用户名: 密码: 验证码:
分布式信源编码关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的图像信源编码算法如视频编码标准MPEG-X和H.26X或静止图像编码标准JPEG2000等,都是在编码端提取信源间的统计相关性来进行压缩编码,编码端的运算复杂度都高于解码端。随着电子技术的发展,一些新兴的应用如无线视频传感网络、相机阵列等得到了快速的发展。这些新的应用由于编码端资源有限、功耗有限,不太适合采用传统的图像信源编码算法,并对传统的图像编码算法以及系统架构提出了新的挑战。
     近年来,分布式信源编码(Distributed Source Coding, DSC)由于其编码端复杂度低、良好的率失真性能和较好的抗误码性能受到了学者的广泛关注。在20世纪70年代Slepian和Wolf首先提出了DSC概念,他们利用信息熵提出针对于两个信息互相关联信源无损压缩的理论极限,并证明了两个互不通信的信息相关的信源压缩可以达到有互相通信的压缩效率。随后Wyner和Ziv将其扩展到了有损压缩,在考虑高斯信源有损压缩时得到了类似的结论。Slepian-Wolf和Wyner-Ziv所提出的编码理论与方法奠定了DSC的理论基础。与传统的图像编码算法不同,分布式信源编码将相关性的提取工作从编码端转移到了解码端,编码端运算复杂度大大降低。DSC由于其独特的优势,已成为国内外的研究热点。本文对DSC的几个关键技术进行了深入的研究并提出了相应的解决方案。
     本文的主要工作及取得的主要研究成果为:
     1.研究了分布式信源编码的理论,对基于Turbo码和LDPC码两种分布式信源编码系统进行了研究,提出了一种基于变换域的分布式信源编码系统架构。该系统在编码端首先进行DCT变换,然后按子带将量化后的比特平面数据进行LDPCA编码。在解码端利用关键帧重建边信息,使用边信息进行LDPCA解码,最后重构原始图像。该方案利用了传统编码框架的DCT变换和量化技术,可以获得比传统帧内编码算法更好的压缩性能。
     2.针对反馈信道的存在导致了时延的增加和解码器复杂度提高的缺点,提出了一种无反馈式分布式信源编码方案。该方案在编码端使用快速运动估计算法来重建边信息帧,并使用拉普拉斯分布模型来估计码率。由于去掉了反馈信道,系统的解码端复杂度大大降低,率失真性能损失也控制在0.3dB以内,适用于反馈信道不存在或者对系统时延要求较高的应用场景。
     3.针对分布式视频编码(DVC)中的边信息重建问题,提出了一种空域平滑的边信息重建算法。该算法设置代价函数阈值保证目标运动轨迹的线性连续,提高了运动估计准确性。对于运动比较平稳的区域,采用双向运动估计和补偿插值生成边信息;对于运动剧烈区域,使用最大后验概率估计对错误插值块进行空域平滑,最后利用最小均方误差准则最优重构。实验表明,该算法降低了编码码率,同时提高了重建图像PSNR。
     4.基于超光谱图像特点和应用环境要求,提出一种基于DCT变换域DSC的超光谱图像压缩算法。在编码端使用部分像素点进行线性预测,从而减少了编码端的运算量;在解码端,利用已解码子带信息进行基于块的迭代线性预测,使用优化后的边信息解码后续的子带。与传统超光谱图像压缩算法相比,本算法在编码端的运算量更少,需要的存储空间更小,满足超光谱图像压缩系统要求,易于硬件实现。
     5.基于现有的Slepian-Wolf解码器解码复杂度过高的问题,提出并实现了基于CUDA并行计算技术的快速分布式信源解码方法。使用GPU(GraphicProcessing Unit)对DSC中解码模块进行了并行计算优化,LDPCA解码器加速比可达200倍。与传统的基于CPU的解码方法相比,QCIF解码加速比为10倍,CIF加速比可达20倍。使用该并行计算技术提高了DSC的解码速度,有重要的应用价值。
     对于上述提出的算法,论文通过大量的软件仿真、测试以及与其他算法的比较验证了其有效性和先进性。
Traditional image source coding algorithms, such as video coding standardsMPEG-X and H.26X or still image coding standard JPEG2000, extract the statisticalcorrelation at the encoder. Computational complexity of the encoder is usually muchhigher than the decoder. With the development of electronic technology, a number ofemerging applications such as wireless video sensor network and camera array havebeen widely used. These new applications have constrained resources and powerconsumption at the encoder. It’s not very suitable to apply the traditional image sourcecoding algorithm in these applications. This is a new challenge to traditional imagecoding algorithms and system architectures.
