用户名: 密码: 验证码:
犁体结构与工作参数对流变型土壤耕作阻力的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
耕作阻力大,能耗高是耕作的主要特征。提高耕作机械或土壤加工机械的能源利用效率或者说在满足农业生产对土壤加工要求的前提下,降低土壤耕作或土壤加工机械的能源消耗,是人们普遍关注的问题。对于占我国耕地面积比例很大的水田而言,由于尚缺乏水田土壤和机械相互作用规律的深刻认识,水田土壤耕作部件的设计很少有理论上的依据,这使得能源无法得到有效合理的利用。
     为了寻求水田土壤耕作部件设计理论的依据,探讨水田土壤的流变性质对耕作部件的影响,本论文分析研究了耕作部件在不同土壤条件、工作参数及几何结构参数下的耕作阻力。以耕作部件的耕作阻力最低作为研究目标,通过对影响耕作部件工作性能的因素进行深入研究,找出了其中的影响规律,为耕作部件的设计提供了理论依据。这对于降低我国农业生产能耗,节省生产资源,增加农民收入,促进社会主义新农村的建设均具有重要的实用价值。
     本课题以耕作机械中的重要部件犁体为研究对象,以犁体的工作功率最低为目标,借助运动学分析、数值模拟技术及优化设计方法,具体开展以下研究工作:
     1、对犁体与土壤相互作用进行分析。以二面楔和三面楔的工作原理为理论基础,将其应用到犁体的受力分析,建立了犁体牵引阻力的数学模型。
     2、对犁体进行三维建模。利用三坐标测量机来采集现有犁体曲面上的点数据,采用逆向工程技术,在Pro/E中将点数据进行三维重构得到犁体曲面的计算机模型。并以此实物模型为样本,对其进行了参数化设计。
     3、流变参数的转换。对试验土壤的机械参数进行了测量,并将纳入试验因素研究的流变参数进行了Prony级数的转化。
     4、建立犁体-土体有限元模型,并进行数值模拟分析。利用ANSYS软件建立了犁体和土壤相接触的有限元模型,并进行了三维动态模拟分析,获得了整个切削过程中,犁体阻力的实时动态变化情况。通过模拟不同的切削速度分析了切削阻力变化规律,并与土槽试验进行对比分析,其误差控制在10%以内,验证了数值模拟的可行性。
     5、进行土槽试验以分析不同耕作条件对比阻的影响。借助土槽试验,对犁体的模型、耕作速度、耕作深度以及土壤流变参数进行了四因素三水平的正交试验,并对各试验因素对试验指标的影响进行了分析。同时,对试验结果进行回归分析得出耕作土壤时单位切削面积上的耕作阻力(即比阻)与犁体的模型、耕作速度、耕作深度和流变参数的相互影响关系。试验证明,耕作深度、犁体模型以及耕作速度都对比阻有显著影响,并得到了试验因素的优组合。此外,以犁体在同一耕作深度为前提,通过物理试验分别应用双目摄像机与压力传感器对土壤表层的位移场与内部的应力场进行了测试。
     6、通过数值模拟分析犁体不同结构参数对比阻的影响。利用数值模拟试验,在犁体最优组合的工作参数前提下,对犁体的推土角、起土角、覆土角以及犁体高度进行了四因素三水平的正交试验,通过分析得到犁体覆土角对耕作比阻的影响较小,可忽略。故对比阻与推土角、起土角以及犁体高度进行回归分析并得出回归方程。
     7、对犁体的结构参数进行优化设计。借助数值模拟研究,以比阻最低为目标函数,建立了犁体主要结构参数的优化设计数学模型;并运用MATLAB工具中的约束非线性fmincon函数开展了犁体比阻的优化分析。得出了影响犁体比阻的三个主要的独立可变参数推土角、起土角以及犁体高度的最佳匹配组合。试验结果表明优化设计后的犁体比阻较之前犁体最高减小26.60%,最低也减少了6.77%。
     8、对优化犁体进行性能检测。依据翻垡原理,在ANSYS数值模拟软件中,对优化后的犁体进行了翻垡性能检测。检测结果表明,优化犁体的翻垡效果良好。
High resistance and energy consumption are the main features of tillage operation. Improving the efficiency of energy utilization of tillage machinery or soil processing machinery or decreasing the energy consumption of the machinery under the condition that the agriculture requirement is satisfied is widely concerned. For paddy fields, a large proportion of total cultivated area in China, since the lack of the profound understanding for the interaction between soil and the machinery. There is little theoretical basis for the design of paddy soil's mechinary, which makes the energy can not be utilized effectively.
     In order to seek a theoretical basis of tillage component's design for paddy soil and to investigate the affect of the rheological properties on the tillage performance, the tillage resistance under different soil conditions, working parameters and structure parameters was analysed in the paper. Aiming at the minimum tillage resistance for operation, the factors effecting tillage performance and the effecting principle were put forward, which has an important significance and practical values for the design of tillage component.
