashi lwata, Akira Tasaki. Synthesis and Magnetic Properties of Ultrafine Iron Particles Prepared by Pyrolysis of Carbonyl Iron[J]. Jpn.J. Appl. Phys., 1992, 31:3858-3861.
    Yu X Y, AMRHEIN C, Deshuses M, et al. Perchlorate reduction by auttotrophic bacteria attached to zerovalent iron in a flow-through reactor[J]. Environ Sci Technol, 2007, 41:990-997.
    Zawaideh Lara L, Zhang Tian C. The Effects of pH and addition of an Organic Buffer(HEPES) on Nitrate Transformation in Fe0-water system[J]. Wat Sci Tech,1998, 38(7):107-115.
    Zhang Weixian. Nanoscale lron Particles for Environmental Remeafion: An Overview[J]. Jounal of Nanoscale Research,2003,5:323-332.
    Zhao J C, Wu T X. Photoassisted degradation of dye pollutants 3. Degradation of cationic dye phodamine B in aqueous anionic surfactant/TiO2 despersions under visible light irradiation: evidence for the need of substrate adsorption on TiO2 particles[J]. Environ Sci Tech., 1998, 32:2394-2400.
    ZhaoX Q, Zheng F, Liang Y, et al. Preparation and characterization of single phaseγ-Fe nanopowder from cw CO2 laser induced pyrolysis of iron pentacarbonyl[J]. Mater lett, 1994, 21(3-4):285-288.
    曹茂盛,邓启刚,鞠刚等.α-Fe纳米粉末制备及其表征[J],化学通报,2000,2:42-43.
    陈彬,林栋梁,曾小勤,卢晨.深度塑性变形法的研究现状和前景[J].材料导报,2006,20(9):73-77.
    陈芳艳,陆敏,唐玉斌.纳米铁在水污染控制中的应用研究进展[J].工业安全与环保,2007,33(2):18-20.
    陈芳艳,唐玉斌,吕锡武,等.纳米零价铁对水中Cr(Ⅵ)的还原动力学研究[J].化学世界,2007(3):144-147.
    陈洪,徐祖雄,翟少岩,等.球磨法制备超细纳米铁粉[J].金属学报,1995,31(2):73-76.
    陈冀孙,胡斌.气浮净水技术的研究与应用[M].上海:上海科技出版社,1985.
    陈岁元,刘常升,才庆魁,马利霞,佗劲红.激光晶化制备Fe基纳米软磁材料的研究进展[J].激光技术,2005,29(1):94-97.
    陈耀祖,有机分析[M].北京:高等教育出版社,1981,554.
    陈郁,全燮.零价铁处理污水的机理及应用[J].环境科学研究,2000,13(5):24-27.
    陈毓敏,何旭敏,蓝伟光,夏海平.单分散纳米微粒制备方法研究进展[J].化学通报,2003,66(7):441-448.
    程荣,王建龙,张伟贤.纳米金属铁降解有机卤化物的研究进展[J].化学进展,2006,18(1):93-99.
    程为民.含酚废水的危害及其治理方法与技术[M].北京:化学工业出版社,1996.
    丁建旭,廖其龙,杨定明,等.微乳液体系制备Fe2B包覆纳米α-Fe及其性能研究[J].化工新型从材料,2007,35(2):25.
    丁忠浩.有机废水处理技术及应用[M].北京:化学工业出版社,2002,317-319.
    董星龙,金寿日.碳包覆磁性金属纳米胶囊的制备及表征[J].粉末冶金工业,1999,9(2):32-33.
    樊邦棠.环境化学[M].杭州:浙江大学出版社.1991:230.
    方婷,李沪萍,罗康碧,等.声化学技术处理有机废水的研究进展[J].化工科技,2006,(5):40-45.
    冯孝庭.吸附分离技术[M].北京:化学工业出版社,2000.
    冯孝庭.吸附分离技术[M].北京:化学工业出版社,2000.
    高树梅,王晓栋,王宇,石磊,刘树深,王连生.纳米铁颗粒降解氯代有机污染物的研究进展[J].环境科学与技术,2007,30(7):100-102.
    高晓云,张敬畅,郭广生.激光热解法制备Fe和Fe/C超微粉工艺及粉体性能研究.北京化工学院学报,1991,18(4):67-73.
    高晓云,张敬畅,郭广生,等.激光热解法制备铁系超微粒[J].中国激光.1992,19(3):235-240.
    高晓云,郭广生.超微Fe2O3的制备[J].中国激光,1993,20(3):84-87. 高晓云,李谨,侯登录,杨福明,钟夏平,罗河烈.链球状纯铁磁粉的磁粘滞性[J].物理学报,1993,42(11):1851-1855.
    龚著革.环境卫生纳米应用技术[M].北京:化学工业出版社环境科学与工程出版中心,2004.
    郭广生,万开颜,张敬畅,王伟洁,高晓云,杨福明.激光气相法研制Fe/C/Si超微粒子[J].中国激光,1993,20(9):688-692.
    郭丽琴,冯静,张密林.纳米氧化镍的制备及应用[J].化学工程师,2006,130(17):28-29.
    郝春成,催作林,张志琨等.等离子体法制备纳米铁粉[J].功能材料,1997,28(5):471-473.
    何小娟,李旭东,汤明皋,等.零价铁、镍-铁和铜-铁双金属对四氯乙烯的脱氯性能研究[J].化工环保, 2006, 26(6):451-454.
    何珍宝.国内外染色技术新进展[J].丝绸,2007,5:62-67.
    黄进.天然水中典型阴离子对芬顿反应的影响[J].化学工程师,2004,108(9): 3-6.
    黄开金.纳米材料的制备与应用[M].北京:冶金工业出版社,2009:4.
    黄玉,偶氮染料废水的处理方法及研究进展[J].宜宾学院学报,2007,6:54-57.
    黄玉明,李天安,章娴君,等.TiO2光催化降解印染废水的研究[J].西南师范大学学报(自然科学版),1999,24(4):443-446.
    胡六江,李益民.有机膨润土负载纳米铁去除废水中硝基苯[J].环境科学学报, 2008, 28(6): 1107-1112.
    江万权,朱春玲,陈祖耀,等.超细铁粉粒子浓悬浮液体系磁流体变性能的影响[J].化学物理通报,2001.14(5):629-632.
    蒋新宇.导向药物用纳米Fe3O4磁性粒子的制备及表征[J].中南工业大学学报(自然科学版),2003,34(5):516.
    金朝晖,李海莹,张环,等.纳米铁在地下水修复中的应用[A].2003年海峡两岸地下水污染防治会议论文集.
    雷炳莉,金晓伟,黄胜彪,等.太湖流域3种氯酚类化合物水质基准的探讨[J].生态毒理学报,2009年,第4卷,第1期:40-49.
    李发伸,杨文平,薛德胜.纳米Fe微粒的制备及研究[J].兰州大学学报(自然科学版),1994,30(1):144-146.
    李桂英,安泰成,陈嘉鑫,等.光电催化氧化处理高含氯采油废水的研究[J].环境化学研究,2006,19(1):30-34.
    李海莹,王薇,金朝晖,等.纳米铁的制备及其对污染地下水的脱硝研究[J].南开大学学报(自然科学版),2006,39(1):8-13.
    李家珍.染料﹑染色工业废水处理[M].北京:化学工业出版社,1997:342-344.
    李泉,曾广赋,席时权.纳米粒子[J].化学通报,1995,6:29-34. 李铁龙,康海彦,刘海水,等.纳米铁的制备及其还原硝酸盐氮的产物与机理[J].环境化学,2006,25(3):294-296.
    李铁龙,刘海水,金朝晖,等.纳米铁去除水中硝酸盐氮的批试验[J].吉林大学学报,2006 (36):264-265.
    李玉标,含酚废水的处理方法[J].净水技术,2005,24(2):51-54.
    林金谷,邹炳锁,王菊等.超声分解法制备Fe-Co合金纳米微粒的研究[J],科学通报,1995,40(15):1370-1373.
    林贤福,何琳,等.大分子自组装体系及自组装功能膜结构的研究[J].功能材料,2000,31(2):121.
    刘菲.处理地下水中挥发性氯代脂肪烃的零价铁渗透反应隔栅研究[D].北京:中国地质大学,2002.
    刘吉平,廖莉玲.无机纳米材料[J].北京:科学出版社,2003:1-2.
    刘茉娥,蔡邦肖,陈益棠.膜技术在污水治理及回用中的应用[M].北京:化学工业出版社,2004:178.
    刘平桂,任碧野,龚克成.半导体纳米微粒/聚合物复合物的制备及其光电性能[J].功能材料,1999,30(4):350.
    刘思林,滕荣厚,徐教仁等.针状γ-Fe_4N超细磁粉合成工艺[J].粉末冶金技术,1999,9(2):28-30.
    刘铁兵,毛建卫,吕成学.氯苯酚类污染物光化学研究进展[J].浙江科技学院学报,2010,22(2):113-118.
    刘维平,黄庆梅.纳米晶铁的制备及其性能[J].南方冶金学院学报,1996,17(4):242-245.
    刘晓虹,颜肖慈,李伟.纳米铁微粒制备新进展[J].金属功能材料,2002,9(2):8-11.
    刘作华,刘仁龙,牟天明,左赵宏,陶长元.微波促进含铬废渣催化H2O2降解甲基橙溶液研究[J].光谱学与光谱分析,2008,28(8):1900-1904.
    刘振中,振兴.纳米级零价铁去除水中硝酸盐的应用[J].安徽农业科学,2008,36(32):14271-14272.
    柳学全,徐教仁,刘思林等.纳米级金属铁颗粒的制取[J].粉末冶金技术,1996,14(1):26-29.
    栾野梅,彭永刚.金属及半导体纳米颗粒膜的合成与应用[J].科技创新导报,2008,3:52-53.
    罗驹华,张振忠,赵少明.气相法制备纳米铁颗粒新进展[J].材料导报,2007,21(VIII辑):130-133.
    孟庆尧,邓德才,刘美艳.Fenton氧化处理含酚类废水研究[J].皮革与化工,2009,26(3):34-37.
    那娟娟,冉均国,苟立,苏葆辉,李维俊.纳米铁粉对四氯化碳的脱氯行为[J].硅酸盐学报,2006,34(4):487-490.
    潘成福,侯登录,张民.纳米铁微粒的溅射制备及力度计算[J].磁记录材料, 1991,2:8-9.
    唐一科,许静,韦立凡.纳米材料制备方法的研究现状与发展趋势[J].重庆大学学报(自然科学版),2005,28(1):5-10.
    唐玉斌,吕锡武,陈芳艳.纳米铁降解水中偶氮染料酸性红B的动力学研究[J].环境科学与技术,2006,29(10):19-21.
    王翠英,陈祖耀,程彬等.无机高分子磁性复合粒子的制备与表征[J].化学物理学报,1999,12(6):670-674.
    王佳丽,余建华,吴潇,吕许超朱谱新.印染行业的节能与减排[J].清洁生产,2009,31(1):25-28.
    王君,韩建涛,等.氧化钆掺杂二氧化钛催化超声降解甲基橙的研究[J].化工环保,2004,24 (3):161-164.
    王淑荷,蔡瑜玲,安刚. Fe超微粒子的组织结构研究[J].金属学报,1989,25(5):B358.
    王韬,李鑫钢,杜启云.含酚废水治理技术研究进展.化工进展,2008,27(2):231-234.
    王玉红,贾志谦,陈剑峰等.超重力场合成超微细CaCO3的粒度控制研究.材料科学与工程,1998,16(2):65-67.
    吴栋,韦建军,唐永建,吴卫东,罗江山,孙卫国.纳米铁粉制备方法的研究[J].四川大学学报(自然科学版),2008,45(2):352-355.
    吴会军,刘笑笑,朱冬生,向兰,於祯.水热反应法制备纳米粉体的研究进展[J].现代化工,2003,23(增刊):37-40.
    吴继锋.零价铁处理废水的机理及应用[J].安庆师范学院学报(自然科学版),2001,7(2):78-79.
    吴双桃,陈少瑾,胡劲召等.零价铁对土壤中硝基苯类化合物的还原作用[J].中国环境科学,2005:188-191.
    熊平,傅伟,彭飞武,等.磁性纳米铁微粒的制备方法研究[J].金属功能材料,2007,14(1)1:33-36.
    徐新华,金剑,卫建军.纳米Pd/Fe双金属对2,4-二氯酚的脱氯机理及动力学.环境科学学报,2004,24(4):561-567.
    徐新华,周红艺,王大翠.金属催化还原技术对p-二氯苯的脱氯[J].环境科学,2004,25(6):101.
    徐承坤,杨中东.电沉积法制备纳米晶材料[J].有色金属冶金,1997,4(3):102-105.
    杨秀春,丁子上.等离子体法制备SiC超细粉的研究进展.材料导报,1996,10(2):34-37.
    余青原,王琳,张宝伟.浅析水中砷的去除[J].山西建筑,2007(33) :182-184.
    园英,刘菲,鲁雅梅.零价铁去除Cr (Ⅵ)的批实验研究[J].岩石矿物学杂志,2003(22):349-351.
    岳林海,樊邦棠.半导体复合体系光催化降解水溶性染料研究.环境污染与防治[J].1998,16(4):2-5.
    曾京辉,曾恒兴.金属磁粉合成进展[J].磁记录材料,1999,3:1-5.
    曾京辉,郑化桂,曾桓兴,等.纳米α-Fe金属磁粉制备及其磁性能研究[J].中国科学技术大学学报,1999,29(5):595-599.
    曾晓飞,王国全,陈建峰.纳米CaCO3/PVC共混体系的研究[J].塑料科技,2001,(3):1-3.
    张春桂,许华夏,姜晴楠.五氯酚的微生物降解与光解[J].生态学杂志,1997,16(3):19-22.
    张建英,梁缘东,陈曙光,等.染色废水脱色混凝效应研究[J].环境污染与防治,1998,20(3):9-12
    张敬畅,刘慷,等.纳米粒子的特性、应用及制备方法[J].石油化工高等学校学报,2001,14(2):21.
    张立德.奈米材料[M].五南图书出版股份有限公司,2002:12.
    张瑞华,孙红文.零价铁修复铬污染水体的实验室研究[J].农业环境科学学报,2004,23(6):1192-1195.
    张少辉.地下水中硝酸盐去除新工艺[J].中国沼气,2002,20(3):13-23.
    张喜梅,陈玲,李琳.纳米材料制备研究现状及其发展方向[J].现代化工,2007,20(7):13-16.
    张选军,戴友芝,宋勇等.超声波协同纳米铁降解2,4-二氯苯酚的研究[J].环境化学,2005,27(3):87-90.
    章仪,陈文哲,章文贡.脉冲激光法连续制备纳米铁溶胶及其分散稳定性的研究[J].化学学报, 2003,61(1):41.
    张颖,李光明,陈玲,赵建夫,陈岳松.活性炭再生技术的发展[J].化学世界,2001,8:441-444.
    张智敏,王自为,张晔,等.电化学沉积法制备纳米铁微粒及其性能的研究[J].山西大学学报(自然科学版),2003,26(3):235-237.
    张中太,林元华,唐子龙,张俊英.纳米材料及其技术的应用前景[J].材料工程,2000, 3:42-47.
    赵兵,刘征涛,黄民生等.持久性有机污染物的研究进展[J].净水技术,2005,24(2):30-34.
    赵强,庞小峰.磁性纳米生物材料研究进展及其应用[J].原子与分子物理学报,2005,22(2):222.
    赵天亮,陈芳媛,宁平,杨群.工业含酚废水治理进展及前景[J].环境科学与技术,2008,31(6):64-66.
    赵晓波,陈晓昀,王京平,孔祥燕.工业废水中氯苯酚类化合物的处理技术研究[J].广东化工,2010,37(3):145-146.
    赵新清,梁勇,胡壮麒.纳米铁微粒表面氧化物的结构及磁性[J].金属学报,2001,37(6):633-636.
    赵毅,许勇毅,赵莉,韩静.纳米级二氧化钛光催化氧化技术的研究[J].水世界-中国城镇水网(http://www.chinacitywater.org/xsdt/xslw/gygps/download/1170039950062.pdf).
    赵宗山,刘景福,邰超.离子交换树脂负载零价纳米铁快速降解水溶性偶氮染料[J].中国科学B辑:化学.2008,38(1):60-66.
    周庆祥,林海英,肖军平.纳米零价铁在环境修复中的应用[J].安徽农业科学,2008,36(1):283-284.
    邹大香.影响水热合成纳米Fe3O4晶粒纯度和平均粒径的因素[J].科学技术与工程,2003(3):253.
    邹涛.强磁性Fe3O4纳米粒子的制备及其性能表征[J].精细化工, 2002,19(12):707.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700