用户名: 密码: 验证码:
热固性树脂基复合材料的固化变形数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维增强树脂基复合材料具有比强度和比模量高、可设计性强、抗疲劳性和耐腐蚀性好以及便于整体成型等优点,已广泛用于航空航天、建筑、汽车、舰船、体育器材等领域。复合材料制品的性能很大程度上依赖于其制造工艺。树脂传递模塑(Resin Transfer Molding, RTM)因其具有的独特优势成为纤维增强树脂基复合材料的主要制备技术之一。针对国家中长期科技发展规划中确立的大飞机重大专项,开展纤维复合材料的树脂传递模塑制备技术研究,实现高性能、低缺陷、低成本目标,具有重大的现实意义。
     RTM工艺的固化阶段是影响制品质量的关键环节之一。在固化过程中,由复合材料内部温度场和固化度场分布的不均匀性而引起的热应力以及固化收缩应力对复合材料的力学性能、形状以及尺寸稳定性有着较大的影响,可能导致复合材料层合板发生翘曲、基体开裂以及分层等现象。因此,复合材料的固化过程成为人们的研究重点之一
     在固化过程中,复合材料的物理力学性能和内应力在时空间的分布具有非均匀、非稳态、强耦合的特点,需要揭示其演变规律,进而发展复合材料固化变形的调控机制。因此,本文以RTM工艺中热固性树脂的固化过程为研究对象,应用交联反应动力学理论、高分子交联反应统计理论、高聚物结构与性能理论、复合材料热-弹性理论、复合材料本构理论、数值传热学和有限元模拟方法等学科知识,开展树脂固化反应-交联结构-力学性能的集成研究。在此基础上分析复合材料的固化收缩应力和热应力的形成机制,数值模拟内应力的演变过程以及复合材料结构件的固化变形。然后分析各种工艺因素和结构因素对内应力和固化变形的影响方式和影响规律。引入局部灵敏度分析方法,定量分析复合材料制备过程中各种工艺因素和结构因素对固化变形的影响程度及规律。根据固化变形对其影响因素的局部灵敏度分析结果提出固化变形的调控方法。
     主要工作与结论如下:
     复合材料固化过程中形成的热应力主要是由复合材料的温度场控制的,而固化收缩应力主要是由复合材料的固化度场控制的。要掌握复合材料固化过程中产生的热应力和固化收缩应力,对复合材料温度场和固化度场的准确模拟是关键。本文根据热-化学模型和固化动力学模型的耦合计算,求解了复合材料的温度场和固化度场,分析了影响温度场和固化度场的影响因素,如固化工艺温度、对流换热系数、热传导系数、升温速率、材料厚度和纤维体积分数等。
     在模拟温度场和固化度场的过程中,通过分析温度-时间-固化度之间的关系,发现在等固化条件下固化温度和固化时间的对数之间存在近似的线性关系。通过数据拟合,提出了一种简化固化动力学模型的新方法。在此基础上得到了时间-温度-固化度三者之间较为简单的关系式,简化了原先较为复杂的固化动力学方程。简化后的方程能够方便地用于工程实际,避免了繁琐的求解。
     时间-温度-转变(Time-Temperature-Transformation, TTT)图是分析和设计固化过程的有用工具,具有重要的研究价值。大多数的TTT图都是通过分析大量的实验数据得出的,既费时又费力,而且还存在较大的系统误差。本文以一种具体的树脂体系为研究对象,通过数值模拟的方法预测得到了TTT图,大大节省了时间和成本。
     复合材料的使用性能取决于其物理性能和力学性能,而材料结构是实现所需物理性能和力学性能的基础。从理论上来说,总可以找到某种材料结构来满足材料的某些性能需求。从应用的角度看,必须知道用于形成某种材料结构的加工工艺条件。同时,必须建立材料结构与材料性能之间的定量关系,从而既能够根据材料结构来定量地预测材料性能,又能够根据对材料性能的具体要求来确定材料结构。因此,进行材料的加工工艺—微观结构—宏观力学性能的集成研究,分析在具体的加工工艺条件下树脂结构、力学性能的演变过程,对于材料的开发、加工工艺的优化等方面都具有重要意义。本文结合高分子交联统计理论、树脂固化动力学、数值传热学等理论知识,建立了树脂固化过程的温度场、化学反应程度场和交联结构场的基本方程,分析了在固化反应过程中温度、固化反应程度、交联结构和力学性能等物理量的基本变化规律,实现了固化工艺-交联结构-力学性能之间诸多场量的集成研究。
     分析了固化过程中复合材料的热物理性能变化,给出在固化过程中复合材料的模量、密度、热膨胀系数、比热、热传导系数等参数的计算方法及变化规律;然后结合一个具体的算例对比分析了在不同的固化工艺温度下,树脂及复合材料的弹性模量和剪切模量、收缩应变等物理量随时间的变化规律,并分析了在固化过程中复合材料内应力的形成及发展过程。
     分析了影响复合材料结构件固化变形的工艺因素及结构因素,这些因素包括固化工艺温度、降温速率、对流换热系数、纤维体积分数、铺层方式、固化反应放热、固化收缩、层间纯树脂和树脂的粘弹效应等。任何一种树脂材料都或多或少具有粘弹效应,只是程度不同而已。在我们的研究中,由于计算机资源的限制和出于对计算时间的考虑,我们大多采用了线弹性模型。而在分析树脂的粘弹效应对固化变形的影响时,我们设计了几组对比算例,对比分析了线弹性模型和粘弹性模型的差异。研究发现,在复合材料纤维体积分数比较高、树脂固化收缩率比较低的情况下,采用线弹性和粘弹性两种模型计算的固化变形量差别不大,因为这时树脂的粘弹效应不显著。
     在分析了各种工艺因素及结构因素对固化残余应力和固化变形的影响规律之后,为了研究工艺及结构参数对复合材料固化变形的影响程度,引入了局部灵敏度分析方法,量化了这些因素对固化变形的影响程度。结果表明:纤维体积分数、固化收缩率、铺层方式和固化工艺温度都对复合材料固化变形有着显著的影响。在采用局部灵敏度分析方法研究了各因素对固化变形的影响程度之后,根据局部灵敏度分析结果,着重针对对固化变形影响程度比较大的因素提出了调控固化变形的方法。
Fiber reinforced resin matrix composites have varieties of applications in aerospace, automobile, architecture and sports equipment industries because of their notable performances, such as high specific strength and modulus, easy to design, good fatigue resistance and good corrosion resistance. The performances of this kind of composite are highly reliable on molding processes. Resin Transfer Molding (RTM) is one of the advanced manufacturing techniques and attracts more and more attention owing to its unique advantages. Aimed at the large aircraft development projects established by country mid-long-term scientific and technological development plan, research on the preparation technical of fiber composites by RTM technology to achieve high performance, low-defect, low-cost objectives is of great practical significance.
     The numerical simulation of the curing stage during RTM process is of significant importance in improving the product quality and reducing the cost. During curing process, because of the uneven distribution of the temperature field and cure degree field, the internal stress including thermal stress and chemical stress, can be induced, which can influence mechanical properties, shape and dimensional stability of composites, and may result in the composite plate warping, matrix cracking and matrix delimitation. Therefore, curing process attracts more and more attention and becomes one of the most important research priorities.