     Regarding plough as the research object, aiming at the minimum power consumption for operation, with the methods of kinematics analysis, numerical simulation and optimal design, the following research was carried out:
     1. The interaction between plough and soil was analysed. The force on the plough in the process of tillage was analysed based on the working theory of two-surface and three-surface wedges. And the mathematical model of plough's resistance was built.
     2.3D model of plough was built. Based on existing plough, point data of plough's surface were obtained by three-dimensional measuring machine. With reverse engineering technique,3D reconstruction was conducted with Pro/E in order to attain computational model of plough surface. And parametric design for plough was done with plough's computational model as a sample.
     3. The expression method of soil rheological parameters in the simulation processing was studied. The basic mechanical parameters of soil are measured. And the soil's rheological parameter is one of the facors in the experiment of soil-bin. In the processing of simulation, the rheological parameters were convered into Prony series.
     4. The finite element model of plough and soil was set up, and the interaction of plough and soil was analysed by the numerical simulation. Utilizing the software ANSYS, the finite element model about the interaction between plough and soil has been developed. Through 3D analyzing, the real-time dynamic change in resistance of plough in the whole tillage process was obtained. With simulating under various tillage speeds, the change rule of the tillage resistance was studied. The error between simulation results and experiment data in soil-bin is within 10%. It shows that the numerical simulation is feasible.
     5. The affect of different tillage conditions on specific resistance was analysed by soil-bin experiments. Orthogonal tests with four factors, involving model of plough, tillage speed, tillage depth and soil's rheological parameters, and three levels were carried out on the specific resistance in soil-bin. The affect of experimental factors on experimental index is analyzed. Through regression analyzing, the interaction relationships for tillage specific resistance and model of plough, tillage speed, tillage depth and soil's rheological parameters were obtained. The test showed that tillage depth, model of plough and tillage speeds have significant impact on the soil tillage specific resistance. The optimal combination among experimental factors was observed. Besides, the displacement field and stress field were measured at premise of the same tillage depth.
     6. The affect of different structure parameters on specific resistance was analysed by simulation. At premise of the optimal combination among plough's working parameters, orthogonal tests with four factors, involving pushing angle, rake angle, covering angle and height of plough, and three levels have been carried out on the specific resistance by numerical simulation. The result showed that the affect of covering angle on specific resistance can be ignored. And the regression equation for tillage specific resistance and pushing angle, rake angle and height of plough was obtained.
     7. The structure parameters of the plough were optimized. By means of the numerical simulation, using the specific resistance as target function, the mathematical model for optimization design for the main structure parameters of the plough was set up. Then the optimization of specific resistance was carried out by using the constrained nonlinear funetions in MATLAB. At last, the optimal combination among the three main stand-alone variable parameters affecting the specific resistance which includes the pushing angle, rake angle and height of plough was obtained. Experiments demonstrated that comparing with the resistance of initial plough, the resistance of optimal plough decreased by 26.60% at most and by 6.77% at least.
     8. The performance of optimal plough was verified. According to the law of turnning, the turn performance of optimal plough is detected in the ANSYS. The result of detection shows that the performance of optimal plough is satisfactory.
引文
[1]曾德超.机械土壤动力学[M].北京:北京科学技术出版社,1995.
    [2]Cameira M R, Fernando R M, Pereira L S. Soil macropore dynamics affected by tillage and irrigation for asilty loam alluvial soil in southern Portugal[J]. Soil & Tillage Research,2003 (70):131-140.
    [3]Bandyopadhyay K K, Mohanty M, Painuli D K et al.Infuence of tillage practices and nutrient management oncrack parameters in a Vertisol of central India[J]. Soil & Tillage Research,2003 (71):133-142.
    [4]Leea K S,Parkb S H, Parka W Y. Strip tillage characteristics of rotary tiller blades for use in a dryland direct rice seeder[J]. Soil & Tillage Research,2003 (71):25-32.
    [5]Aon M A,Sarena D E, Burgosb J L, et al. (Micro)biological, chemical and physical properties of soils subjected to conventional or no-till management:an assessment of their quality status[J]. Soil & Tillage Research,2001 (60):173-186.
    [6]Gill W R. A history of soil dynanmics and the national tillage machinery laboratory[C]. Proceeding of Internaional Coference on Soil Dynamics.Auburn,1985,1.
    [7]Bishop A W, Henkel D J. The measurement of soil properties in the triaxial test[M]. Edward Arnold Ltd,1957.
    [8]National Research Council Canada.Laboratory Shear Testing of Soils[M]. Ottawa, Canada:ASTM International,1965.
    [9]Ladd C C,Foott R,Ishihara K,et al.Stress-deformation and strength characteristics[J]. Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering.Tokyo:[s.n.],1977:421-494.
    [10]孙一源等.CBF-25型犁体体曲面的数学模型[J].江苏工学院学报,1983(3):14-23.
    [11]Tian Zhongxiao.Studies of the power tiller on the moist paddy land[J]. Journal of JSAM,1958(3)(4).
    [12]Boyd R J, Nalezny C L. A model vibrating soil cutting,[C]. SAE,1967:67-750.
    [13]Pan Junzheng, Ji Changying. Prediction of sinkage for wetland vehicles[J]. J.Terramechanics,1987(2):152-168.
    [14]姬长英,陈铭年,潘君拯.按水田土壤流变特性预测水田车辆下陷量的方法和仪器的研究[J].农业机械学报,1986(1):21-31.
    [15]Lu Zejian, Pan Junzheng. A Study on the rheological properties of paddy soils in China with analytical and finit element method [J]. Proc..1 st Asian-Pacific Conf. ISTVS,1986:481-496.
    [16]Chen Bingcong,Lu Huaimin.The finit element anaysis of elasto-viscoplasticity for interaction between vertical blade-shaped foot of walking boat-type tillage machine and paddy soil[J]. Proc.1st Asian-Pacific Conf. ISTVS,1986:361-373.
    [17]潘君拯.流变型土壤应力-应变-时间图及其应用[J].镇江农业机械学院学报,1982(2):1-4.
    [18]蔡国芳,黄亚娟,潘君拯.受冲击扰动饱和粘质水田土壤流变特性研究[J].农业机械学报,1990(4):40-44.
    [19]潘君拯.流变学与水田土壤[J].自然杂志,1983,6(11):817-821.
    [20]潘君拯,姬长英.我国水田土壤流变特性研究(1-4报)[J].农业机械学报,1982-1983.
    [21]丁启朔,丁为民.现代土壤机械耕作研究的综述[J].土壤通报,2006,37(2):149-153.
    [22]Ji Changying, Pan Junzheng. Chain-paddle driving mechanism and its pull prediction[J]. J. Terramechanics,1995,32(2):63-77.
    [23]Ji Chanying, Pan Junzheng. Relationship between bearing capacity and depth of soft layer of paddy fields in south China[J]. J. Terramechanics,1998,35(4):225-228.
    [24]Ji Chanying, Pan Junzheng. Fuzzy prediction of soil strength based on water content and composition[J]. J. Terramechanics,2000,37(2):57-63.
    [25]印长俊.水泥土流变力学性能的试验研究[D].湘潭:湘潭大学,2004.
    [26]姬长英,鲁植雄,潘君拯.中国南方水田土壤的承载能力和粘附性能预测[J].南京农业大学学报,1999,22(4):105-108.
    [27]姬长英,鲁植雄,潘君拯.有关强度和软泥层深度的水田土壤的模糊聚类分析[J].南京农业大学学报,2000,23(1):101-104.
    [28]Ji Changying,Pan Junzheng, Chen Minnian. Measurement of rheological parameters for paddy soils[C]. Proc.1st Asian-Pacific Conf. ISTVS,1992:445-456.
    [29]Pan Junzheng, Ji Changying. Prediction of sinkage for wetland vehicles [J]. Journal of Terramechanics,1986,23(2):59-68.
    [30]Ji Changying, Pan Junzheng. Pull prediction of Chainpaddle driving mechanism[C]. Proc.3rd Asian-Pacific Conf. ISTVS,1992:21-25.
    [31]姬长英,赵迟航.动载式水田土壤流变仪的研制[J].农业机械学报,2004,35(2):88-91.
    [32]Pan Junzheng, Ji Changying. Fuzzy clustering of Paddy field soils in South China[J]. Journal of Terramechanics,1998(35):21-24.
    [33]姬长英,潘君拯.湿软土壤-剪切速度-时间关系及其应用[J].农业工程学报,1994,10(4):20-43.
    [34]Mari G R, Ji Changying, Zhou Jun.Effects of soil compactionon on soil physical properties and nitrogen, phosphorus, potassium uptake in wheat plants[J]. Transactions of the Chinese Society of Agricultural Engineering,2008,24(1):74-79.
    [35]李汝莘,高焕文,苏元升.土壤容重和含水量对耕作阻力的影响[J].农业工程学报,1998,14(1):81-85.
    [36]罗大海,诸葛茜,蒋崇贤.水田土壤流变理论研究及其应用[J].武汉工学院学报:信息与管理工程版,1990,12(2):1-9.
    [37]马祥.土的本构模型研究现状与趋势[J].山西建筑,2008,34(16):90-91.
    [38]龚晓南.土塑性力学(第二版)[M].杭州:浙江大学出版社,1999.
    [39]SchiffmanR L. Analysis of the displacement of the ground surface due to a moving vehicle[C]. Simposium of Proc. Int. Conf. on Mechanics of Soil-vehicle Systems,1961:45-62.