     In recent years, Distributed Source Coding (DSC) is being researched by more andmore scholars due to its low encoding complexity, good performance and better errorresilience robustness. Distributed source coding concept was first proposed by Slepianand Wolf in the1970s for lossless compression. They proved that two independentcorrelated sources can achieve the same compression efficiency compared withcompress jointly. Wyner and Ziv then extended it to lossy compression and got similarresults. Slepian-Wolf and Wyner-Ziv two theories laid the theoretical basis of theDistributed source coding. The distributed source coding extract statistical correlation atthe decoder which transfers the complexity from the encoder to the decoder comparedwith traditional image source coding algorithms. Distributed source coding has nowbecome a new research hotspot in worldwide. In this paper, several key technologies inDistributed Source Coding are researched and appropriate solutions are proposed.
     The main work and research results obtained include:
     1. A transform-domain distributed source coding architecture is proposed based onresearch of Turbo-based and LDPC-based system structures. At encoder, DCT transformis performed first. Then, bitplane data of subbands after DCT transform and quantitize isencoded with LDPCA. At decoder, side information reconstructed by key frames is usedfor LDPCA decoding. Finally encoded Wyner-Ziv frame is reconstructed with decodedbitplane data. With DCT transform and quantitize technology, this system can achievebetter performance compared with traditional intra-frame coding method.
     2. A new Distributed Source Coding scheme without feedback channel is proposedto overcome the shortcomings of the feedback channel. The encoder uses fast motionestimation algorithm to reconstruct the side information, and use the Laplace distribution model to estimate the proper bit rate. Since the feedback channel is removed,the system complexity is greatly reduced. The rate distortion performance loss is controlin0.3dB or less and this scheme is suitable for those scenarios feedback channel doesnot exist or high system delay is unacceptable.
     3. An improved side information interpolation algorithm is presented. We set thefunctional threshold to ensure the linear continuity of target motion track. For smoothmotion area, bi-direction motion estimation and compensate is adopted to generate theside information. For other area, side information macroblock is chosen from a series ofseveral candidate macroblocks with minimum edge match error. Optimal minimummean-error reconstruction algorithm is also adopted to enhance the reconstructionperformance. Experiments show our algorithm can achieve better PSNR performancewhile decreases the encoding rate.
     4. Based on the analyses of the hyper-spectral images, a new compressionalgorithm based on DCT transform domain distributed source coding is proposed. Itperforms the bitplane encoding at the encoder with DCT subbands order, while usingthe key frame to reconstruct the side information for LDPC decoding at the decoder.Few pixels are adopted to perform linear prediction at encoder which reduces thecomplexity. Subbands which previously decoded are utilized for iterative linearprediction based on blocks at decoder, and following subbands are decoded withoptimized side information. The experimental results show that the proposed algorithmachieves improved performance over the conventional algorithm, and efficientlyreduces the cost of computation and memory usage at the encoder which facilitates thehardware implementation.
     5. Channel coding based Slepian-Wolf decoding takes up more than90%of theentire decoding complexity of the Wyner-Ziv system. A high performance CUDAparallel computing of distributed source decoder is proposed. GPU basedimplementation obtains up to200x speedup for LDPCA decoding. Compared totraditional CPU-based implementation, GPU parallel computing optimization achieves aspeedup of10x for QCIF decoding, and speedup of20x for CIF decoding. With highperformance parallel computing technology Distributed Source Coding is becomingavailable for practical application.
     For the above algorithms, a large number of simulations and experiments areperformed to verify their validity and advantages.
引文
[1]王汇源,数字图像通信原理与技术.2000:国防工业出版社.
    [2]姚庆栋,徐孟侠,毕厚杰,图像编码基础.1984:人民邮电出版社.
    [3]吴成柯,戴善荣,陆心如,图像通信.1990:西安电子科技大学出版社.
    [4] C. Shannon, A mathematical theory of communication. Bell System Technical Journal,1948.27: p.623-656.
    [5] B. Oliver, J. Pierce, C. Shannon. The philosophy of PCM. in Proc. of IRE.1948.
