用户名: 密码: 验证码:
生物质微米燃料高温燃烧实验及动力学模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质能作为一种可再生能源,其大规模利用有可能满足各种能源需求,同时能减少CO2的排放。目前,生物质直接燃烧是生物质能应用最简单可行的直接利用,但长期以来,生物质直接燃烧温度偏低和能量利用效率不高的缺点使得其推广应用受到了一定限制。将生物质破碎成微米燃料(BMF),开发生物质微米燃料(BMF)高温高效燃烧技术,可进一步促进生物质的工业化应用和温室气体的减排。
     本文选取生物质微米燃料锯末及其半焦作为原料,为进一步提高其旋风燃烧温度,先添加其热值较高的半焦与之混燃,然后通过预热空气提高炉膛温度模拟烟气再循环技术,并探讨了生物质微米燃料煅烧水泥的可行性;同时,建立的燃烧动力学模型为进一步建立综合的燃烧数学模型打下了基础。论文具体研究工作如下:
     (1)生物质的挥发分高,着火性能和燃尽性能较好,但能量密度低;半焦固定碳含量高,热值高,但挥发分低,着火性能较差。生物质与其半焦混燃有助于各补其短,半焦可以补充生物质的较低热值,而生物质将有助于半焦提前着火。
     (2)采用热重分析仪对生物质微米燃料在不同升温速率下的热解、燃烧失重特性进行了分析。研究结果表明:生物质微米燃料综合反应活性随升温速率增加而提高。最大反应速率随着升温速率的增大呈线性增大趋势。在此基础上,建立了生物质微米燃料热解和燃烧的动力学模型。该模型通过三个主要组分半纤维素、纤维素和木质素热解的独立平行反应,可以比较准确的描述生物质微米燃料的二段燃烧过程:第一段类似于其热解过程,第二段是木质素热解残焦燃烧,其活化能较高。研究发现,实验结果与通过该模型的非线性回归法拟合获得的结果基本一致,证实了BMF的热解、燃烧过程中确实存在着上述假定的反应机理。
     (3)通过热重分析研究了生物质微米燃料和其半焦混燃特性,研究结果表明混燃各单组分间有协同促进作用,能改善单一组分的可燃性。在综合热分析基础上,考察了空气当量比、粒径、含水率、生物质半焦添加比例对生物质微米燃料旋风炉燃烧炉膛温度、烟气及灰分的影响。试验研究发现空气当量比为1.2,粉体粒径在0.177mm(即80目)以下,生物质含水率控制在8.1%以下,生物质半焦添加比例为20%,燃烧效果更好,燃烧经济成本合理,燃烧效率高于成型燃料的燃烧效率,燃烧烟气中NOx和S02等有害气体的含量较少。
     (4)在上述实验研究的基础上,初步开展了基于生物质微米燃料煅烧水泥的应用研究。相应条件下,通过空气预热,炉膛温度可提高到1360℃以上,可满足水泥煅烧的基本温度要求。并初步获得了成分符合要求的水泥熟料,验证了其可行性。但对该系统的能量评估表明:装置的燃烧效率较低,主要是由于排烟热损失导致的。
     (5)为了降低排烟热损失,可通过循环烟气加热空气,提高生物质燃烧温度和能量利用效率。为此,利用TG-DTA、TG-MS、GC等技术,初步研究生物质燃烧烟气再循环技术。先利用TG-DTA对比分析了O2/CO2与空气气氛(不同氧气浓度条件下)对生物质着火模式、燃烧特性的影响。结果表明:在O2/CO2气氛下,随着氧气的浓度增加,BMF的着火模式是从联合着火转变为均相着火模式;最大燃烧速率增大,着火点提前,且燃烧时间缩短。同时,CO2气氛有助于抑制NOx生成。进一步在管式固定床上考察了O2/CO2燃烧的初级阶段——气化的影响因素。实验结果表明:高温、较小粒径以及CO2气氛有利于生物质0气化反应的进行。气化比热解气氛下产生的可燃气体多,半焦产量少,有利于推进整个燃烧过程的进行,从而有望提高生物质燃烧温度,减少环境污染。故O2/CO2燃烧有望提高生物质燃烧温度,减少环境污染。
The widespread use of biomass fuels, as a renewable energy, could meet the demand of all kinds of energy and reduce carbon dioxide emissions. Combustion is the most simple and direct technology nowadays available for biomass utilization. But its lower burning temperature and energy utilization efficiency has long limited its wide application. Biomass fuel was broken into microns named as biomass micron fuel (BMF). It is necessary to develop BMF' efficient combustion technology for high temperature, which can further promote the industrialization of biomass application and greenhouse gas reductions.