    [40]潘君拯.我国水田土壤流变模型初探[J].镇江农业机械学院学报,1981(2):10-15.
    [41]Pan Junzheng.The general rheological model of paddy soils in south China[J]. Journal of Terra mechanics,1986,23(2):59-68.
    [42]沈杰,余群.湿软土壤压力-下陷-时间关系的建立[J].农业机械学报,1983,14(4):15-19.
    [43]沈杰,余群.湿软土壤压缩流变特性研究[C].第五届地面机器系统年会论文,1988.
    [44]Ram R B,Gupta C P. Relationship between rheological coefficients and soils parameters in compression test[J]. Trans. ASAE 1972,15(6):1054-1058.
    [45]Sitkei G.农业土壤的粘弹性及其对土壤-车轮相互作用的影响[J].国外拖拉机参考资料,1972:207-212.
    [46]Luo Dahai, ZhuGe Qian,Jiang Chongxian. Rheological pheonomenon of the sinkage and horizontal displacement of paddy field soil and its application[C]. Proc.9th Int,Conf.ISTVS,1987:104-111.
    [47]Gupta C P, Pandya A C. Behavior of soil under dynamic loading:its application to tillage implements[J]. Trans, ASAE,1967,10(3):352-358.
    [48]Krishma R.Gupta C P. Dynamic behavior of soil in compression by propagation of stress waves with a tillage tool[J]. Trans, ASAE,1972,15(6):1031-1034.
    [49]Yong R N. Prediction of unsaturated soil strength for traction development in vehicles mobility[C]. Proc.9th Int.Conf. ISTVS,1987:67-70.
    [50]Hiroma T, Ota Y. Analysis of normal stress distribution under a wheel using a viscoelastic model of soils[C]. Proc.lOth Int. Conf, ISTVS,1990:241.
    [51]Pan Junzheng. The stress-strain-time graph of rheological soils and its application[C]. Proc.8th Int, Conf. ISTVS.1984:539-544.
    [52]杨挺青.粘弹性理论及其应用[M].北京:科学出版社,2004.
    [53]丛静华,何瑞银,杨忠等.铧式犁犁体曲面设计的现状与研究[J].林业机械与木工设备,2005,33(2):18-20.
    [54]Weise G, Eichhorn H. The application of Mohr-Coulomb soil mechanics to the design of winged shares[J]. J. agric. Engng Res.1997 (67):235-247.
    [55]Formato A, Faugno S,Paolillo G.Numerical simulation of soil-plough mouldboard interaction [J]. Biosystems Engineering,2005,92(3):309-316.
    [56]Aguilar M A,Aguilar F J, Aguera F, et al.The evaluation of close-range photogrammetry for the modeling of mouldboard plough surfaces[J]. Biosystems Engineering,2005,90(4):397-407.
    [57]何志民,杨芳,孙红霞,等.水平直元线犁体曲面参数化设计[J].机械科学与技术,2002,21(4):562-568.
    [58]杨青,杨文彩.采用改进的遗传算法求解高速犁体曲面的优化模型[J].农业工程学报,2003,19(1):80-83.
    [59]庞明勇,卢章平,陈翠英,等.Loop细分技术在犁体曲面造型中的应用[J].农业机械学报,2004,35(5):58-61.
    [60]汤智辉,贾首星,孟祥金,等.1LCHT-435(535)型垂直换向调幅犁的研制[J].新疆农机化,2005(2):10-12.
    [61]赵永满,王维新,刘俊奇.水平直元线犁体曲面的三维参数化设计[J].农机化研究,2007(12):89-91.
    [62]余贵珍,吴成武,丁能根,等.犁体参数化设计系统的研究[J].农业机械学报,2008,39(3):49-52.
    [63]赵永满,梅卫江.铧式犁犁体曲面设计研究现状与分析[J].农机化研究,2010(5):232-235.
    [64]孟祥旭,徐延宁.参数化设计研究[J].计算机辅助设计与图形学学报,2002,14(11):1086-1090.
    [65]吴立军,陈波Pro/E Wildfire二次开发技术基础[M].北京:电子工业出版社,2006.
    [66]张红旗,曹文钢.开发Pro/E用户化菜单的技术与实践[J].合肥工业大学学报(自然科学版),2001,24(2):240-243.
    [67]崔建生,吴锡英,黄和凤.利用开发工具和工程数据库进行特征造型的方法[J].机械工业自动化,1995,17(1):8-11.
    [68赵文星Pro/ENGINEE中生成二维程图的二次开发定制[J].经验与技巧,2001(7):45-47.
    [69]陈辰,钱晓锋,张丽艳.基于Pro/E平台的工程图纸自动化生成软件的开发[J].研究与开发,2001(11):74-76.
    [70]过杨,宋永增,甄子健.基于Pro/Engineer的内燃机车三维标准件库的建立[J].北方交通大学学报,2002,26(1):63-66.
    [71]宋玉银,蔡复之,张伯鹏,等.基于特征设计的CAD系统[J].计算机辅助设计与图形学学报,1998,10(2):145-151.
    [72]宋玉银,蔡复之.面向并行工程的CAD系统[J].清华大学学报(自然科学版)1998,38(8):31-34.
    [73]张士国.基于Pro/ENGINNER二次开发的犁体曲面计算机辅助设计研究[D].南京:南京农业大学,2007.
    [74]Hsu Wynne, Fuh YH Jerry,Zhang Yunfeng.Synthesis of design concepts from a design for assembly perspective [J]. Journal of Mechanical Design.2000(114):659-666.
    [75]董敬,庄志,常思勤.汽车拖拉机发动机[M].北京:机械工业出版社,2001.
    [76]叶康民.金属腐蚀与防护概论[M].北京:人民教育出版社,1980.
    [77]周静舒.防锈技术[M].北京:化学工业出版社.1988.
    [78]W.R.吉尔,GE.范德伯奇.耕作和牵引土壤动力学[M].北京:中国农业机械出版社,1983.
    [79]Arvidsson J,Keller T, Gustafsson K. Specific draught for mouldboard plough, chisel plough and disc harrow at different water contents[J]. Soil&Tillage Research,2004 (79):221-231.
    [80]Roul A K,Raheman H, Pansare M S, et al.Predicting the draught requirement of tillage implements in sandy clay loam soil using an artificial neural network[J]. Biosystems Engineering,2009 (104):476-485.
    [81]Godwin R J, O'Dogherty M J, Saunders C, et al. A force prediction model for mouldboard ploughs incorporating the effects of soil characteristic properties.plough geometric factors and ploughing speed[J]. Biosystems Engineering,2007(97):117-129.
    [82]Owende P M O, Ward S M.Characteristic loading of light mouldboard ploughs at slow speeds[J]. Journal of Terramechanics,1996,33(1):29-53.
    [83]Gupta P D,Gupta C P, Pandey K P.Performance evaluation of wide cutting tillage tools of different geometry for dryland farming[J]. Soil&Tillage Research,1989 (14):145-162.
    [84]Chamen W C T,Cavalli R. The effect of soil compaction on mole plough draught[J]. Soil&Tillage Research,1994(32):303-311.
    [85]Salokhe V M, Suharno,Gee-Clough D. Effect of enamel coating on the field performance of a mouldboard plough[J]. Soil&Tillage Research,1992 (24):285-297.
    [86]Singh N,Singh G,SalokheV M. Cyclic variation in moldboard plow draft and its effect on implement control systems[J]. Soil&Tillage Research,1991 (21):273-286.
    [87]Kheiralla A F, YahyaA, Zohadie M,et al.Modelling of power and energy requirements for tillageimplements operating in Serdang sandy clay loam,Malaysia[J]. Soil&Tillage Research,2004 (78):21-34.
    [88]McLaughlin N B,MacLeod J A,Sanderson J B,et al.Effect of red clover(Trifolium pratense L.)kill with glyphosate on tillage implement draft[J]. Soil&Tillage Research,2004 (79):63-70.
    [89]A1-Suhaibani S A,A1-Janobi A R.Draught requirements of tillage implements operating on sandy loam soil[J]. J.agric.Engng Res.,1997(66):177-182.
    [90]Kushwaha R L,Linke C.Draft-speed relationship of simple tillage tools at high operating speeds[J]. Soil&Tillage Research,1996 (39):61-73.
    [91]Bergeijk J van,Goense D,Speelman L. Soil tillage resistance as a tool to map soil type differences[J]. J.agric.Engng Res.2001,79(4):371-387.
    [92]Suministrado D C,Koike M,Konaka T,et al. Prediction of soil reaction forces on a moldboard plow surface[J]. Journal of Terramechanics,1990,127 (4):307-320.
    [93]Soni P,Salokhe V M,Nakashima H.Modification of mouldboard plough surface using arrays of polyethylene protuberances[J]. Journal of Terramechanics,2007 (44):411-422.
    [94]Yong R N, Hanna A W. Finite element analysis of plane soil cutting[J].J.of Terramechanics,1977,14(3):103-125.
    [95]谢晓谜.东北壤土二维切削问题的非线性有限元分析[J].农业机械学报,1983(1):74-81.
    [96]刘燕,后之明.窄刀板切削过程的三维双非线性有限元分析[J].农业机械学报,1987(3):19-25.
    [97]Chi L, Kushwaha R L. Finite element analysis of forces on a plane soil blade Can[J]. Agric. Eng.,1989,31(2):135-140.
    [98]Chi L, Kushwaha R L. A non-linear 3-D finite element analysis of soil failure with tillage tools[J]. Journal of Terramechanics,1990,27(4):343-366.
    [99]Chi L, Kushwaha R L. Finite element analysis of soil forces on two shapes of tillage tool[J]. Canadian Agricultural Engineering,1991,33(1):39-45.
    [100]Kushwaha R L. Finite element modeling of tillage tool design[J].Transactions of the Canadian Society for Mechanical Engineering,1993,17(2):257-269.
    [101]陆怀民,张云廉,刘晋浩.土壤切削弹粘塑性有限元分析[J].岩士工程学报,1995,17(2):100-105.
    [102]Arraya K, Gao R. A non-linear three-dimensional finite element analysis of subsoiler cutting with pressurized air injection[J]. J. agric. Engng Res,1995,61(2):115-128.
    [103]Kushwaha, R L and Shen,J. Finite element analysis of the dynamic interaction between soil and tillage tool[J]. Trans. of the ASAE,1995,37(5):1315-1319.
    [104]Mouazen A M,NemenyiM. Tillage tool design by the finite element method:Part 1. finite element modelling of soil plastic behaviour[J]. J. Agric. Engng. Res.,1999,72(1):37-51.
    [105]Mouazen A M, Nemenyi M. A review for the finite element modelling techniques of soil tillage[J]. Mechanics and Computers in Simulation,1998,48(1):23-32.
    [106]Kushwaha R L,Zhang Z X. Evaluation of factors and current approaches related to computerized design of tillage tools:a review[J]. Journal of Terramechanics,1998,35(2):69-86.
    [107]Fielke J M. Finite element modelling of the cutting edge of tillage implements with soil[J]. J. Agric. Engng. Res.,1999,74(1):91-101.
    [108]Abdul Mounem Mouazen, Herman ramon. A numerical_statical hybrid scheme for evalution of draught requirements of a subsoiler cutting a sandy loam soil, as affected by moisture content, bulk density and depth [J]. Soil and Tillage Research,2002,63(1):155-165.
    [109]郭志军,周志立,佟金,等.抛物线型切削面切削性能二维有限元分析[J].洛阳工学院学报,2002,23(4):1-4.
    [110]郭志军,周志立.仿生弯曲形切削工具切削性能的二维有限元分析[J].机械工程学报,2003,39(9):106-109.
    [111]陆怀民.切土部件与土壤相互作用的粘弹塑性有限元分析[J].土木工程学报,2002,35(6):1-4.
    [112]Abo-Elnor M, Hamilton R,Boyleb J T.3D Dynamic analysis of soil-tool interaction using the finite element method[J]. Journal of Terramechanics,2003,40(1):51-62.
    [113]Formato A,Faugno S,Paolillo G.Numerical simulation of soil-plough mouldboard interaction[J]. Biosystems Engineering,2005,92(3):309-316.
    [114]刘仁辉.弹体在土壤中运动规律的数值模拟分析[J].山西建筑,2006,32(7):97-98.
    [115]丁峻宏,金先龙,郭毅之.土壤切削大变形的三维数值仿真[J].农业机械学报,2007,36(4):118-121.
    [116]Lewis B A. Manual for LS-DYNA soil material model 147[R]. Department of Transportation, Federal Highway Administration, U.S.A.,2004.
    [117]Karmakara S,Kushwaha R L, Lague C. Numerical modeling of soil stress and pressure distribution on a flat tillage tool using computational fluid dynamics[J]. Biosystems Engineering, 2007,97(1):407-414.
    [118]马爱丽,廖庆喜,田波平,等.基于ANSYS/LS-DYNA的螺旋刀土壤切削的数值模拟[J].华,中农业大学学报,2009,28(2):248-252.
    [119]郭志军,佟金,任露泉,等.耕作部件—土壤接触问题研究方法分析[J].农业机械学报,2001,32(4):102-104.
    [120]王国强.实用工程数值模拟技术及其在ANSYS上的实践[M].西安:西北工业大学出版社,1999.
    [121]朱凤武,佟金.土壤深松技术及其高效节能仿生研究的发展.吉林大学学报(工学版)[J],2003,33(2):95-99.
    [122]李范哲,朴今淑.评价土壤耕作部件工作阻力的数学模型[J].延边农学院学报,1996,18(3):32-35.
    [123]北京农业机械化学院.农业机械学(上册)[M].北京:农业出版社,1988.
    [124]Pan Junzheng.The general rheological model of paddy soil in south China[J], J. Terramechanics, 1986,23(2):5-68.
    [125]Lee E Hh.Stress analysis in visco-elastic bodies[J].Q.Applied Mathematics,1955,13(2):183-190.
    [126]王焕定,王伟.有限单元法教程[M].哈尔滨工业大学出版社.2003.
    [127]姬长英.湿软土壤剪切应力—剪切速度—时间关系及履带板和链浆式驱动装置的推力研究[D]. 南京:南京农业大学.1994.
    [128]李凌云.热处理对犁铧和犁壁牵引阻力的影响[J].农牧与食品机械,1994(5):31-33.
    [129]北京农业机械化学院主编.农业机械学(上册)[M].北京:农业出版社,1992.
    [130]北京农业机械化学院主编.农业机械学(上册)[M].北京:农业出版社,1996.
    [131]后之明.土垡在犁耕过程中的运动[C].中国农业学会耕作学术讨论会论文,1982.
    [132]刘之生.反求工程技术[M].北京:机械工业出版社,1996.
    [133]曾德超,郭祺泰.按翻土曲线变化规律设计滚垡壁犁犁体曲面的方法[J].农业机械学报,1965,8(3):265-276.
    [134]李世国Pro/TOOLKIT程序设计[M].北京:机械工业出版社,2003.
    [135]刘雄.岩石流变学概论[M].北京:地质出版社,1994.
    [136]王维纲.高等岩石力学理论[M].北京:冶金工业出版社,1996.
    [137]王芝银,李云鹏.岩体流变理论及其数值模拟[M].北京:科学出版社,2008.
    [138]于学馥,郑颖人,刘怀恒,等.地下工程围压稳定性分析[M].北京:煤炭工业出版社,1983.
    [139]南京水利科学研究院土工研究所.土工试验技术手册[M].北京:人民交通出版社,2003.
    [140]徐泳,李红艳,黄文彬.耕作土壤动力学的三维离散元建模和仿真方案策划[J].农业工程学报,2003,19(2):34-38.
    [141]刘燕,后之明.窄刀板切削过程的三维双非线性有限元分析[J].农业机械学报,1987,9(3):18-26.
    [142]周明,张国忠,许绮川,等.土壤直角切削的有限元仿真[J].华中农业大学学报,2009,28(4):491-494.
    [143]李国和,王敏杰,段争春.基于ansys/ls-dyna的金属切削过程有限元模拟[J].农业机械学报,2007,38(12):173-176.
    [144]丁峻宏,金先龙,郭毅之,等.土壤切削大变形的三维数值仿真[J].农业机械学报2007,38(4):118-121.
    [145]赵荣国,张淳原,陈忠富.基于弹性回复对应原理的非线性粘弹性本构模型[J].固体力学学报,2003,6(24):72-77.
    [146]张为民.非线性粘弹性本构关系及其应用[J].湘潭大学自然科学学报,2000,12(22):39-44.
    [147]陈艳,张科慧Boltzmann叠加原理在聚合物粘弹性理论中的应用[J].西北师范大学学报(自然科学版),2005,5(41):84-86.
    [148]谢晓谜,张德骏.土壤工作部件半无限系统有限元分析中的等参模糊元[J].农业机械学报1985,9(3):31-39.
    [149]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [150]朱伯芳.有限单元法原理及应用(第三版)[M].北京:水利水电出版社,2009.
    [151]张耀良.张量分析及其在连续介质力学中的应用[M].哈尔滨工程大学出版社,2004.
    [152]殷有泉.非线性有限元基础[M].北京:北京大学出版社,2007.
    [153]孙钧.地下结构有限元法解析[M].上海:同济大学出版社,1988.
    [154]江见鲸.钢筋混凝土结构非线性有限元理论与应用[M].陕西:科学技术出版社,1994.
    [155]王焕定,王伟.有限元法教程[M].哈尔滨:工业大学出版社,2003.
    [156]徐芝纶.弹性力学(第4版)[M].北京:高等教育出版社,2006.
    [157]夏志皋.塑性力学[M].上海:同济大学出版社,1991.
    [158]杨桂通.弹塑性力学[M].北京:清华大学出版社,2004.
    [159]郭志军,佟金,任露泉,等.耕作部件-土壤接触问题研究方法分析[J].农业机械学报,2001,32(4):102-112.
    [160]徐中华,王建华.有限元法分析土壤切削问题的研究进展[J].农业机械学报,2005,36(1):134-137.
    [161]郭志军,周志立,任露泉.仿生弯曲形切削工具切削性能的2维有限元分析[J].机械工程学报,2003,39(9):106-109.
    [162]李围.ANSYS土木工程应用实例[M].北京:中国水利水电出版社,2007.
    [163]祝效华,余志祥.ANSYS高级工程有限元分析范例精选[M].北京:电子工业出版社,2004.
    [164]易日.使用ANSYS 6.0进行静力学分析[M].北京:北京大学出版社,2002.
    [165]夸克工作室.有限元分析基础篇ANSYS与Malab[M].北京:清华大学出版社,2002.
    [166]尚晓江.ANSYS结构有限元高级分析方法与范例应用[M].北京:中国水利水电出版社,2006.
    [167]孙明礼,胡仁喜,崔海蓉.ANSYS10.0电磁学有限元分析实例指导教程[M].北京:机械工业出版社,2007.
    [168]时党勇,李裕春,张胜民.基于ANSYS/LS-DYNA8.1进行显式动力分析[M].北京:清华大学出版社,2005.
    [169]李皓月,周田朋,刘相新.ANSYS工程计算应用教程[M].北京:中国铁道出版社,2002.
    [170]洪庆章,刘清吉,郭嘉源.ANSYS教学范例[M].北京:中国铁道出版社,2002.
    [171]张立明Algor\Ansys在桥梁工程中的应用方法与实例[M].北京:人民交通出版社,2003.
    [172]邓凡平ANSYS 10.0有限元分析自学手册[M].北京:人民邮电出版社,2007.
    [173]张红松ANSYS12.0有限元分析从入门到精通[M].北京:机械工业出版社,2010.
    [174]张朝晖ANSYS 11.0结构分析工程应用实例解析[M].北京:机械工业出版社,2008.
    [175]余伟炜,高炳军.ANSYS在机械与化工装备中的应用(第二版)[M].北京:水利水电出版社,2007.
    [176]薛风先ANSYS 12.0机械与结构有限元分析:从入门到精通[M].北京:机械工业出版社,2010.
    [177]黄书珍ANSYS 12.0土木工程有限元分析从入门到精通[M].北京:机械工业出版社,2010.
    [178]张朝晖.ANSYS热分析教程与实例解析[M].北京:中国铁道出版社,2007.
    [179]唐兴伦ANSYS工程应用教程—热与电磁学篇[M].北京:中国铁道出版社,2003.
    [180]陈懿.弹性理论软土地基闸站结构的计算分析[D].南京:河海大学,2005.
    [181]陈静云,周长红,王哲人.沥青混合料蠕变实验数据处理与粘弹性计算[J].东南大学学报(自然科学版),2007,11(37):1091-1095.
    [182]蔚旭灿,郑传超.圆形均不载荷作用下半空间Burgers模型粘弹性体的理论解[J].西安建筑科技大学学报(自然科学版),2008,40(6):863-867.
    [183]ANSYS公司.ANSYS建模与分网手册[M].北京:ANSYS公司,2000.
    [184]李兆明.考虑颗粒破碎的粗粒土本构模型[D].大连:大连理工大学,2007.
    [185]杨松林,张建民,黄启平.裂隙岩体蠕变柔量分析[J].岩石力学与工程学报,2004,5(23):1419-1423.
    [186]栾茂田,肖成志,杨庆,等.考虑蠕变性土工格栅加筋挡土墙应力与变形有限元分析[J]岩土力学,2006,6(27):857-863.
    [187]杜卫刚.开沟器仿生设计及其试验分析[D].吉林:吉林大学,2004.
    [188]张志峰,郝飞,冯忠绪.振动轮-土壤模型的有限元分析[J].建筑机械,2008,08:89-93.
    [189]BISHOP R H.LabVIEW 7实用教程[M].北京:电子工业出版社,2005.
    [190]侯国屏,王珅,叶齐鑫LabVIEW7.1编程与虚拟仪器设计[M].北京:清华大学出版社,2005.
    [191]杨乐平,李海涛,赵勇,等LabVIEW高级程序设计[M].北京:清华大学出版社,2003.
    [192]王立敏.基于双目立体视觉的三维重建技术研究与实现[D].西安:西安理工大学,2008.
    [193]王勇.棉花收获机器人视觉系统的研究[D].南京:南京农业大学,2007.
    [194]高贵,杨洗陈,张海明.激光再制造机器人双目视觉系统标定研究[J].中国激光,2010,7(7):1868-1872.
    [195]张瑞合.基于计算机视觉的空间空间目标定位系统研究[D].南京:南京农业大学,2000.
    [196]段华.基于双目立体视觉的计算机三维重建[D].南京:南京航空航天大学,2003.
    [197]张贞子,罗兵.机器人视觉定位系统的研究与实现[J].哈尔滨工业大学学报,1997,29(6):85-89.
    [198]刘永春.视觉测量系统的标定技术研究[D].长春:吉林大学,2007.
    [199]高文,陈熙霖.计算机视觉-算法与系统原理[M].北京:清华大学出版社,1998.
    [200]王力超,熊超,王晨毅等.基于竞争机制的简化双目立体视觉测距算法及系统设计[J].传感技术学报,2007,20(1):150-153.
    [201]徐光佑.计算机视觉[M].北京:清华大学出版,2002.
    [202]章毓晋.图像工程[M].北京:清华大学出版,1999.
    [203]孙益振.基于三轴试样局部变形测量的土体应力应变特性研究(D).大连:大连理工大学.2005.
    [204]张挺.爆炸冲击波测量技术(电测法)[M].北京:国防工业出版社,1984.
    [205]曾辉,李欢秋.压电式表面压力传感器匹配问题理论与试验研究[J].防护工程,1996(3):22-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700