     During the curing process, the time-space distributions of the physical and mechanical properties and internal stress of composites show the characteristics of non-uniform, non-steady state and strong coupling, so we need to reveal their evolution laws, and develop the curing deformation control mechanism of the composites. Therefore, making the curing process of thermosetting resin as the study project, using polymer crosslinking reaction kinetic theory, polymer crosslinking reaction statistical theory, composite thermoelastic theory, composite constitutive theory, numerical heat transfer theory and finite element simulation method, the project attempts to carry out the integration research about the resin curing reaction-crosslinked structure-mechanical properties. On this basis, we aimed to explore the formation mechanism of curing shrinkage stress and thermal stress in composites, simulate the evolution of its internal stress and curing deformation and analyze the effects of the processing parameters and structural parameters on the curing deformation. In order to qualitatively and quantitatively explore the effects of processing parameters, structural parameters and material performance parameters on the internal stress and curing deformation, the local sensitivity analysis method is introduced and quantitatively analyze the evolutions and influencing degrees of processing parameters, structural parameters and material performance parameters during the curing process on the internal stress and curing deformation in the composites. On the basis of the local sensitivity analysis, the regulation mechanism of composite curing deformation during the composite preparation process can be proposed and realized.
     The main contents and conclusions were as follows:
     During the curing process, thermal stress is mainly controlled by the temperature field, and chemical stress is mainly controlled by the cure degree field. In order to understand the evolution of thermal stress and chemical stress during the curing process, accurately simulating the temperature and cure degree fields is an important procedure. According to coupling the heat transfer model and cure kinetic model, temperature and cure degree fields are simulated. The influencing factors of temperature and cure degree fields are analyzed, including cure temperature, convective heat transfer coefficient, thermal conductivity, heating rate, material thickness and fiber volume fraction.
     When simulating the temperature and cure degree fields, by analyzing the relationship among the temperature, time and degree of cure, we find that there is a linear relationship between the curing temperature and the logarithm of curing time under the iso-conversional conditions. By means of data fitting method, we propose a new simplified method of cure kinetic model. On the basis of this simplified method, the relatively simple relationships among time-temperature-cure degree are obtained, which simplify the original complex cure kinetic equation and can be easily used in engineering practice to avoid the cumbersome solution process.
     Time-Temperature-Transformation (TTT) diagram is a useful tool for analyzing and designing the curing process, and it has important research value. Most of the TTT diagrams are drawn through analyzing a large number of experimental data, which is time-consuming and laborious. There are also large systematic errors in experimental method. In this paper, we obtained the TTT diagram of a specific resin by numerical simulation method, which saves time greatly.
     On one hand, from the viewpoint of basic research, certain material structures could be designed to meet specific material performance requirements. Therefore, the research on the formation mechanism and evolution characteristics of material structures attracts more and more attention. On the other hand, from the viewpoint of industrial production, the appropriate processing conditions must be designed in order to obtain the specific material structures. In a word, it is important for both basic research and industrial production to understand the quantitative relationship among thermosetting resin curing processes, crosslink structures and mechanical properties. In this paper, using such disciplines as the polymer crosslinking reaction statistical theory, resin cure kinetic, heat transfer theory and so on, the basis equations of temperature field, cure degree field and crosslink structure field are established; the evolutions of temperature, degree of cure, crosslink structure and mechanical properties are analyzed; and the integrated research of resin curing processes, crosslink structures and mechanical properties are realized.
     We analyze the evolution of the thermal and physical properties of the composites during the curing process, and indicate the computing method and evolution of modulus, density and thermal expansion coefficient, specific heat and thermal conductivity. After that, aiming at a specific example, we analyze comparatively evolution of the elasticity modulus, shear modulus and shrinkage strain of resin and composites. Finally, we analyze the formation and development processes of the internal stress during the curing process.
     The processing parameters and structural parameters which influence the curing deformation are analyzed. These factors include cure temperature, cooling rate, convective heat transfer coefficient, the fiber volume fraction, lay-up styles, the curing reaction heat, curing shrinkage, viscoelastic effect of the resin and so on. All kinds of resin materials are more or less viscoelastic. Otherwise, in our paper, due to the computer resource constraints and saving the computing time, we choose the linear elastic model in most examples. While in the analysis of resin viscoelastic effect on curing deformation, we design several groups of comparison cases to analyze the difference between the linear elastic model and the viscoelastic model. We find out that the difference between the results which are calculated by the two models respectively is not significant when the fiber volume fraction is relatively high and the resin curing shrinkage is relatively low. That means the resin viscoelastic effect is not significant.
     After the analysis of the effects of processing parameters and structural parameters on internal stress and curing deformation, in order to explore the effects of processing parameters and structural parameters on curing deformation, the local sensitivity analysis method is introduced. The results indicate that fiber volume fraction, curing shrinkage, lay-up styles and cure temperature have significant influence on curing deformation. After the analysis of the influencing degree of several factors by the local sensitivity analysis method, we propose the advices of controlling the curing deformation focusing on the most important factors of curing deformation.
引文
[1]罗延龄.现代科学技术与材料科学[J].中国科技纵横,2010,(22):4-5.
    [2]王汝敏,郑水蓉,郑亚萍.聚合物基复合材料及工艺[M].北京:科学出版社,2004.
    [3]益小苏,杜善义,张立同.复合材料手册[M].北京:化学工业出版社,2009.
    [4]郝元凯,肖加余.高性能复合材料学[M].北京:化学工业出版社,2004.
    [5]倪礼忠,陈麟.聚合物基复合材料[M].上海:华东理工大学出版社,2007.
    [6]杨俊英.树脂传递模塑工艺过程的数值模拟[D].济南:山东大学,2007.
    [7]Davidson C, Feilzer A. Polymerization shrinkage and polymerization shrinkage stress in polymer-based restoratives[J]. Journal of Dentistry,1997,25(6): 435-440.
    [8]寇哲君,龙国荣,万建平,等.热固性树脂基复合材料固化变形研究进展[J].宇航材料工艺,2006,36(z1):7-11.
    [9]戴棣.复合材料结构件的固化变形研究[D].南京:南京航空航天大学,1999.
    [10]Tai H, Chou H. Chemical shrinkage and diffusion-controlled reaction of an epoxy molding compound[J]. European Polymer Journal,2000,36(10): 2213-2219.
    [11]Silikas N, Eliades G, Watts D. Light intensity effects on resin-composite degree of conversion and shrinkage strain[J]. Dental Materials,2000,16(4):292-296.
    [12]Levitsky M, Shaffer BW. Residual thermal stresses in a solid sphere cast from a thermosetting material[J]. Journal of Applied Mechanics,1975,42(3):651-655.
    [13]Teil H, Page SA, Michaud V, et al. TTT-cure diagram of an anhydride-cured epoxy system including gelation, vitrification, curing kinetics model, and monitoring of the glass transition temperature[J]. Journal of Applied Polymer Science,2004,93(4):1774-1787.
    [14]Stansbury JW, Trujillo-Lemon M, Lu H, et al. Conversion-dependent shrinkage stress and strain in dental resins and composites[J]. Dental Materials,2005,21(1): 56-67.