    [6] A. Huffman. A Method for the Construction of Minimum Redundancy Code. in Proc IRE.1952.
    [7] S. Huang, Run Length Coding and Its Extensions, in Picture Bandwidth Compression.1972: New York.
    [8] J. Ziv, A. Lempel, A Universal Algorithm for Sequential Data Compression. IEEE Transon Information Theory,1977.23(3): p.337-343.
    [9] H. Witten, M. Neal, G. Cleary, Arithmetic Coding for Data Compressio. Comm ACM,1987.30: p.520-540.
    [10]Kunt.M, Ikonomopoluos.A, Kocher.M. Second Generation Image Coding Techniques.1985: Proceedings of the IEEE.
    [11]黎洪松,成实译,《JPEG静止图像数据压缩标准》.1996:学苑出版社.
    [12]雷杰,遥感图像编码算法及其硬件实现技术研究.2009,西安电子科技大学.
    [13]A. Grossman, J. Morlet, Decomposition of Hardy Functions into Square IntegrableWavelets of Constant Shape. SIAM J Math Anal,1984.15(4): p.723-736.
    [14]Burt.P.J, Adelson.E.H, The Laplacian Pyramid as a Compact Image Code. Vol.31.1983:IEEE Trans. Computers.532-540.
    [15]G. Mallat, A Theory for Multiresolution Signal Decomposition: the WaveletRepresentation. IEEE Trans on Pattern Anal Mach Intell,1989.11(7): p.674-693.
    [16]G. Mallat, Multiresolution representations and wavelets.1988, University ofPennsylvania: Philadephia.
    [17]G. Mallat, Multiresolution approximation and wavelet orthonormal bases of L2(R). Trans.on American Math. Society,1989.315(1): p.69-87.
    [18]G. Mallat,《A Wavelet Tour of Signal Processing》.1999, San Diego: Second Edition,Academic Press.
    [19]K. Chui,《Wavelet Analysis and Its Application》.1992, INC: Academic Press.
    [20]K. Chui, L. C., Non-Orthogonal Wavelet Packet. SIAM J. Math. Anal.,1993.24: p.712-738.
    [21]刘贵忠,邸双亮,《小波分析及应用》.1992,西安电子科技大学出版社.
    [22]秦前清,杨宗凯,《实用小波分析》.1994:西安电子科技大学出版社.
    [23]S. G., N. T.,《Wavelet and Filter Banks》.1996: Cambridge-Wellesley Press.
    [24]V. M., K. J.,《Wavelets and Subband Coding》.1995: Prentice-Hall.
    [25]孔繁锵,多光谱遥感图像编码技术研究.2008,西安电子科技大学.
    [26]宋娟,基于分布式信源编码的多光谱图像/视频压缩技术研究.2012,西安电子科技大学.
    [27]王柯俨,干涉多光谱图像编码技术研究.2008,西安电子科技大学.
    [28]郭杰,静止图像压缩结构设计与VLSI实现研究.2010,西安电子科技大学.
    [29] H.264. Advanced video coding, in ISO/IEC14496-10and ITU-T Rec.2003.
    [30]封颖,分布式视频编码技术研究.2009,西安电子科技大学.
    [31]张婷,尹明, Wyner-Ziv视频编码中边信息估计研究.计算机工程与应用,2010.46(34).
    [32]J. Skorupa, J. Slowack, S. Mys, et al., Efficient low-delay distributed video coding. IEEETransactions on Circuits and Systems for Video Technology,2012.22(4): p.530-44.
    [33]J. Slowack, J. Skorupa, N. Deligiannis, et al., Distributed Video Coding with FeedbackChannel Constraints. IEEE Transactions on Circuits and Systems for VideoTechnology,2012.22(7): p.1014-26.
    [34]D. Slepian, J. Wolf, Noiseless coding of correlated information sources. IEEETransactions on Information Theory,1973.4(19): p.471-480.
    [35]A. Wyner, J. Ziv, Rate-Distortion Function for Source Coding with Side Information atthe Decoder. IEEE Transactions on Information Theory,1976.1(22): p.1-10.
    [36]A. Aaron, B. Girod. Wyner-ziv video coding with low encoder complexity. in Proceedingof Picture Coding Symposium2004.2004. Beaverton, OR, United States.
    [37]A. Aaron, D. Varodayan, B. Girod. Wyner-Ziv residual coding of video. in Proceedingsof25th PCS Proceedings: Picture Coding Symposium2006.2006. Le Chesnay Cedex,France.
    [38]A. Aaron, E. Setton, B. Girod. Towards practical Wyner-Ziv coding of video. inProceedings of IEEE International Conference on Image Processing.2003. Barcelona,Spain.
    [39]A. Aaron, P. Ramanathan, B. Girod. Wyner-ziv coding of light fields for random access.in Proceedings of IEEE6th Workshop on Multimedia Signal Processing.2004. NewYork, NY, United States.
    [40]A. Aaron, R. Zhang, B. Girod. Wyner-Ziv coding of motion video. in Proceedings ofThe Thirty-Sixth Asilomar Conference on Signals Systems and Computers.2002.Pacific Groove, CA, United states.
    [41]A. Aaron, S. Rane, B. Girod. Wyner-Ziv video coding with hash-based motioncompensation at the receiver. in Proceedings of International Conference on ImageProcessing.2004. Piscataway, NJ, United States.
    [42]A. Aaron, S. Rane, D. Rebollo-Monedero, et al. Systematic lossy forward errorprotection for video waveforms. in Proceedings of IEEE International Conference onImage Processing.2003. Barcelona, Spain.
    [43]S. R. A. Aaron, E. Setton, B. Girod. Transform-domain wyner-ziv codec for video. inProceedings of SPIE.2004. Bellingham, WA, United States.
    [44]A. Aaron, S. Rane, B. Girod. Wyner-Ziv video coding with hash-based motioncompensation at the receiver. in International Conference on Image Processing.2004.Piscataway, NJ, United States.
    [45]B. Girod, A. Aaron, S. Rane, et al. Distributed video coding. in Proceedings of the IEEE.2005.
    [46]D. Varodayan, A. Aaron, B. Girod. Rate-adaptive distributed source coding usinglow-density parity-check codes. in Conference Record-Asilomar Conference onSignals, Systems and Computers.2005. Piscataway, NJ, United States.
    [47]D. Varodayan, A. Aaron, B. Girod, Rate-Adaptive codes for Distributed Source Coding.EURASIP Signal Processing,2006: p.3123-3130.
    [48]S. Rane, B. Girod. Systematic lossy error protection of video based on H.264/AVCredundant slices. in Proceedings of SPIE.2006. Bellingham WA, United States.
    [49]D. Varodayan, Y.-C. Lin, B. Girod, Adaptive distributed source coding. IEEETransactions on Image Processing,2012.21(5): p.2630-2640.
    [50]L. Yao-Chung, D. Varodayan, B. Girod, Image Authentication Using Distributed SourceCoding. IEEE Transactions on Image Processing,2012.21(1): p.273-83.
    [51]J. Kusuma, K. Ramchandran, S. Pradhan, Distributed compression in a densemicrosensor network. IEEE Signal Processing Magazine,2002.19(2): p.51-60.
    [52]R. Puri, A. Majumdar, K. Ramchandran, PRISM: A video coding paradigm with motionestimation at the decoder. IEEE Transactions on Image Processing,2007.16(10): p.2436-2448.
    [53]R. Puri, A. Majumdar, K. Ramchandran, A video coding paradigm with motionestimation at the decoder. IEEE Transactions on Image Processing,2007.16(10): p.2436-2448.
    [54]R. Puri, K. Ramchandran. PRISM: A reversed multimedia coding paradigm. inProceeding of IEEE International Conference on Image Processing.2003.Barcelona, Spain.
    [55]R. Puri, K. Ramchandran, PRISM: A New Robust Video Coding Architecture Based onDistributed Compression Principles. Proc. Allerton Conf.,2002.
    [56]R. Puri, K. Ramchandran. A reversed multimedia coding paradigm. in IEEE InternationalConference on Image Processing.2003. Barcelona, Spain.
    [57]S. Pradhan, K. Ramchandran. Distributed source coding: symmetric rates andapplications to sensor networks. in Proceedings of IEEE International Symposium onCircuits and Systems.2000. Piscataway, NJ, USA.
    [58]DISCOVER. Distributed coding for video services.2007.
    [59]L. Huynh Van, L. L. Raket, H. Xin, et al., Side Information and Noise Learning forDistributed Video Coding Using Optical Flow and Clustering. IEEE Transactions onImage Processing,2012.21(12): p.4782-96.
    [60]Y.-Y. Ming, B. Yang, Z.-Y. Quan, et al., Rate estimate for regular LDPCA codec indistributed video coding. Journal of China Universities of Posts andTelecommunications,2012.19(1): p.50-54.
    [61]S. Mys, J. Slowack, J. Skorupa, et al., Decoder-driven mode decision in a block-baseddistributed video codec. Multimedia Tools and Applications,2012.58(1): p.239-66.
    [62]A. Tome, F. Pereira, Low delay distributed video coding with refined side information.Signal Processing: Image Communication,2011.26(4-5): p.220-35.
    [63]X. Artigas, J. Ascenso, M. Dalai, et al. The DISCOVER codec: Architecture, Techniquesand Evaluation. in Picture Coding Symposium.2007. Lisbon, Portugal.
    [64]刘东,杜明辉,基于块的分布式视频编码边信息生成技术.华南理工大学学报(自然科学版),2011.39(2).
    [65]刘志兴,张菁,卓力,基于移动Agent的JPEG2000分布式编码算法研究.电子与信息学报,2010.32(9).
    [66]卿粼波,何小海,吕瑞, DVC中基于亚像素MCI的边信息重建.计算机工程,2010.36(3): p.3.
    [67]吴.孔繁锵,基于分布式信源编码和感兴趣区域编码的干涉多光谱图像压缩.宇航学报,2011.32(2): p.367-373.
    [68]孔繁锵,吴宪云,基于分布式信源编码和感兴趣区域编码的干涉多光谱图像压缩.宇航学报,2011.32(2): p.367-373.
    [69]宋彬,贺红,刘海华, et al., Wyner-Ziv视频编码中边信息生成算法研究.通信学报,2010.31(12).
    [70]封颖,李云松,吴成柯等,分布式视频解码器端的码率估计算法.电子学报,2009.37(6): p.1232-1236.
    [71]封颖,吴成柯,石迎波,一种高效的H.264帧内编码全零块判决算法.系统工程与电子技术,2007.7: p.1205-1208.
    [72]尹明,蔡述庭,谢云, et al.,分布式视频编码中基于量化噪声因素的虚拟相关信道模型.通信学报,2012.33(2).
    [73]张晓星,刘冀伟,胡广大, et al.,分布式视频编码中的边信息改进算法.计算机科学,2011.38(11).
    [74]李云松,孔繁锵,吴成柯,基于分布式信源编码的干涉多光谱图像压缩.光学学报,2008.28(8): p.1463-1468.
    [75]李靖,葛建华,王勇, et al.,有限反馈分布式预编码协作通信系统及性能分析.电子与信息学报,2010.32(4).
    [76]杨春玲,马力,基于多假设运动补偿去噪的迭代边信息改进算法.电子与信息学报,2011.33(11).
    [77]王凤琴,陈晓雷,陈燕,基于时空联合的解码边信息插值算法.计算机应用,2012.32(8).
    [78]盛涛,无反馈分布式视频编码的码率分配与传输策略研究.2010,华中科技大学.
    [79]粘永健,万建伟,何密, et al.,基于分布式信源编码的高光谱图像无损压缩研究进展.宇航学报,2012.33(7).
    [80]粘永健,辛勤,汤毅, et al.,基于多波段预测的高光谱图像分布式无损压缩.光学精密工程,2012.20(4).
    [81]粘永健,万建伟,何密等,基于分布式信源编码的高光谱图像无损压缩研究进展.宇航学报,2012.33(7): p.860-869.
    [82]粘永健,辛勤,汤毅等,基于多波段预测的高光谱图像分布式无损压缩.光学精密工程,2012.20(4): p.906-912.
    [83]纪涛,张太镒,分布式视频编码中一种基于混合模型的边信息生成算法.微电子学与计算机,2010.27(9).
    [84]蔡述庭,王钦若,谢云等,一种基于无比率LDPC编码的分布式视频压缩机制.电子学报,2009.37(11): p.2535-2540.
    [85]陈祖爵,陈媛,董亮, et al.,块分类的双向估计加权边信息生成算法.计算机应用研究,2012.29(1).
    [86]马力,苏卓涵,杨春玲,基于多假设运动补偿预测的边信息改进方法.计算机工程,2011.37(12).
    [87]C. Brites, F. Pereira, Correlation noise modeling for efficient pixel and transformdomain Wyner-Ziv video coding. IEEE Transactions on Circuits and Systems forVideo Technology,2008.18(9): p.1177-1190.
    [88]J. Ascenso, C. Brites, F. Pereira. Improving Frame Interpolation with Spatial MotionSmoothing for Pixel Domain Distributed Video Coding. in5th EURASIP Conferenceon Speech and Image Processing, Multimedia Communications and Services.2005.Como, Italy.
    [89]M. Morbee, J. Prades-Nebot, A. Pizurica, et al. Rate Allocation Algorithm forPixel-Domain Distributed Video Coding Without Feedback Channel. in Proceedingsof IEEEInternational Conference on Acoustics, Speech and SignalProcessing(ICASSP).2007. Honolulu, Hawaii, USA.
    [90]M. Tagliasacchi, A. Trapanese, S. Tubaro, et al. Exploting Spatial Redundancy in PixelDomain Wyner-Ziv Video Coding. in ICIP.2006. Atlanta, USA.
    [91]S. R. A. Aaron, E. Setton, B. Girod. Transform-domain wyner-ziv codec for video. inSPIE.2004. Bellingham, WA, United States.
    [92]R. Bernardini, R. Rinaldo, A. Vitali, et al., Performance evaluation of wavelet-baseddistributed video coding schemes. Signal, Image and Video Processing,2011.5(1): p.49-60.
    [93]C. Brites, F. Pereira, An efficient encoder rate control solution for transform domainwyner-ziv video coding. IEEE Transactions on Circuits and Systems for VideoTechnology,2011.21(9): p.1278-1292.
    [94]C. Brites, F. Pereira. Encoder rate control for transform domain Wyner-Ziv video coding.in Proceedings of International Conference on Image Processing.2006. Piscataway,NJ, United States.
    [95]F. P. C. Brites, Correlation noise modeling for efficient pixel and transform domainWyner-Ziv video coding. IEEE Transactions on Circuits and Systems for VideoTechnology,2008.18(9): p.1177-1190.
    [96]C. Brites, J. Ascenso, F. Pereira. Improving transform domain Wyner-Ziv video codingperformance. in IEEE International Conference on Acoustics.2006.
    [97]C. Brites, J. Ascenso, J. Quintas, Evaluating a feedbaek channel based transform domainWyner-Ziv video codec. Signal Proeessing:Image communication,2008.23(4): p.269-297.
    [98]Y. Huo, S.-H. Li, T. Jing, Low-delay rate control based on generalized laplaciandistribution. Tien Tzu Hsueh Pao/Acta Electronica Sinica,2010.38(5): p.1078-1083.
    [99]Y.-C. Sun, C.-J. Tsai, Perceptual-based distributed video coding. Journal of VisualCommunication and Image Representation,2012.23(3): p.535-548.
    [100] T. Sheng, G. Hua, H. Guo. Rate Allocation for Transform Domain Wyner-Ziv VideoCoding without Feedback. in In Proceedings of ACM Multimedia.2008. Vancouver,BC, Canada.
    [101] F. Xiao, J. Liu, L. Sun, et al., A new side information estimate based Distributed VideoCoding algorithm for wireless multimedia sensor networks. International Journal ofAdvancements in Computing Technology,2012.4(1): p.320-326.
    [102] P. Shi, K. Luo, Generation of Side Information in Distributed Video Coding. VideoEngineering,2010.34(11): p.27-9.
    [103] C. Xin-hao, Y. Lu, Distributed video coding with adaptive selection of hash functions.Journal of Zhejiang University Science C. Computers& Electronics,2011.12(5):p.387-96.
    [104] X. Guo, Y. Lu, F. Wu, et al. Distributed video coding using wavelet. in Proceedings ofIEEE International Symposium on Circuits and Systems.2006. Piscataway, NJ, UnitedStates.
    [105]吴宪云,李云松,封颖,一种改进的空域平滑的边信息重建方法.高技术通讯,2011.21(4): p.345-350.
    [106] S. Ye, M. Ouaret, F. Dufaux, et al. Error resiliency of distributed video coding inwireless video communication. in Proceeding of SPIE.2008. Bellingham WA, WA,United States.
    [107] B. Ko, H. Shim, B. Jeon. Wyner-Ziv Coding with Spatio-Temporal Refinement Basedon Successive Turbo Decoding. in IEEE International Conference on Multimedia&Expo.2008.
    [108] G. Hua, C. Chen. Low Punctured Turbo Codes and Zero Motion Skip EncodingStrategy for Distributed Video Coding. in In Proceedings of IEEE GlobalCommunications Conference.2006. San Francisco, CA, USA.
    [109] P. Jung Ah, S. Doug Young, P. Gwang-Hoon, Distributed Video Coding with MultipleSide Information Sets. IEICE Transactions on Information and Systems,2010.E93-D(3): p.654-7.
    [110] T. C. W. Lei, C. Shiunn-Jang, New distributed video coding paradigm with partialboundary matching algorithm, spatio-temporal texture synthesis and image inpainting.International Journal of Innovative Computing, Information& Control,2010.6(12): p.5405-19.
    [111] Y. Pei, V. Ambetkar, Packet-by-packet adaptive scheme for video coding andtransmission over wireless IP networks using rate-compatible punctured turbo (RCPT)codes. Wireless Personal Communications,2007.43(4): p.1675-1687.
    [112] R. Westerlaken, S. Borchert, R. Gunnewiek. Analyzing symbol and bit plane-basedLDPC in distributed video coding. in In Proceedings of IEEE InternationalConference on Image Processing.2007. San Antonio, TX, USA.
    [113] R. Gallager, Low Density Parity Check Codes. IRE Transactions on InformationTheory,1962.8(3): p.208-220.
    [114] D. MacKay, R. Neal, Near Shannon Limit Performance of Low Density Parity CheckCodes. Electronics Letters,1996: p.1645-1646.
    [115] A. Albanese, J. Blomer, J. Edmonds, et al., Priority encoding transmission. IEEETransactions on Information Theory,1996.42(6): p.1737-1744.
    [116] C. Huang, R. Janakiraman, L. Xu. Loss-resilient on-demand media streaming usingpriority encoding. in Proceedings of the12th ACM International Conference onMultimedia.2004. New York, NY, United States.
    [117] M. Andronico, A. Lombardo, S. Palazzo, et al. Performance analysis of priorityencoding transmission of MPEG video streams. in Conference Record/IEEE GlobalTelecommunications Conference.1996. Piscataway, NJ, USA.
    [118] S. Boucheron, M. Salamatian, About priority encoding transmission. IEEETransactions on Information Theory,2000.46(2): p.699-704.
    [119]陈雨时,张晔,张钧萍,基于线性模型最优预测的高光谱图像压缩.南京航空航天大学学报,2007.39(3): p.368-376.
    [120] C. Tang, N. Cheung, A. Ortega, et al. Efficient inter-band prediction andwavele-based compression for hyperspectral imagery: distributed source codingapproach. in Proceedings of IEEE Data Compresison Conference.2005. Genoa, Italy.
    [121] N. Cheung, C. Tang, A. Ortega, et al., Efficient wavelet-based predictive Slepian-Wolfcoding for hyperspectral imagery. Signal Processing,2006.86(11): p.3180-3195.
    [122] X. Wu, Y. Li, C. Wu, et al., Linear prediction based distributed source coding onhyperspectral imagery. Journal of Convergence Information Technology,2012.7(12):p.27-34.
    [123] H. Pishro-Nik, F. Fekri, Results on punctured low-density parity-check codes andimproved iterative decoding techniques. IEEE Transactions on Information Theory,2007.53(2): p.599-614.
    [124] C. Berrou, A. Glavieux, P. Thitimajshima, Near Shannon limit error-correctingcoding and decoding: Turbo-codes. Proceeding of ICC'93, Geneva, Switzerland,1993:p.1064-1074.
    [125] A. Aaron, S. Rane, E. Setton, et al. Transform-domain Wyner-Ziv Codec for Video. inProceedings of SPIE Visual Communications and Image Processing (VCIP).2004.
    [126] D. Kubasov, K. Lajnef, C. Guillemot. A hybrid encoder/decoder rate control forwyner-ziv video coding with a feedback channel. in Proceedings of2007IEEE9ThInternational Workshop on Multimedia Signal Processing.2007. Piscataway, NJ,United States.
    [127] G. Hua, C. Chen. Distributed video coding with zero motion skip and effieient DCTcoefficient encoding. in In Proeeedings of IEEE International Conference ofMultimedia and Expo.2008. Hannover, Germany.
    [128] M. Schwartz, T. