用户名: 密码: 验证码:
黄土挖方高边坡稳定性变化机理的分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文就黄土挖方高边坡工程问题,首先在三轴仪上考虑边坡开挖过程应力条件的变化,进行了Q_3、Q_2黄土不同含水量条件下围压卸荷、等p剪切及轴向加载三种应力路径的试验。研究表明,原状黄土含水量不同、固结围压不同、应力路径不同、应力应变曲线亦显著不同,可以由软化弹塑性模型、理想弹塑性模型或双曲线弹性模型描述。进而,整理分析了不同模型共同含有的初始切线模量、泊松比及强度指标,并根据初始切线模量变化规律揭示了黄土结构损伤特性。其次,在试验研究的基础上,应用能够反映黄土挖方边坡大、小主应力减小变化的围压卸荷剪切应力应变模型,将挖方边坡区分为路堑边坡和削坡,通过数值模拟开挖过程分析了坡高、坡型、坡比及地层含水量变化对边坡稳定性的影响。结果表明,地层含水量在12.0%~18.0%变化范围内,各种挖方边坡稳定性均随湿度的增大而显著降低;路堑边坡的稳定性随综合坡比的增大而降低,但削坡受自然坡比影响,随综合坡比的增大其稳定性基本不变;坡高30m的路堑边坡稳定性因坡型改变而有明显变化,且单一坡比多级马道型边坡的稳定性较上缓下陡平台型边坡的稳定性差,但坡高50m的路堑边坡稳定性因坡型变化而基本不变;当坡高、坡型、地层条件相同时,路堑边坡的稳定性较削坡的稳定性差。最后,就有限元法、强度折减法和极限平衡法,自然边坡与挖方边坡,围压卸荷应力路径模型分析与轴向加荷应力路径模型分析进行了比较讨论。表明有限元法、强度折减法、极限平衡法得出的安全系数依次降低;依据强度折减法分析,相同条件下,挖方边坡的安全系数较自然边坡的安全系数小;依据有限元
    
    西安理工大学硕士学位论文
    法分析,轴向加荷应力路径模型确定的安全系数较围压卸荷应力路径模
    型确定的安全系数小。
The stability mechanism of high loess excavation slopes is discussed in this paper. First ,considering the change of stress conditions in excavation slopes by means of triaxial equipment, the triaxial tests of three kinds of stress paths of Q3 and Q2 loess, including lateral unloading, keeping mean normal stress changeless and conventional axial loading, is carried out under different water content and consolidation stress conditions. The results indicate that stress-strain curves with different water contents, consolidation stresses and stress paths are evidently dissimilar, which are correspondingly described with softening elastic-plastic model, ideal elastic-plastic model and hyperbolic elastic model. Further more, on the basis of analysis of triaxial tests, the initial elastic modulus, Poisson's ratio and strength index included in differ models is analyzed, and the damage characteristics of Q3 loess is indicated on the basis of changing of the initial elastic modulus. Secondly, on the basis of mechanic
     properties analysis, applying the stress-strain model of lateral unloading which can reflect the decrease change of principal stress state in the excavation progress of slope, dividing excavations slope into cutting slope and sharpen slope, numerical simulation is respectively carried through in order to analyze the impact of changing of slope type, slope height and stratum water content on the slope stability. The result indicates that slope stability reduces notably with the humidity increasing in the condition of the water content of stratum froml2. 0% to 18%. with synthesize slope
    
    
    
    ratio increasing, the stability of cutting slopes decreases, but the stability of sharpen slope affected by natural slopes ratio changes rarely, the stability of cutting slope that height is 30m is change notably due to slope type, whose single slope ratio with madao is inferior to the slope that upper ratio is less than lower ratio with platform in middle part. But the stability of cutting slope with 50m height is little change with the slope type change. With same stratum, slope height, slope type, the cutting slope is inferior to the sharpen slope in stability. At last, the finite element method, the strength reduction method and limit equilibrium method, nature slopes and excavation slopes, lateral stress unloading model and axial loading model are analyzed and discussed relatively. The paper points out the factor of safety by means of finite element method, the strength reduction method and limit equilibrium method decreases in turn. According to analysis of the strength reduction method, the stability
    of the cutting slope is less than the stability of nature slope. According to the results by the finite element method, the factor of safety calculated by axial loading stress-strain model is less than the factor of safety by lateral unloading stress-strain model.
引文
[1] 刘祖典,黄土力学与工程,西安:陕西科学出版社.1997.
    [2] 沈珠江,理论土力学,北京:水利水电出版社,2000.
    [3] 邢义川,黄土的弹塑性模型及边坡稳定有限元分析(硕士论文),陕西机械学院,1991.
    [4] 夏旺民,Q:黄土的软化本构模型(硕士论文),西安理工大学,2002,3.
    [5] 黄文熙,土的工程性质,北京:水利水电出版社,1984.
    [6] Preveost JH and Heg K., Soil mechanics and plasticity analysis of strain softening ,Geotechnique, 1975, 25 (2), 279—297.
    [7] 蒋彭年,土的本构关系,北京:科学出版社,1982.
    [8] 邢义川等,黄土的弹塑性模型试验研究,第三届全国岩土力学数值分析与解析方法讨论会论文集,珠海,1988,Ⅰ:193—199.
    [9] 沈珠江,软土工程特性和软土地基设计,岩土工程学报,20(1),1998:100—111.
    [10] 沈珠江,粘土的双硬化模型,岩土力学,1995,16(1):1-8.
    [11] 杨光华、介玉新、李广信、黄文峰,土的多重势面模型机及其验证,岩土工程学报,1999,21(5):578-582.
    [12] 郑颖人、龚晓南,岩土的塑性理论基础,北京:中国建筑出版社,1990.
    [13] 郑颖人,广义塑性力学理论,岩土力学,21(2),2000:188—192.
    [14] 郑颖人、段建立等,广义塑性力学中的屈服面与应力-应变关系,岩上力学,21(3),2000:305—308.
    [15] 郑颖人、陈瑜瑶等,广义塑性力学的加卸载准则与土的本构模型——广义塑性力学讲座(3),岩土力学,21(4),2000:426—429.
    [16] 龚晓男,土塑性力学,杭州:浙江大学出版社,1990.
    [17] 刘国彬、侯学渊,软土的卸荷模量,岩土工程学报,18(6),1996:18-23.
    [18] 吉茂杰、刘国彬.开挖卸荷引起地铁隧道位移沉降方法预测,同济大学学报,29(5),2001:531-535.
    [19] 李守德,天然地基在基坑开挖侧向卸荷中的模量计算,土木工程学报,2002,
    
    (5):23-28.
    [20] 周健等,软土卸载孔压特性的试验与理论计算分析,岩土工程学报,24(5),2002:556-559.
    [21] Lade D.V. and Duncan J M., Elastic-plastic stress-strain theory forcohesionless soil, J. GED, ASCE, 1957, 101 (10): 1037—1064.
    [22] 李广信、吴世锋,土的卸载体缩试验研究及其机理探讨,岩土工程学报,24(1),2002:47—50.
    [23] 邵生俊,砂土的物态本构模型,岩土力学,2002,23(6):667-672.
    [24] 胡瑞林、李向全等.粘性土微结构定量模型及其工程地质特征研究,北京:地质出版社,1995.3
    [25] 沈珠江,土体结构性的数学模型——21世纪土力学的核心问题,岩土工程学报,18(1),1996:95~97.
    [26] 谢定义,试论我国黄土力学研究中的若干新趋向,岩土工程学报,23(1),2001:3-13.
    [27] 谢定义,黄土力学特性与应用研究的过去。现在和未来,地下空间,1999(4):273-284.
    [28] 沈珠江,关于黄土力学的研究途径,中加非饱和土学术研讨会议论文集,武汉,1994,153-160.
    [29] 施斌,粘土击实过程中微观结构的定量评价,岩土工程学报,1996,18(4):57~62.
    [30] 高国瑞,黄土湿陷结构分类与湿陷性.中国科学,1980(12).
    [31] 苗天德、王正贵,考虑微结构失稳的湿陷性和黄土变形机理,中国科学(B),1990(1).
    [32] 王清,微结构理论的认识和发展趋向,水文地质与工程地质,1991,(4):45—47.
    [33] 甘福德,粘土结构的研究概况,工程勘察,1992,(2):63—66.
    [34] 蒋明镜,结构性粘性土的结构性研究,南京水利科学研究院博士学位论文,1995.
    
    
    [35] Yong R N, Sheeran D E. Fabric unit interaction and soil behavior. Proceedings of the International Symposium on Soil Structure, 1973
    [36] Erupt N P, etal. Micromechanial definition of the strain tensor for granulai materials, Journal of Applied Mechancs, 1996,118:711.
    [37] 沈珠江,广义吸力和非饱和土的统一变形理论,岩土工程学,1996,18(2):1~9.
    [38] 张诚厚,两种结构性粘土的土工性质,水利水运科学研究,1983(4)第五届全国“桩基工程技术”.
    [39] 党进谦、李靖,非饱和黄土的结构强度与抗剪强度,水利学报.25(7),2001:79-90.
    [40] 谢定义、齐吉琳,土结构性及其定量化参数研究的新途径,岩土工程学报,21(6),1999:651-656.
    [41] 邵生俊、周飞飞、龙吉勇,黄土结构性参数的研究,岩土工程学报,待发.
    [42] 骆亚生.黄土的结构性研究(博士论文),西安理工大学,2003.12
    [43] 严西华,黄土高路堑边坡稳定性分析[硕士论文],长安大学,2001.6.
    [44] 沈珠江 章为民,损伤力学在土力学中的应用,第三届全国岩土力学数值分析与解析方法讨论会论文集,Ⅱ-595,珠海,1988
    [45] 沈珠江,土体变形特性的损伤力学模拟,第五届全国岩土力学数值分析与解析方法讨论会论文集,重庆,1994,1—8
    [46] 沈珠江,结构性粘土的非线性损伤力学模型,水利水运科学研究,1993,(4),247-255
    [47] 沈珠江,结构性粘土的弹塑性损伤模型,岩土工程学报,15(3),1993,21-28
    [48] 沈珠江,结构性粘土的堆砌体模型,岩土力学,21(1),2000,2—4
    [49] Shen Z J , Development of structural model for soils, Computer methods and advances in geomechanics, Wuhan, 1997, 235—240
    [50] Shen Z. J., Hu Z.Q., Damage function and a masonry model for loess,104
    
    Hongkong, Unsaturated soils for Asia, 2000, 143—146.
    [51] 杨松岩、俞茂宏,一种基于混合物理论的非饱和岩土类材料的弹塑性损伤模型,岩土工程学报,1998,(5).
    [52] 孙红、赵锡宏,软土的弹塑性各向异性损伤分析,岩土力学,1999,No.3
    [53] 黄玉华,泾阳南塬黄土滑坡特征及其灾害损失经济评价[硕士论文],西北大学,2002.6.
    [54] 高润德、彭良泉、王钊,雨水入渗作用下非饱和土边坡的稳定性分析,人民长江,32(11),2001:25-27.
    [55] 吴宏伟、陈守义、庞宇威,雨水入渗对非饱和土边坡稳定性影响的参数研究,岩土力学,21(11),1999:1-13.
    [56] 黄润秋、戚国庆,非饱和渗流基质吸力对边坡稳定性的影响,工程地质学报,10(4),2002:343-345.
    [57] 姚海林、郑少河、陈守义,考虑裂隙及雨水入渗影响的膨胀土边坡稳定性分析,岩土工程学报,23(5),2001:606-609
    [58] 郑颖人、赵尚毅、时卫民、林丽边坡稳定分析的一些进展,地下空间,21(4),2001:262-271.
    [59] 刘立平、姜德义、郑硕才、雷进生、林登发,边坡稳定性分析方法的最新进展,重庆大学学报,23(3),2000:115-118
    [60] 郭汉荣,锥形边坡稳定性分,岩石力学与工程学报,17(2),1998:123~128.
    [61] TIMOTHY D S,HISHA M T. Performance of three-dimensional slope stability methods in practice, Journal of Geotechnical and Geoenviromental engineering, ASCE, Vol: 121, Iss: 11,1998:1049-1060.
    [62] 肖专文、张奇志.遗传进化算法在边坡稳定性分析中的应用[J].岩土工程学报,20(1),1998:44~46.
    [63] 潘家铮,建筑物的抗滑稳定和滑坡分析,北京:中国水水利水电出版社,1980.
    [64] 陈祖煜,土质边坡稳定分析,北京:中国电力出版社,2002.
    [65] 朱大勇,边坡临界滑动场及数值模拟,岩土工程学报,19(1)1997,:63~68.
    [66] Sloan, S,W. and Booker, J,R. Rrmovoal of singularities in Tresca and Mohr
    
    —coulmb yield functions, Comm,Appl, Numer, Meth, 2: 173-179, 1986
    [67] Duncan J M.state of the atr: limit equilibrium and finite element analysis Engieering, ASCE,Vol: 122, Iss: 7, 1996: 577-596.
    [68] Zienkiewicz, O C,Humpeson C, Lewis R, W. Associated and non-associated visco-palsticity and plasticity in soil mechanics,Geoteehnique,Vol:25,Iss:4,1975:671-689
    [69] 宋二祥,土工结构安全系数的有限元计算,岩土工程学报,19(2),1997:1-7.
    [70] 连镇营、韩国城、孔宪京,强度折减有限元法研究开挖边坡的稳定性,岩土工程学报,24(4),2002:407-411
    [71] 张鲁渝、郑颖人、赵尚毅、时卫民,有限元强度折减法土坡稳定安全系数的精度研究,水利学报,2003(10):21-27.
    [72] Griffiths D V, Lane P A. Slope stability analysis by finite element, geotechnique, Vol: 43, Iss: 3, 1999:387-403
    [73] 李彰明,模糊分析在边坡稳定性评价中的应用,岩石力学与工程学报,16(5)1997,:490~495.
    [74] 油新华、李晓,国外离心模型试验技术在边坡工程中的应用现状与展望工程地质学报,2000(8):442—445.
    [75] 赵锡宏、孙红,罗冠威,损伤土力学,上海:同济大学出版社,2000
    [76] G.哥德赫编,张清、张弥译,有限元法在岩土力学中的应用,北京:中国铁道出版社,1983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700