     In this dissertation, BMF(sawdust) and its biochar was used as raw material. In order to further improve the cyclone combustion temperature, the biochar with the higher heating value was added to co-combustion with BMF, and then the air was preheated to simulate flue gas recycling technology. At the same time, the combustion kinetics model is set up in order to further establish a comprehensive combustion mathematical model. The following work was carried out in this dissertation:
     (1) Biomass has high volatile and its ignition and burnout performance is good, but its energy density is low. Biochar contains higher fixed carbon content and calorific value than raw biomass, but its ignition performance is worse due to lower volatile than raw biomass. Thus, biomass and biochar seem to have important potential to compensate the disadvantages coming from each other. Biochar may contribute to the calorific value of biomass, and biomass may promote early ignition of biochar.
     (2) The pyrolysis and combustion characteristics of BMF were obtained at different heating rates in a thermo gravimetric analyzer. The results showed Comprehensive reaction activity increased and the maximum reaction rate increased linearly with the increase of heating rate. A mechanism based on three independent parallel reactions has been used to model the pyrolysis process of hemicellulose, cellulose and lignin. Combustion process can be divided into two distinct stages, with first stage coinciding with pyrolysis process and the second one concerning lignin char combustion with higher activation energy. The fitting curve of TG obtained from nonlinear regression method is coincident with experiment curves, which confirmed the presumed reaction mechanism does exist during the process of BMF pyrolysis and combustion.
     (3) The co-combustion of biomass and biochar was investigated by thermo gravimetric analysis. The results showed that synergy exists between the two components and better combustibility was feasible by co-firing biochar with biomass. On the basis of comprehensive thermal analysis, the effects of equivalence ration (ER), particle size, moisture ratio of BMF and biochar blending ratio on combustion performance were studied. The results showed the optimal value of ER and biochar blending ratio obtained was respectively1.2and20%. Smaller particles (below0.177mm) and lower moisture ratio ((below8.1%) results in not only better combustion performances but also economy cost. Combustion efficiency of BMF was higher than that of the biomass briquette. The harmful gas content, such as NOx and SO2, was less in flue gas.
     (4) Moreover, a pilot study of cement calcining with BMF demonstrated the maximum temperature can be raised to above1360℃through the air preheating. The maximum temperature could meet the demand of cement calcining. However, the combustion efficiency was relatively low for this kiln due to heat losses of flue gas. As for components, calcined raw meal was basically similar to industrial cement clinker. It was feasible to calcine cement by the technology. But the energy evaluation of the system showed that the low combustion efficiency of the device was mainly caused by the exhaust heat loss.
     (5) To reduce exhaust heat loss, the recycled flue gas was used to preheat air, which can improve the biomass combustion temperature and energy utilization efficiency.Therefore, the flue gas recycling technology for biomass combustion was basically investigated via TG-DTA, TG-MS and GC. By using TG-DTA, the effect of the O2/CO2atmosphere and air (under the conditions of different oxygen concentration) on the biomass ignition mode and the combustion characteristic was analysed. The results showed that with the increasing oxygen concentration, the ignition mode of BMF from joint fire was transformed into homogeneous ignition mode; Maximum combustion rate increased, the ignition advanced and burning time was shortened under O2/CO2atmosphere. At the same time, CO2atmosphere helped to inhibit NOx generation. Morever, under O2/CO2the combustion initial stage-CO2gasification experiments of BMF were carried out in tubular fixed-bed reactor. The results showed that higher temperature, smaller size and CO2atmosphere favored gasification process. Gasification produced more combustible gas and less biochar than pyrolysis atmosphere. CO2atmosphere promoted the whole combustion process, which was expected to increase biomass combustion temperature and reduce the pollution of the environment under O2/CO2atmosphere.
引文
[1]吴创之,马隆龙.生物质能现代化利用技术.北京:化学工业出版社,2003
    [2]Mckendry, P. Energy production from biomass (part 1):overview of biomass. Bioresource Technology.2002 83:37-46
    [3]阴秀丽,吴创之,徐冰燃等.生物质气化对减少排放的作用.太阳能学报,2000,21(1):40-44
    [4]谭洪.生物质热裂解机理试验研究:[博士学位论文].杭州:浙江大学图书馆,2005
    [5]蒋剑春.生物质能源应用研究现状与发展前景.林产化学与工业,2002(2):75-80
    [6]白杉.生物质能的地位举足轻重.城市与减灾,2003(5):28-30
    [7]宋鸿伟.生物质气化技术及BIGCC系统性能的研究:[硕士学位论文].北京:华北电力大学图书馆,2004
    [8]Berndesa, G., Hoogwijkb, M., van den Broekc, R. The contribution of biomass in the future global energy supply:a review of studies, Biomass and Bioenergy[J]. 2003,25:1-28
    [9]Hall, D. O, Scrase, J. I. Will biomass energy be the environmentally friendly fuel of the future. Biomass and Bioenergy,1998,15:357-367
    [10]Demirbas., A. Hydrocarbons from pyrolysis and hydrolysis processes of biomass. Energy Sources,2003,25:67-75
    [11]Garg, H. P., Datta, G. Global status on renewable energy. In Solar Energy Heating and cooling Methods in Building. International Workshop:Iran University of Science & Technology,1998:19-20
    [12]Jones, M. R. In:Kinati, D., Hall, C. W. Biomass handbook, Network, Gordon and Breach Science Publishers,1989:95-98
    [13]张瑞芹,魏新利.生物质衍生的燃料和化学物质郑州.郑州:郑州大学出版社,2004
    [14]李凤生.超细粉体技术.第三版.北京:国防工业出版社,2000
    [15]Joppich, H. Salmanb. Wood powder feeding difficulties and solutions. Biomass and Bioenergy,1999,16:191-198
    [16]Salman Hassan, Kjellstrom Bjorn. Pneumatic conveying of wood powder by using a steam-jet ejector. Biomass and Bioenergy,2000,19:103-117
    [17]李学恒,蒋安众,姜秀民等.生物质能的燃烧特性.锅炉技术,1999,4:17-20
    [18]肖波,郭勇,杨家宽等.生物质粉体燃烧技术的初步研究.能源技术,2004,25(5):197-199
    [19]唐卫军,肖波,杨家宽.生物质转化利用技术研究进展.再生资源研究.2003.(4):30-32
    [20]Luo Siyi, Xiao Bo, Hu Zhiquan, et al. Hydrogen-rich gas from catalytic steam gasification of biomass in a fixed bed reactor:Influence of temperature and steam on gasification performance. International Journal of Hydrogen Energy,2009,34: 2191-2194
    [21]Luo Siyi, Xiao Bo, Guo Xianjun, et al. Hydrogen-rich gas from catalytic steam gasification of biomass in a fixed bed reactor:Influence of particle size on gasification performance. International Journal of Hydrogen Energy,2009,34: 1260-1264
    [22]Luo Siyi, Xiao Bo, Hu Zhiquan, et al. An experimental study on a novel shredder for municipal solid waste (MSW) International Journal of Hydrogen Energy,2009, 34:1270-1274
    [23]Luo Siyi, Xiao Bo, Hu Zhiquan, et al. Effect of particle size on pyrolysis of single-component municipal solid waste in fixed bed reactor. International Journal of Hydrogen Energy,2010,35:93-97
    [24]Luo Siyi, Xiao Bo, Hu Zhiquan, et al. Experimental study on oxygen-enriched combustion of biomass micro fuel. Energy,2009,34:1880-1884
    [25]Luo Siyi, Xiao Bo, Guo Xianjun, et al. A novel shredder for MSW:influence of feed moisture. Bioresource technology.2010,101:6256-6258
    [26]Luo Siyi, Xiao Bo, Hu Zhiquan, et al. Influence of particle size on pyrolysis and gasification performance of municipal solid waste in fixed bed reactor.2010,101: 6517-6520
    [27]Luo Siyi, Xiao Bo, Guo Xianjun, et al. Study on the cyclone combustion of biomass micron fuel. Energy conversion and management. Available online 3 April, 2010
    [28]Guan Yanwen, Luo Siyi, Liu Shiming, et al. Steam catalytic gasification of municipal solid waste for producing tar-free fuel gas International Journal of Hydrogen Energy,2009,34:9341-9346
    [29]Guo Xianjun, Xiao Bo, Hu Zhiquan, et al. Gasification characteristics of biomass micron fuel (BMF)-study on steam gasification for hydrogen-rich gas products [J]. Fresenius environmental bulletin.2008,17(5):341-345
    [30]Guo Xianjun, Xiao Bo, Shiming Liu, et al. An experimental study on air gasification of biomass micron fuel (BMF) in a cyclone gasifier[J]. International Journal of Hydrogen Energy,2009,34(3):1265-1269
    [31]Guo XJ, Xiao B, Zhang XL, et al.Experimental study on air-stream gasification of biomass micron fuel (BMF) in a cyclone gasifier. Bioresource Technology,2009, 100(2):1003-1006
    [32]赵立欣,孟海波,姚宗路等.中国生物质固体成型燃料技术和产业.中国工程科学,2010:78-82
    [33]刘圣勇.国内外生物质成型燃料及燃烧设备研究与开发现状.可再生能源,2002(4):14-15
    [34]翟学民.甘蔗渣锅炉设计新构思.工业锅炉,2000(2):9-12
    [35]刘圣勇,刘小二,王森.不同形态生物质燃烧技术现状和展望.可再生能源工业,2007:23-28
    [36]王丰华,陈庆辉.生物质能利用技术研究进展.化学工业与工程技术,2009,30(3):32-35
    [37]Seott Q. Turn, Charles M., et al. The fate of inorganic constituents of biomass in fluidized bed gasification. Fuel,1998,77(3):135-146
    [38]苏俊林,陈华艳,矫振伟.生物质型煤研究现状及发展.节能技术,2008,26(1):83-86
    [39]张鸿波,张增贵,董平.生物质型煤燃烧特性的研究.洁净煤技术,2002,8(3):37-39,46
    [40]Kleisa K, Lehmann J, Verfu ss F et al. Development of Environment ally Friendly Briquettes. Glueckauf-Fors chu ngsh ef t e,1994,55(4-5):117-122
    [41]Beker U G. Briquetting of Afsin-Elbistan Lignite of Turkey Using Different Waste Materials. Fuel Proces sing T echnology,1997,51(1-2):137-144
    [42]Kim HeeJoon, Lu GuoQing, Naruse Ichiro, et al. Modeling on Combustion Characteristics of Bio-coalbripuettes. Journal of Energy Resources Technology, 2001,123:27-31.
    [43]Muruyama T, Kamide M. Development of Biobriquette from Chinese Raw Material (Const ruction of Biobriquette Factory in Shandong Provine). In: Proceedings of the 3rd International Symposium on Coal Combust ion Science and Technology, Beijing:Science Press,1995.561-567
    [44]Ayhan Demirbas. Sustainable cofiring of biomass with coal. Energy Conversion and Management,2003,44:1465-1479
    [45]P. Grammelis. Thermal exploitation of waste with lignites for energy production. Journal of Air & Waste Management Association,2003,53(11):1301-1311
    [46]Konings T. Increasing co-fired of biomass in Dutch coal-fired power plant [M/CD]. Second International Conference on Clean Coal Technologies for our Future.2005
    [47]Friborg K. Full-scale co-firing of straw, experience and perspectives [M/CD]. Second International Conference on Clean Coal Technologies for our Future,2005.
    [48]Richard LB, Overend RP, Craig KR. Biomass-fired power generation. Biomass-fired power generation. Fuel Process Technology,1998,54:1-16
    [49]郝倬跃,王彦佳.燃煤电站混燃秸秆技术在中国的可行性探讨.水利电力机械,2006,28(12).35-37
    [50]郑治华.生物质能技术应用现状及发展趋势.中国高新技术企业,2008:43
    [51]Jenkins B. M., Baxter L. L.. TR, Miles JR., et al. Combustion properties of biomass. Fuel. Pro. Teo,1998,54:17-46
    [52]Kari Salo, Wahab Mojtahede. Fate of alkalis and trace metals in biomass gasification. biomass and bio-energy,1998,15(3):263-267
    [53]别如山,李炳熙,陆慧林.燃生物废料流化床锅炉.热能动力工程,2000,15(8):344-347
    [54]刘皓,林志杰,黄琳.稻谷壳的流化床燃烧.节能技术,1995,3:9-12
    [55]何育恒.燃烧油、木屑、木粉绿色新型锅炉的开发设计.产品设计,2001,3:20-23
    [56]陈汉平,李斌.生物质燃烧技术现状与展望.工业锅炉,2009,5:1-7
    [57]刘彦.O2/CO2煤粉燃烧脱硫及NO生产特性实验和理论研究:[博士学位论文].杭州:浙江大学图书馆,2004
    [58]Maja B. Toftegaard, Jacob Brix, et al.Oxy-fuel combustion of solid fuels. Progress in Energy and Combustion Science 2010,36,581-625
    [59]Buhre, B. J. P., Elliott, L. K., Shen, C. D., et al. Oxy-fuel combustion technology for coal-fired Power generation. Progress in Energy and Combustion Science.2005, 31(4):283-307
    [60]Croiset E., Thambimuthu K., Palmer A. Coal combustion in O2/CO2 mixturs compared with air. The Canadian Joural of Chemical Engineering.2000,78(2): 402-407
    [61]Wang C. S., Berry G. F., Chang K. C., et al. Combustion of Pulverized coal using waste carbon dioxide and oxygen. Combustion and Flame.1988,72(3):301-310
    [62]Liu H., Zailani R., Gibbs B. M. Comparisons of pulverized coal combustion in air and in mixtures of O2/CO2. Fuel.2005,84 (7-8):533-540
    [63]Tan Y, Croiset E., Douglas M. A., Thambimuthu K. V, Combustion characteristics of coal in a mixture of oxygen and recycled flue gas. Fuel.2006,55(4):507-512
    [64]Kiga T., Takano S., Kimura N., etal. Charaeteristics of pulverized-coal combustion in the system of oxygen/recycled flue gas combustion. Energy conversion and management.1997,38:5129-5134
    [65]Kimura N., Omata K., Kiga T., etal. The characteristics of pulverized coal combustion in O2/CO2 mixtures for CO2 recovery. Energy Conversion and Management.1995,36(6-9):805-808
    [66]Shaddix C. R., Molina A. Particle imaging of ignition and devolatilzation of pulverized coal during oxy-fuel combustion. Proceedings of the combustion institute.2009,32(2):2091-2098
    [67]Molina A., Shaddix C. R. Ignition and devolatilization of pulverized bituminous coal particles during oxygen/carbon dioxide coal combustion. Proceedings of the combustion institute.2007,31(2):1905-1912
    [68]Huang X., Jiang X., Han X. et al. Combustion Characteristics of Fine-and Micro-Pulverized Coal in the Mixture of O2/CO2. Energy Fuels.2008,22 (6):3756-3762
    [69]Shaddix CR, M. A. Understanding the effects of O2 and CO2 on NOx formation during oxy-coal combustion. In:3rd Work hop of the IEA GHG international oxy-combustion network. Yokohama, Japan:March 5-6.2008
    [70]Miller J. A., Brownian C. T. Mechanism and modeling of nitrogen chemistry in combustion. Progress in Energy and Combustion Science.1989,15(4):287-338
    [71]Johnson J. E. Formation and reduction of nitrogen oxides in fluidized-bed combustion. Fuel.1994,73 (9):1398-1415
    [72]Glarborg P., JensenA. D., Johnson J. E. Fuel nitrogen conversion in solid fuel fire systems. Progress in Energy and Combustion Scienee.2003,29(2):89-113
    [73]李竹君、赫英伦.高炉喷吹半焦的可行性.冶金能源,1998,17(3):12-16
    [74]沈胜强,李素芬.半焦粒子着火与燃烧过程实验研究.燃烧科学与技术,2000,6(1):66-69
    [75]孙凯.桦甸油页岩半焦燃烧特性研究.东北电力大学学报,30(2):10-13
    [76]陈晓平,谷小兵,段钰峰等.气化半焦加压着火特性及燃烧稳定性研究.2005,20(2):153-159
    [77]熊源泉,章名耀,加压条件下半焦燃烧特性的实验研究,锅炉技术,Vol.32,No.11-37,2001
    [78]王俊琪.煤的部分气化及半焦燃烧系统集成研究.[博士学位论文].杭州:浙江大学图书馆,2008
    [79]刘典福,魏小林,盛洪至.半焦与垃圾衍生燃料混烧的排放特性.燃烧科学与技术,2005,11(5):475-479
    [80]Temi M. Linjewile. Measurement and modeling of the temperature of burning petroleum coke particles in an incipiently fluidized bed. Fuel,1993,72(6):813-819
    [81]沈伯雄,刘德昌,陆继东.石油焦着火和燃烧燃尽特性的试验研究.石油炼制与化工,2000,31(10):60-64
    [82]杨欲明.循环流化床锅炉掺烧石油焦及燃烧调整实验研究.热力发电,2003,7:30-34
    [83]周一工.我国石化企业电站石油焦燃烧方式研究.锅炉技术,1998,1-2
    [84]马强,王勤辉,韩龙等.O2/CO2气氛下生物质半焦加压燃烧特性的实验研究.新能源及工艺.33-36
    [85]罗思义.生物质粉体富氧燃烧的初步研究.[硕士学位论文].武汉:华中科技大学图书馆,2007
    [86]胡婧.微米生物质燃料与煤混燃特性研究.[硕士学位论文].武汉:华中科技大学图书馆,2008
    [87]叶贻杰.生物质灰特性及其结渣机理研究.[硕士学位论文].武汉:华中科技大学图书馆,2007
    [88]Susanne Paulrud, Calle Nilsson. The effects of particle characteristics on emissions from burning wood fuel powder [J]. Fuel,2004,83(7-8):813-821
    [89]Scurlock J M O, Dayton D C, Hames B, et al. An overlooked biomass resource. Biomass & Bioenergy,2000, (19):229-244
    [90]唐卫军,肖波,杨家宽等.生物质转化利用技术研究进展.再生资源研究.2003,(4):30-32
    [91]Tillman D. A. Biomass cofiring:the technology, the experience, the combustion consequences, Biomass Bioenerg.2000; 19:365-384
    [92]Haykiri-Acma H., Yaman S.,2008. Effect of co-combustion on the burnout of lignite/biomass blends:a Turkish case study, Waste Manage.28:2077-2084
    [93]Sonobe T. and Worasuwannarak N.. Kinetic analyses of biomass pyrolysis using the distributed activation energy model. Fuel,2008,87(3):414-421
    [94]王伟,蓝煌听,李明.TG-FTIR联用下生物质废弃物的热解特性研究.农业环境科学学报,2008,27(1):350-384
    [95]周岭,周福君,蒋恩臣等.棉秆不同组分热解特性及动力学.农业工程学报,2009,25(8):220-225
    [96]E. Biagini, A. Fantei, L. Tognotti. Effect of the heating rate on the devolatilization of biomass residues. Thermochimiea Acta,2008,472(1-2):55-63
    [97]Ghetti, P., Ricca, L., Angelini, L.,1996. Thermal analysis of biomass and corresponding pyrolysis products. Fuel 75,565-573
    [98]Branca C, Blasc D. Global kinetics of wood char devolatilization and combustion. Energy Fuels,2003,17(6):1609-1615
    [99]Conesa J. A., Domene A. Biomasses pyrolysis and combustion kinetics through n-th order parallel reactions Thermochimica Acta 2011,523:176-181
    [100]Jauhiainen J., Conesa J. A., Font R, etc. Kinetics of the pyrolysis and combustion of olive oil solid waste, J. Anal. Appl. Pyrolysis 72 (2004)9-15
    [101]Radmanesh R., Courbariaux Y., Chaouki J. et al. A unified lumped approach in kinetic modeling of biomass pyrolysis. Fuel,2006,85(9):1211-1220
    [102]Luangldattikhun P., Tangsathitkulehai C., Tanngsathitkulchai M., Non-isothermal thermogravimetric analysis of oil-Palm solid wastes. Bioresource Teehnology,2008, 99(5):986-997
    [103]Vamvuka. D., Kakaras E., Kastanaki E., et al. Pyrolysis Characteristies and kinetics of biomass residual mixtures with lignite. Fuel,2003,82(15-17): 1949-1960
    [104]Mangut V., Sabio E., Ganan J., et al. Thermogravimetric s tudy of the Pyrolysis of biomass residues from tomato processing industry. Fuel Proeessing Teehnology, 2006,87(2):109-115
    [105]Kastanaki E., Vamvuka. D., Granunelis. P., etc. Thermogravimetric studies of behavior of lignite-biomass blends during devolatilization. Fuel Proeessing Teehnology,2002,77-78:159-166
    [106]Font R., Conesa J. A., Molto J., et al. Kineties of pyrolysis and combustion of pine needles and cones. Journal of Analytical and Applied Pyrolysis,2009,85(1-2): 276-286
    [107]Raveendran K,, Ganesh A., Khilar K. C., Pyrolysis characteristics of biomass and biomass components. Fuel,1996,75 (8):987-998
    [108]Riviera F, Arenillas A, Arias B, et al. Modification of combustion behaviour and NO emissions by coal blending. Fuel Process Technol,2002; 77:111-7
    [109]Cumming JW, McLaughlin J. The thermogravimetric behaviour of coal. Thermochim Acta,1982; 57:253-72
    [110]Munir S., Daood S. S., Nimmo W., et al. Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane, bagasse and shea meal under nitrogen and air atmospheres. Bioresource Technol.2009;100:1413-1418
    [111]Yu, L. J., Wang, S., Jiang, X. M., Wang, N., Zhang, C. Q., Thermal analysis studies on combustion characteristics of seaweed. J. Ther. Anal. Calor.2008.93(2): 611-617
    [112]Wang XB, Si JP, Tan HZ, et al. Xu TM. Kinetics investigation on the combustion of waste capsicum stalks in Western China using thermogravimetric analysis Therm Anal Calorim.2012,109(1):403-412
    [113]Otero M, Gomez X, Garcia Al., et al. Non-isothermal thermogravimetric analysis of the combustion of two different carbonaceous materials coal and sewage sludge. J Therm Anal Calorim,2008; 93:619-26
    [114]Sasmal S, Goud W., Mohanty K.. Determination of salutary parameters to facilitate bio-energy production from three uncommon biomasses using thermogravimetric analysis. Therm Anal Calorim.2013,111(3):1649-1655
    [115]Sun XY, Yin SM, Wang HY, et al. Effect of the addition of cornstalk to coal powder/coal tar combustion. Therm Anal Calorim,2012,109(2):817-823
    [116]Dumanli AG, Tas S, Yurum Y. Co-firing of biomass with coals Part 1. Thermogravimetric kinetic analysis of combustion of fir (abies bornmulleriana) wood. J Therm Anal Calorim,2011; 103:925-33
    [117]Gil M. V., Riaza J., Alvarez L., et al. A study of oxy-coal combustion with steam addition and biomass blending by thermogravimetric analysis. Therm Anal Calorim, 2012,109(1):49-55
    [118]Gil M. V., Casal D., Pevida C., Pis J. J., Rubiera F. Thermal behaviour and kinetics of coal/biomass blends during co-combustion. Bioresource Technol.2010; 101:5601-5608
    [119]Li X. G., Lv Y., Ma B. G., Jian S. W., Tan H. B. Thermogravimetric investigation on co-combustion characteristics of tobacco residue and high-ash anthracite coal. Bioresource Technol.2011; 102:9783-9787
    [120]Varol, M., Atimtay, A. T., Bay, B., Olgun, H. Investigation of co-combustion characteristics of low quality lignite coals and biomass with thermogravimetric analysis. Thermochim Acta.2010; 510:195-201
    [121]Backreedy R. I., Jones J. M., Pourkashanian M., Williams A. Burn-out of pulverized coal and biomass chars. Fuel.2003; 82:2097-105
    [122]Kastanaki E., Vamvuka D. A comparative reactivity and kinetic study on the combustion of coal-biomass char blends. Fuel.2006;85:1186-1193
    [123]Sahu S. G, Sarkar P., Chakraborty N., Adak A. K. Thermogravimetric assessment of combustion characteristics of blends of a coal with different biomass chars. Fuel Process Technol.2010; 91:369-378
    [124]马志刚,吴树志,白云峰.生物质与煤混合燃烧的技术评述.电站系统工程,2009,25(6):1-4
    [125]栾积毅.生物质再燃过程的实验研究及数值模拟.[博士学位论文].哈尔滨:哈尔滨工业大学图书馆,2009
    [126]王爽.海藻生物质热解与燃烧的试验与机理研究.[博士学位论文].上海:上海交通大学图书馆,2010
    [127]姜旭东.CO2/O2气氛下煤粉富氧燃烧特性基础研究.[硕士学位论文].杭州:浙江大学图书馆,2011
    [128]闵凡飞,张明旭.生物质燃烧模式及燃烧特性的研究.煤炭学报,2005,30(1):104-108

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700