    [15]Shojaei A, Ghaffarian SR, Karimian SMH. Modeling and simulation approaches in the resin transfer molding process:A review[J]. Polymer Composites, 2003,24(4):525-544.
    [16]Cook WD, Lau M, Mehrabi M, et al. Control of gel time and exotherm behaviour during cure of unsaturated polyester resins[J]. Polymer International, 2001,50(1):129-134.
    [17]Dong C. Modeling the dimensional variations of composites using effective coefficients of thermal expansion[J]. Journal of Composite Materials, 2009,43(22):2639-2652.
    [18]Yasmin A, Daniel IM. Mechanical and thermal properties of graphite platelet/epoxy composites[J]. Polymer,2004,45(24):8211-8219.
    [19]Prasatya P, McKenna GB, Simon SL. A viscoelastic model for predicting isotropic residual stresses in thermosetting materials:effects of processing parameters[J]. Journal of Composite Materials,2001,35(10):826-849.
    [20]Gowayed Y, Zou W, Gross S. An analytical approach to evaluate the coefficients of thermal expansion of textile composite materials[J]. Polymer Composites, 2000.21(5):814-820.
    [21]Zheng Y, Chonung K, Wang GL, et al. Epoxy/nano-silica composites:curing kinetics, glass transition temperatures, dielectric, and thermal-mechanical performances[J]. Journal of Applied Polymer Science,2009,111(2):917-927.
    [22]Wang JL, Du ZJ, Li CJ, et al. A study on formation and stability of epoxy resin inverse concentrated water/oil emulsion[J]. Journal of Applied Polymer Science. 2009,111(2):746-752.
    [23]Turunc O, Kahraman MV, Akdemir ZS, et al. Immobilization of alpha-amylase onto cyclic carbonate bearing hybrid material[J]. Food Chemistry,2009,112(4): 992-997.
    [24]任明法,王荣国,陈浩然.具有金属内衬复合材料纤维缠绕容器固化过程的数值模拟[J].复合材料学报.2005.22(4):118-124.
    [25]谭华,晏石林.热固性树脂基复合材料固化过程的三维数值模拟[J].复合材 料学报,2004,21(6):167-172.
    [26]Costa V, Sousa A. Modeling of flow and thermo-kinetics during the cure of thick laminated composites[J]. International Journal of Thermal Sciences,2003,42(1): 15-22.
    [27]Park HC, Goo NS, Min KJ, et al. Three-dimensional cure simulation of composite structures by the finite element method[J]. Composite Structures, 2003,62(1):51-57.
    [28]Twardowski T, Lin S, Geil P. Curing in thick composite laminates:experiment and simulation[J]. Journal of Composite Materials,1993,27(3):216-250.
    [29]Kinsey S, Haji-Sheikh A, Lou D. A thermal model for cure of thermoset composites[J]. Journal of Materials Processing Technology,1997,63(1): 442-449.
    [30]程群峰,方征平,益小苏,等.双马来酰亚胺树脂体系的固化动力学和TTT图[J].材料工程,2007,(z1):188-192.
    [31]Cai HY, Li P, Sui G, et al. Curing kinetics study of epoxy resin/flexible amine toughness systems by dynamic and isothermal DSC[J]. Thermochimica Acta, 2008,473(1-2):101-105.
    [32]Zvetkov VL. Mechanistic modeling of the epoxy-amine reaction::Model derivations[J]. Thermochimica Acta,2005,435(1):71-84.
    [33]Yousefi A, Lafleur PG, Gauvin R. Kinetic studies of thermoset cure reactions:A review[J]. Polymer Composites,1997,18(2):157-168.
    [34]Dominguez J, Alonso M, Oliet M, et al. Chemorheological study of the curing kinetics of a phenolic resol resin gelled[J]. European Polymer Journal, 2010,46(1):50-57.
    [35]Dominguez J, Alonso M, Oliet M, et al. Kinetic study of a phenolic-novolac resin curing process by rheological and DSC analysis[J]. Thermochimica Acta. 2010,498(1-2):39-44.
    [36]Michaud D, Beris A. Dhurjati P. Thick-sectioned RTM composite manufacturing, part Ⅱ. Robust cure cycle optimization and control[J]. Journal of Composite Materials,2002,36(10):1201-1230.
    [37]Yi S, Hilton HH, Ahmad MF. A finite element approach for cure simulation of thermosetting matrix composites[J]. Computers and Structures,1997.64(1-4): 383-388.
    [38]Yi S, Hilton HH. Effects of thermo-mechanical properties of composites on viscosity, temperature and degree of cure in thick thermosetting composite laminates during curing process[J]. Journal of Composite Materials,1998,32(7): 600-622.
    [39]Kalogiannakis G, Van Hemelrijck D, Van Assche G. Measurements of thermal properties of carbon/epoxy and glass/epoxy using modulated temperature differential scanning calorimetry[J]. Journal of Composite Materials,2004,38(2): 163-175.
    [40]杨自春.复合材料层合结构的非线性传热分析[J].海军工程大学学报,2000,(5):9-13.
    [41]Hine P, Leejarkpai T, Khosravi E, et al. Structure property relationships in linear and cross-linked poly(imidonorbornenes) prepared using ring opening metathesis polymerisation (ROMP)[J]. Polymer,2001,42(23):9413-9422.
    [42]Hu X, Fan J, Yue CY. Rheological study of crosslinking and gelation in bismaleimide/cyanate ester interpenetrating polymer network[J]. Journal of Applied Polymer Science,2001,80(13):2437-2445.
    [43]Chern BC, Moon TJ, Howell JR, et al. New experimental data for enthalpy of reaction and temperature-and degree-of-cure-dependent specific heat and thermal conductivity of the Hercules 3501-6 epoxy system[J]. Journal of Composite Materials,2002,36(17):2061-2072.
    [44]Karkanas PI, Partridge IK. Cure modeling and monitoring of epoxy/amine resin systems. Ⅱ. Network formation and chemoviscosity modeling[J]. Journal of Applied Polymer Science,2000,77(10):2178-2188.
    [45]Martin J. Laza J, Morras M, et al. Study of the curing process of a vinyl ester resin by means of TSR and DMTA[J]. Polymer,2000,41(11):4203-4211.
    [46]Malkin AY, Kulichikhin S, Kerber M, et al. Rheokinetics of curing of epoxy resins near the glass transition[J]. Polymer Engineering and Science,1997,37(8): 1322-1330.
    [47]O'Brien DJ, White SR. Cure kinetics, gelation, and glass transition of a bisphenol F epoxide[J]. Polymer Engineering and Science,2003,43(4):863-874.
    [48]Xu W, Zhou Z, He P, et al. Cure behavior of epoxy resin/MMT/DETA nanocomposite[J]. Journal of Thermal Analysis and Calorimetry,2004,78(1): 113-124.
    [49]Montserrat S, Roman F, Colomer P. Vitrification and dielectric relaxation during the isothermal curing of an epoxy-amine resin[J]. Polymer,2003,44(1):101-114.
    [50]Panagiotis I. Karkanas IKP. Cure modeling and monitoring of epoxy/amine resin systems. II. Network formation and chemoviscosity modeling[J]. Journal of Applied Polymer Science,2000,77(10):2178-2188.
    [51]Ersoy N, Garstka T, Potter K, et al. Modelling of the spring-in phenomenon in curved parts made of a thermosetting composite[J]. Composites Part A:Applied Science and Manufacturing,2010,41(3):410-418.
    [52]Gigliotti M, Wisnom M, Potter K. Development of curvature during the cure of AS4/8552 [0/90] unsymmetric composite plates[J]. Composites Science and Technology,2003,63(2):187-197.
    [53]Koerber H, Xavier J, Camanho P. High strain rate characterisation of unidirectional carbon-epoxy IM7-8552 in transverse compression and in-plane shear using digital image correlation[J]. Mechanics Of Materials,2010,42(11): 1004-1019.
    [54]Koerber H, Camanho P. High strain rate characterisation of unidirectional carbon-epoxy IM7-8552 in longitudinal compression[J]. Composites Part A: Applied Science and Manufacturing,2011,42(5):462-470.
    [55]Abou Msallem Y, Jacquemin F, Boyard N, et al. Material characterization and residual stresses simulation during the manufacturing process of epoxy matrix composites[J]. Composites Part A:Applied Science and Manufacturing, 2010,41(1):108-115.
    [56]Curiel T, Fernlund G. Deformation and stress build-up in bi-material beam specimens with a curing FM300 adhesive interlayer[J]. Composites Part A: Applied Science and Manufacturing,2008,39(2):252-261.
    [57]Yan X. Finite element modeling of curing of epoxy matrix composites[J]. Journal of Applied Polymer Science,2007,103(4):2310-2319.
    [58]于佳,王振清,张博明,等.改性双马来酰亚胺树脂固化工艺动力学模型的建立[J].材料工程,2005,(4):55-59.
    [59]曾黎明.改性双马来酰亚胺树脂基体及其复合材料力学性能的研究[J].玻璃钢/复合材料,2001,(3):12-13.
    [60]Crawford E, Lesser AJ. The effect of network architecture on the thermal and mechanical behavior of epoxy resins[J]. Journal of Polymer Science Part B: Polymer Physics,1998,36(8):1371-1382.
    [61]Yang X. Conformational elasticity theory of chain molecules[J]. Science in China Series B:Chemistry,2001,44(2):154-168.
    [62]Eichinger BE. Random Networks, Graphs, and Matrices[J]. Macromolecular Symposia,2007,256(1):28-39.
    [63]Zobeiry N, Vaziri R, Poursartip A. Computationally efficient pseudo-viscoelastic models for evaluation of residual stresses in thermoset polymer composites during cure[J]. Composites Part A:Applied Science and Manufacturing, 2010,41(2):247-256.
    [64]Monti R, Coppola F, Gasbarri P, et al. Residual stress brazing process induced in hybrid package for ISP applications[J]. Acta Astronautica,2010,66(5-6): 897-913.
    [65]Hsiao KT, Gangireddy S. Investigation on the spring-in phenomenon of carbon nanofiber-glass fiber/polyester composites manufactured with vacuum assisted resin transfer molding[J]. Composites Part A:Applied Science and Manufacturing,2008,39(5):834-842.
    [66]Zhao LG, Warrior NA, Long AC. A thermo-viscoelastic analysis of process-induced residual stress in fibre-reinforced polymer-matrix composites[J]. Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2007,452-453:483-498.
    [67]Shokrieh MM. Simulation of central hole drilling process for measurement of residual stresses in isotropic, orthotropic, and laminated composite plates[J]. Journal of Composite Materials,2007,41(4):435-452.
    [68]Parlevliet PP, Bersee HEN, Beukers A. Residual stresses in thermoplastic composites-a study of the literature. Part III:Effects of thermal residual stresses[J]. Composites Part A:Applied Science and Manufacturing,2007,38(6): 1581-1596.
    [69]Zhao LG, Warrior NA, Long AC. A micromechanical study of residual stress and its effect on transverse failure in polymer-matrix composites[J]. International Journal of Solids and Structures,2006,43(18-19):5449-5467.
    [70]Yu Y, Ashcroft IA, Swallowe G. An experimental investigation of residual stresses in an epoxy-steel laminate[J]. International Journal of Adhesion and Adhesives,2006,26(7):511-519.
    [71]Shin KC, Lee JJ. Effects of thermal residual stresses on failure of co-cured lap joints with steel and carbon fiber-epoxy composite adherends under static and fatigue tensile loads[J]. Composites Part A:Applied Science and Manufacturing, 2006,37(3):476-487.
    [72]Kim JW, Lee JH, Kim HG, et al. Reduction of residual stresses in thick-walled composite cylinders by smart cure cycle with cooling and reheating[J]. Composite Structures,2006,75(1-4):261-266.
    [73]Sham ML, Kim JK. Curing behavior and residual stresses in polymeric resins used for encapsulanting electronic packages[J]. Journal of Applied Polymer Science,2005,96(1):175-182.
    [74]Man-Lung S, Jang-Kyo K. Evolution of residual stresses in modified epoxy resins for electronic packaging applications[J]. Composites Part A:Applied Science and Manufacturing,2004,35(5):537-546.
    [75]Djokic D. Johnston A, Rogers A, et al. Residual stress development during the composite patch bonding process:measurement and modeling[J]. Composites Part A:Applied Science and Manufacturing,2002,33(2):277-288.
    [76]杨博,薛忠民,阿茹娜,等.聚合物基复合材料残余应力的研究进展[J].玻 璃钢/复合材料,2004,(2):49-52.
    [77]Cao Y, Yu D. Internal stress of modified epoxy resins with polyester[J]. Polymer Testing,2001,20(6):685-691.
    [78]Wang J, Kelly D, Hillier W. Finite element analysis of temperature induced stresses and deformations of polymer composite components[J]. Journal of Composite Materials,2000,34(17):1456-1471.
    [79]Zhu Q, Geubelle P, Li M, et al. Dimensional accuracy of thermoset composites: simulation of process-induced residual stresses[J]. Journal of Composite Materials,2001,35(24):2171-2205.
    [80]Tseng SC, Osswald TA. Prediction of shrinkage and warpage of fiber reinforced thermoset composite parts[J]. Journal of Reinforced Plastics and Composites, 1994,13(8):698-721.
    [81]Hahn H, Pagano N. Curing stresses in composite laminates[J]. Journal of Composite Materials,1975,9(1):91-106.
    [82]Bogetti TA, Gillespie JW. Process-induced stress and deformation in thick-section thermoset composite laminates[J]. Journal of Composite Materials, 1992,26(5):626-660.
    [83]Huang C, Yang S. Warping in advanced composite tools with varying angles and radii[J]. Composites Part A:Applied Science and Manufacturing,1997,28(9-10): 891-893.
    [84]White SR, Hahn HT. Process modeling of composite materials:residual stress development during cure. Part I. model formulation[J]. Journal of Composite Materials.1992.26(16):2402-2422.
    [85]White SR, Hahn HT. Process modeling of composite materials:residual stress development during cure. Part II. experimental validation[J]. Journal of Composite Materials,1992,26(16):2423-2453.
    [86]Yi S. Chian KS, Hilton HH. Nonlinear viscoelastic finite element analyses of thermosetting polymeric composites during cool-down after curing[J]. Journal of Composite Materials,2002,36(1):3-17.
    [87]Golestanian H. El-Gizawy A. Modeling of process induced residual stresses in resin transfer molded composites with woven fiber mats[J]. Journal of Composite Materials,2001,35(17):1513-1528.
    [88]Raghavan J. Evolution of cure, mechanical properties, and residual stress during electron beam curing of a polymer composite[J]. Composites Part A:Applied Science and Manufacturing,2009,40(3):300-308.
    [89]Kim C, White SR. Continuous curing and induced thermal stresses of a thick filament wound composite cylinder[J]. Journal of Reinforced Plastics and Composites,2001,20(2):166-180.
    [90]Simon SL, McKenna GB, Sindt O. Modeling the evolution of the dynamic mechanical properties of a commercial epoxy during cure after gelation[J]. Journal of Applied Polymer Science,2000,76(4):495-508.
    [91]O'Brien DJ, Mather PT, White SR. Viscoelastic properties of an epoxy resin during cure[J]. Journal of Composite Materials,2001,35(10):883-904.
    [92]徐崇刚,胡远满,常禹,等.生态模型的灵敏度分析[J].应用生态学报,2004,15(6):1056-1062.
    [93]Smith ED, Szidarovszky F, Karnavas WJ. et al. Sensitivity analysis, a powerful system validation technique[J]. The Open Cybernetics and Systemics Journal, 2008,2:39-56.
    [94]Bogetti TA, Gillespie JW. Two-dimensional cure simulation of thick thermosetting composites[J]. Journal of Composite Materials,1991,25(3): 239-273.
    [95]Schapery R. Stress analysis of viscoelastic composite materials[J]. Journal of Composite Materials,1967,1(3):228-267.
    [96]Harper B, Weitsman Y. On the effects of environmental conditioning on residual stresses in composite laminates[J]. International Journal of Solids and Structures, 1985,21(8):907-926.
    [97]Wang TM, Daniel I, Gotro J. Thermoviscoelastic analysis of residual stresses and warpage in composite laminates[J]. Journal of Composite Materials, 1992.26(6):883-899.
    [98]Wang H, Yu T. Effects of cure history on residual stresses in epoxy resins[J]. Polymers and Polymer Composites,1995,3(5):369-374.
    [99]Chen Y, Xia ZH, Ellyin F. Evolution of residual stresses induced during curing processing using a viscoelastic micromechanical model[J]. Journal of Composite Materials,2001,35(6):522-542.
    [100]Chen H, Yang Z, Jemah A, et al. Process-induced stress analysis of composite laminates using semi-analytical Hamiltonian method[J]. Composite Structures, 1998,41(1):49-55.
    [101]郭兆璞,陈浩然,息志臣.复合材料层合板的固化残余应力和变形分析[J].复合材料学报,1995,13(1):105-110.
    [102]郭兆璞,陈浩然,杨正林.复合材料层合板在固化加工后期降温速率对残余应力的影响[J].计算结构力学及其应用,1995,12(4):387-393.
    [103]郭兆璞,陈浩然,段滋华.复合材料层合板粘弹性固化残余应力分析[J].计算结构力学及其应用,1996,13(4):401-407.
    [104]戴棣,乔新,刘善国.单曲面复合材料层合构件的固化变形计算[J].航空制造技术,1999,(5):1-9.
    [105]戴棣,乔新.复合材料层合板的非同步固化翘曲变形分析[J].南京航空航天大学学报,2000,32(1):63-68.
    [106]戴棣,乔新.粘弹性基体复合材料层合板的固化残余应力和曲率变化[J].复合材料学报,2000,17(3):38-41.
    [107]Ambu R, Ginesu F. Residual stress analysis in graphite/peek composite laminates[J]. Key Engineering Materials,2001,221-222:347-354.
    [108]Sicot O, Gong X, Cherouat A, et al. Determination of residual stress in composite laminates using the incremental hole-drilling method[J]. Journal of Composite Materials,2003,37(9):831-844.
    [109]Shojaei A, Reza Ghaffarian S, Mohammad Hossein Karimian S. Three-dimensional process cycle simulation of composite parts manufactured by resin transfer molding[J]. Composite Structures.2004,65(3-4):381-390.
    [110]Gascoigne HE. Residual surface stresses in laminated cross-ply fiber-epoxy composite materials[J]. Experimental Mechanics,1994,34(1):27-36.
    [111]Shankar K, Xie H, Wei R, et al. A study on residual stresses in polymer composites using moire interferometry[J]. Advanced Composite Materials, 2004,13(3-4):237-253.
    [112]Joh D, Byun K, Ha J. Thermal residual stresses in thick graphite/epoxy composite laminates—uniaxial approach[J]. Experimental Mechanics, 1993,33(1):70-76.
    [113]Gungor S, Ruiz C. Measurement of thermal residual stresses in continuous fibre composites[J]. Key Engineering Materials,1996,127-131:851-860.
    [114]Ha SK, Kim HT, Sung TH. Measurement and prediction of process-induced residual strains in thick wound composite rings[J]. Journal of Composite Materials,2003,37(14):1223-1237.
    [115]Manson JAE. Seferis JC. Process simulated laminate (PSL):a methodology to internal stress characterization in advanced composite materials[J]. Journal of Composite Materials,1992,26(3):405-431.
    [116]Crasto AS, Kim RY, Russell JD. In situ monitoring of residual strain development during composite cure[J]. Polymer Composites,2002,23(3): 454-463.
    [117]Meske R, Schnack E. A micromechanical model for X-ray stress analysis of fiber reinforced composites[J]. Journal of Composite Materials,2001,35(11): 972-998.
    [118]Benedikt B, Kumosa M, Predecki P, et al. An analysis of residual thermal stresses in a unidirectional graphite/PMR-15 composite based on X-ray diffraction measurements[J]. Composites Science and Technology,2001,61(14): 1977-1994.
    [119]Benedikt B, Predecki P, Kumosa L, et al. The use of X-ray diffraction measurements to determine the effect of bending loads on internal stresses in aluminum inclusions embedded in a unidirectional graphite-fibre/PMR-15 composite[J]. Composites Science and Technology,2001,61(14):1995-2006.
    [120]Schwarz R, Kutt L, Papazian J. Measurement of residual stress using interferometric Moire:A new insight[J]. Experimental Mechanics,2000,40(3): 271-281.
    [121]Ifju P, Niu X, Kilday B, et al. Residual strain measurement in composites using the cure-referencing method[J]. Experimental Mechanics,2000,40(1):22-30.
    [122]Bowman KB, Mollenhauer DH. Experimental investigation of residual stresses in layered materials using moire interferometry[J]. Journal of Electronic Packaging,2002,124:340-344.
    [123]Chan THT, Yu L, Tam HY, et al. Fiber bragg grating sensors for structural health monitoring of tsing ma bridge:background and experimental observation[J]. Engineering Structures,2006,28(5):648-659.
    [124]万里冰,武湛君,张博明,等.光纤布拉格光栅监测复合材料固化[J].复合材料学报,2004,21(3):1-5.
    [125]Guemes J, Menendez J. Response of bragg grating fiber-optic sensors when embedded in composite laminates[J]. Composites Science and Technology, 2002,62(7-8):959-966.
    [126]Kang HK, Kang DH, Hong CS, et al. Simultaneous monitoring of strain and temperature during and after cure of unsymmetric composite laminate using fibre-optic sensors[J]. Smart materials and structures,2003,12(1):29.
    [127]Murukeshan V, Chan P, Ong L, et al. Cure monitoring of smart composites using fiber bragg grating based embedded sensors[J]. Sensors and Actuators A: Physical,2000,79(2):153-161.
    [128]万里冰.埋光纤布拉格光栅传感器智能材料与结构研究[D].哈尔滨:哈尔滨工业大学,2003.
    [129]张少实,庄茁.复合材料与粘弹性力学[M].北京:机械工业出版社,2007.
    [130]沈观林,胡更开.复合材料力学[M].北京:清华大学出版社,2006.
    [131]徐秉业,王建学.弹性力学[M].北京:清华大学出版社,2009.
    [132]杨伯源,张义同.工程弹塑性力学[M].北京:机械工业出版社,2003.
    [133]金日光,华幼卿.高分子物理[M].北京:化学工业出版社,2011.
    [134]Kim YK, White SR. Process-induced stress relaxation analysis of AS4/3501-6 laminate[J]. Journal of Reinforced Plastics and Composites,1997,16(1):2-16.
    [135]Ruiz E, Trochu F. Thermomechanical properties during cure of glass-polyester RTM composites:Elastic and viscoelastic modeling[J]. Journal of Composite Materials,2005,39(10):881-916.
    [136]Jensen RE, Palmese GR, McKnight SH. Viscoelastic properties of alkoxy silane-epoxy interpenetrating networks [J]. International Journal of Adhesion and Adhesives,2006,26(1-2):103-115.
    [137]O'Brien D, Sottos N, White S. Cure-dependent viscoelastic poisson's ratio of epoxy[J]. Experimental Mechanics,2007,47(2):237-249.
    [138]郭战胜.先进热固性复合材料的工艺诱导残余应力表征[D].上海:同济大学,2006.
    [139]White SR, Kim YK. Process-induced residual stress analysis of AS4/3501-6 composite material[J]. Mechanics of Advanced Materials and Structures, 1998,5(2):153-186.
    [140]魏培君,张双寅,吴永礼.粘弹性力学的对应原理及其数值反演方法[J].力学进展,1999,29(3):317-330.
    [141]Paulino G, Jin Z. Correspondence principle in viscoelastic functionally graded materials[J]. Journal of Applied Mechanics,2001,68(1):129-131.
    [142]Rajagopal K, Srinivasa A. A note on a correspondence principle in nonlinear viscoelastic materials[J]. International Journal Of Fracture,2005,131(4):47-52.
    [143]Taylor RL, Pister KS, Goudreau GL. Thermomechanical analysis of viscoelastic solids[J]. International Journal for Numerical Methods in Engineering, 1970,2(1):45-59.
    [144]Kim YK, White SR. Stress relaxation behavior of 3501-6 epoxy resin during cure[J]. Polymer Engineering and Science,1996,36(23):2852-2862.
    [145]White S, Hartman A. Effect of cure state on stress relaxation in 3501-6 epoxy resin[J]. Journal of Engineering Materials and Technology,1997,119(3): 262-265.
    [146]刘勇,吴颂平.热压工艺热-化学-应力三维数值模型及有限元分析[J].复合材料学报,2009,26(1):134-139.
    [147]Svanberg JM, Holmberg JA. Prediction of shape distortions Part I. FE-implementation of a path dependent constitutive model[J]. Composites Part A:Applied Science and Manufacturing,2004,35(6):711-721.
    [148]Rong Z, Huang F, Shen X. Preparation and properties of dipropargyl ether of bisphenol A-modified bismaleimide resins and composites[J]. Polymer Composites,2008,29(5):483-488.
    [149]Barton JM, Hamerton I, Thompson CP. A study of the polymerization behaviour of N-(4-phenoxy)-phenylmaleimide using DSC analysis[J]. Polymer Bulletin, 1993,30(5):521-527.
    [150]Lee CL, Ho JC, Wei KH. Resin transfer molding (RTM) process of a high performance epoxy resin. I:Kinetic studies of cure reaction[J]. Polymer Engineering and Science,2000,40(4):929-934.
    [151]Boey FYC, Song XL, Yue CY, et al. Modeling the curing kinetics for a modified bismaleimide resin[J]. Journal of Polymer Science Part A:Polymer Chemistry, 2000,38(5):907-913.
    [152]Behzad T, Sain M. Finite element modeling of polymer curing in natural fiber reinforced composites[J]. Composites Science and Technology,2007,67(7-8): 1666-1673.
    [153]Cheung A, Yu Y, Pochiraju K. Three-dimensional finite element simulation of curing of polymer composites[J]. Finite Elements in Analysis and Design, 2004,40(8):895-912.
    [154]黄争鸣.复合材料细观力学引论[M].北京:科学出版社,2004.
    [155]张研,张子明.材料细观力学[M].北京:科学出版社,2006.
    [156]Yim JH, Gillespie Jr JW. Damping characteristics of 0° and 90° AS4/3501-6 unidirectional laminates including the transverse shear effect[J]. Composite Structures,2000,50(3):217-225.
    [157]王勖成.有限单元法[M].北京:清华大学出版社,2008.
    [158]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,2003.
    [159]中仿科技公司COMSOL Multiphysics有限元法多物理场建模与分析[M].北京:人民交通出版社,2007.
    [160]马慧,王刚COMSOL Multiphysics基本操作指南和常见问题解答[M].北 京:人民交通出版社,2009.
    [161]谢怀勤,陈辉,方双全.聚合物基复合材料模压成型过程固化度与非稳态温度场的数值模拟[J].复合材料学报,2003,20(5):73-76.
    [162]Liang G, Chandrashekhara K. Cure kinetics and rheology characterization of soy-based epoxy resin system[J]. Journal of Applied Polymer Science, 2006,102(4):3168-3180.
    [163]Yan X. Consolidation simulation of composite laminates:Formulation and validation verification[J]. Polymer Composites,2005,26(6):813-822.
    [164]Behzad T, Sain M. Measurement and prediction of thermal conductivity for hemp fiber reinforced composites[J]. Polymer Engineering & Science, 2007,47(7):977-983.
    [165]杨世明,陶文铨.传热学(第四版)[M].北京:高等教育出版社,2006.
    [166]戴福洪,武湛君,张博明,等.复合材料RTM成型工艺固化过程三维数值模拟[J].复合材料学报,2004,21(5):134-139.
    [167]郭战胜,杜善义,张博明,等.厚截面树脂基复合材料的温度场研究Ⅰ:模拟[J].复合材料学报,2004,21(5):122-127.
    [168]Perrin FX, Nguyen TMH, Vernet JL. Chemico-diffusion kinetics and TTT cure diagrams of DGEBA-DGEBF/amine resins cured with phenol catalysts[J]. European Polymer Journal,2007,43(12):5107-5120.
    [169]Nunez L, Fraga F, Castro A, et al. TTT cure diagram for an epoxy system diglycidyl ether of bisphenol A/1,2 diamine cyclohexane/calcium carbonate filler[J]. Polymer,2001,42(8):3581-3587.
    [170]Boogh L, Pettersson B, Manson J. Dendritic hyperbranched polymers as tougheners for epoxy resins[J]. Polymer,1999,40(9):2249-2261.
    [171]Nunez L, Fraga F, Nunez M, et al. Effects of diffusion on the kinetic study and TTT cure diagram for an epoxy/diamine system[J]. Journal of Applied Polymer Science.1998,70(10):1931-1938.
    [172]Ramis X, Salla J. Time-temperature transformation (TTT) cure diagram of an unsaturated polyester resin[J]. Journal of Polymer Science Part B:Polymer Physics,1997,35(2):371-388.
    [173]Nunez L, Taboada J, Fraga F, et al. Kinetic study and time-temperature-transformation cure diagram for an epoxy-diamine system[J]. Journal of Applied Polymer Science,1997,66(7):1377-1388.
    [174]Barral L, Cano J, Lopez A, et al. TTT isothermal cure diagram of a dyglicidyl ether of bisphenol A/1,3-bisaminomethylcyclohexane (DGEBA/1,3-BAC) epoxy resin system[J]. Journal of Applied Polymer Science,1996,61(9): 1553-1559.
    [175]张明,安学锋,唐邦铭,等.高性能双组份环氧树脂固化动力学研究和TTT图绘制[J].复合材料学报,2006,23(1):17-25.
    [176]Aronhime M, Gillham J. Time-temperature-transformation (TTT) cure diagram of thermosetting polymeric systems[J]. Advances In Polymer Science,1986,78: 83-113.
    [177]Mounif E, Bellenger V, Tcharkhtchi A. Time-Temperature-Transformation (TTT) diagram of the isothermal crosslinking of an epoxy/amine system:Curing kinetics and chemorheology[J]. Journal of Applied Polymer Science, 2008,108(5):2908-2916.
    [178]Kim J, Moon TJ, Howell JR. Cure kinetic model, heat of reaction, and glass transition temperature of AS4/3501-6 graphite-Epoxy prepregs[J]. Journal of Composite Materials,2002,36(21):2479-2498.
    [179]Macosko CW, Miller DR. A new derivation of average molecular weights of nonlinear polymers[J]. Macromolecules,1976,9(2):199-206.
    [180]Miller DR, Valles EM, Macosko CW. Calculation of molecular parameters for stepwise polyfunctional polymerization[J]. Polymer Engineering and Science, 1979,19(4):272-283.
    [181]贾玉玺.基于LOM原型的硅橡胶模具硫化成型过程数值模拟及实验验证[D].济南:山东大学,2002.
    [182]Mawardi A, Pitchumani R. Cure cycle design for thermosetting-matrix composites fabrication under uncertainty[J]. Annals Of Operations Research, 2004,132(1):19-45.
    [183]Ganglani M, Carr SH, Torkelson JM. Influence of cure via network structure on mechanical properties of a free-radical polymerizing thermoset[J]. Polymer, 2002,43(9):2747-2760.
    [184]Tai HJ. Molecular structural evolution in crosslinking low density polyethylene-trimethylolpropane trimethacrylate systems[J]. Polymer Engineering and Science,2001,41(1):95-106.
    [185]Wang R, Luo Y, Li B-G, et al. Modeling of branching and gelation in RAFT copolymerization of vinyl/divinyl systems[J]. Macro molecules,2008,42(1): 85-94.
    [186]Kim YK, Daniel IM. Cure cycle effect on composite structures manufactured by resin transfer molding[J]. Journal of Composite Materials,2002,36(14): 1725-1743.
    [187]Nijenhuis K. Crosslinking index, molecular weight distribution, and rubber equilibrium shear modulus during polyfunctional crosslinking of existing polymer,1. theory[J]. Die Makromolekulare Chemie,1991,192(3):603-616.
    [188]Te Nijenhuis K. Crosslinking index, molecular weight distribution and rubber equilibrium shear modulus during polyfunctional crosslinking of existing polymer:Part 3. primary polymer with a cumulative flory distribution or a cumulative Schulz-Flory distribution of the molecular weights[J]. Polymer Gels and Networks,1993,1(3):185-198.
    [189]Te Nijenhuis K. Crosslinking index, molecular weight distribution and rubber equilibrium shear modulus during polyfunctional crosslinking of existing polymer:Part 4, recapitulation and presentation of general results of calculations for a hypothetical crosslinking process[J]. Polymer Gels and Networks, 1993,1(3):199-210.
    [190]Franse M, te Nijenhuis K. Crosslinking index, molecular weight distribution and rubber equilibrium shear modulus during polyfunctional crosslinking of existing polymer. Part 5. Primary polymer with a discrete distribution of the molecular weights[J]. Journal of Molecular Structure,2000,554(1):1-10.
    [191]Franse M. Crosslinking index, molecular weight distribution and rubber equilibrium shear modulus during polyfunctional crosslinking of existing polymer,6. Primary polymer with a schulz-zimm distribution of molecular weights[J]. Macromolecular Theory and Simulations,2002,11(3):342-351.
    [192]Karalekas D, Rapti D, Gdoutos EE, et al. Investigation of shrinkage-induced stresses in stereo lithography photo-curable resins[J]. Experimental Mechanics, 2002,42(4):439-444.
    [193]Lingo is P, Berglund L, Greco A, et al. Chemically induced residual stresses in dental composites[J]. Journal of Materials Science,2003,38(6):1321-1331.
    [194]Flory PJ. Principles of polymer chemistry[M]. Cornell University Press,1953.
    [195]余鼎声.逐步聚合反应统计理论进展—递归计算法[J].高分子通报,1990,(1):27-33.
    [196]Ozizmir E, Odian G. Kinetics of step polymerization with reactants of unequal functional group reactivity[J]. Journal of Polymer Science:Polymer Chemistry Edition,1980,18(3):1089-1097.
    [197]孙曼灵.环氧树脂应用原理与技术[M].北京:机械工业出版社,2002.
    [198]唐敖庆.高分子反应统计理论[M].北京:科学出版社,1985.
    [199]Macosko CW, Miller DR. Calculation of average molecular properties during nonlinear, living copolymerization[J]. Die Makromolekulare Chemie, 1991,192(2):377-404.
    [200]Wisanrakkit G, Gillham J. The glass transition temperature (Tg) as an index of chemical conversion for a high-Tg amine/epoxy system:chemical and diffusion-controlled reaction kinetics[J]. Journal of Applied Polymer Science, 1990,41(11-12):2885-2929.
    [201]王海军,吕中元,黄旭日,等.Af型自由基均聚反应的固化理论(Ⅰ)—分布函数及其不变性[J].高等学校化学学报,1998,19(8):1329-1334.
    [202]王海军,吕中元,黄旭日,等.Af型自由基均聚反应的固化理论(Ⅱ)—凝胶网络的结构参数[J].高等学校化学学报,1998,19(10):1680-1683.
    [203]Alperstein D, Narkis M, Siegmann A. The effect of cure cycle of unsaturated polyester resin on the temperature and conversion profiles[J]. Polymer Engineering and Science,1996,36(5):610-614.
    [204]Detwiler A, Lesser A. Aspects of network formation in glassy thermosets[J]. Journal of Applied Polymer Science,2010,117(2):1021-1034.
    [205]Zhavoronok E, Senchikhin I, Roldugin V. Estimating the molecular mass between epoxy-amine network junctions from glass-transition-temperature data[J]. Polymer Science Series A,2011,53(6):449-456.
    [206]Askadskii AA. Peculiarities of the structure and properties of highly cross-linked polymer networks[J]. Russiam chemical reviews,1998,67(8):681-712.
    [207]Guerrero P, De la Caba K. Valea A, et al. Influence of cure schedule and stoichiometry on the dynamic mechanical behaviour of tetrafunctional epoxy resins cured with anhydrides[J]. Polymer,1996,37(11):2195-2200.
    [208]Naffakh M, Dumon M, Gerard J-F. Modeling the chemorheological behavior of epoxy/liquid aromatic diamine for resin transfer molding applications[J]. Journal of Applied Polymer Science,2006,102(5):4228-4237.
    [209]Matejka L. Amine cured epoxide networks:formation, structure, and properties[J]. Macromolecules,2000,33(10):3611-3619.
    [210]Safranski DL, Gall K. Effect of chemical structure and crosslinking density on the thermo-mechanical properties and toughness of (meth) acrylate shape memory polymer networks[J]. Polymer,2008,49(20):4446-4455.
    [211]胡训传,李松年,赵天惠.复合材料弹翼结构热力力学分析[J].北京航空航天大学学报,1996,22(3):374-378.
    [212]Wetherhold RC, Wang J. Difficulties in the theories for predicting transverse thermal conductivity of continuous fiber composites[J]. Journal of Composite Materials,1994,28(15):1491-1498.
    [213]Chung PW, Tamma KK, Namburu RR. Homogenization of temperature-dependent thermal conductivity in composite materials[J]. Journal Of Thermophysics And Heat Transfer,2001,15(1):10-17.
    [214]Mirmira S, Jackson M, Fletcher L. Effective thermal conductivity and thermal contact conductance of graphite fiber composites[J]. Journal Of Thermophysics And Heat Transfer,2001,15(1):18-26.
    [215]Bailleul JL, Delaunay D, Jarny Y, et al. Thermal conductivity of unidirectional reinforced composite materials-experimental measurement as a function of state of cure[J]. Journal of Reinforced Plastics and Composites,2001,20(1):52-64.
    [216]Tao X, Tang L, Du W, et al. Internal strain measurement by fiber bragg grating sensors in textile composites[J]. Composites Science and Technology, 2000,60(5):657-669.
    [217]李海晨.树脂传递模塑工艺过程数值模拟与固化过程监测研究[D].哈尔滨:哈尔滨工业大学,2002.
    [218]Mijovic J, Wang H. Modeling of processing of composites. Ⅱ- temperature distribution during cure[J]. Sampe Journal,1988,24:42-55.
    [219]Shin DD, Hahn HT. Compaction of thick composites:simulation and experimentt[J]. Polymer Composites,2004,25(1):49-59.
    [220]Klasztorny M, Wilczynski A. Constitutive equations of viscoelasticity and estimation of viscoelastic parameters of unidirectional fibrous polymeric composites[J]. Journal of Composite Materials,2000,34(19):1624-1639.
    [221]Islam R, Sjolind S, Pramila A. Finite element analysis of linear thermal expansion coefficients of unidirectional cracked composites[J]. Journal of Composite Materials,2001.35(19):1762-1776.
    [222]Vo H, Todd M. Shi F. et al. Towards model-based engineering of underfill materials:CTE modeling[J]. Microelectronics Journal,2001,32(4):331-338.
    [223]Zhao JH, Ryan T, Ho PS, et al. Measurement of elastic modulus, Poisson ratio, and coefficient of thermal expansion of on-wafer submicron films[J]. Journal of Applied Physics,1999,85(9):6421-6424.
    [224]Lanza di Scalea F. Measurement of thermal expansion coefficients of composites using strain gages[J]. Experimental Mechanics,1998.38(4): 233-241.
    [225]Glavchev I, Petrova K, Ivanova M. Determination of the coefficient of thermal expansion of epoxy composites[J]. Polymer Testing.2002.21(2):177-179.
    [226]Svanberg J, Holmberg J. Prediction of shape distortions. Part Ⅱ. Experimental validation and analysis of boundary conditions[J]. Composites Part A:Applied Science and Manufacturing,2004,35(6):723-734.
    [227]Loos AC, Springer GS. Curing of epoxy matrix composites[J]. Journal of Composite Materials,1983,17(2):135-169.
    [228]Scott EP, Beck JV. Estimation of thermal properties in epoxy matrix/carbon fiber composite materials[J]. Journal of Composite Materials,1992,26(1):132-149.
    [229]Farmer JD, Covert EE. Transverse thermal conductance of thermosetting composite materials during their cure[J]. Journal Of Thermophysics And Heat Transfer,1994,8(2):358-365.
    [230]Farmer J, Covert E. Thermal conductivity of a thermosetting advanced composite during its cure[J]. Journal of Thermophysics and Heat Transfer(USA), 1996,10(3):467-475.
    [231]Tavman I, Akinci H. Transverse thermal conductivity of fiber reinforced polymer composites[J]. International Communications in Heat and Mass Transfer,2000,27(2):253-261.
    [232]Svanberg J, Holmberg J. An experimental investigation on mechanisms for manufacturing induced shape distortions in homogeneous and balanced laminates[J]. Composites Part A:Applied Science and Manufacturing, 2001,32(6):827-838.
    [233]Sarrazin H, Kim B, Ahn SH. et al. Effects of processing temperature and layup on springback[J]. Journal of Composite Materials,1995,29(10):1278-1294.
    [234]Incropera FP, Dewitt DP, Bergman TL. Fundamentals of heat and mass transfer[M]. New York:Wiley,2007.
    [235]Hull D, Clyne T. An introduction to composite materials[M]. Cambridge: Cambridge University Press,1996.
    [236]Khoun L, Hubert P. Cure shrinkage characterization of an epoxy resin system by two in situ measurement methods[J]. Polymer Composites,2010,31(9): 1603-1610.
    [237]Mucci V, Arenas G, Duchowicz R, et al. Influence of thermal expansion on shrinkage during photopolymerization of dental resins based on bis-GMA/TEGDMA[J]. Dental Materials,2009.25(1):103-114.
    [238]Hubert P, Haider M, Lessard L. Cure shrinkage characterization and modeling of a polyester resin containing low profile additives[J]. Composites Part A:Applied Science and Manufacturing,2007,38(3):994-1009.
    [239]Yu H, Mhaisalkar S, Wong E. Cure shrinkage measurement of nonconductive adhesives by means of a thermomechanical analyzer[J]. Journal of Electronic Materials,2005,34(8):1177-1182.
    [240]Barton JM, Hamerton I, Howlin BJ, et al. Studies of cure schedule and final property relationships of a commercial epoxy resin using modified imidazole curing agents[J]. Polymer,1998,39(10):1929-1937.
    [241]Kim YK, White SR. Viscoelastic analysis of processing-induced residual stresses in thick composite laminates[J]. Mechanics of Advanced Materials and Structures,1997,4(4):361-387.
    [242]束龙仓,王茂枚,刘瑞国,等.地下水数值模拟中的参数灵敏度分析[J].河海大学学报:自然科学版,2007,35(5):491-495.
    [243]Paruggia M. Sensitivity analysis in practice:a guide to assessing scientific models[J]. Journal Of The American Statistical Association,2006,101(473): 398-399.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700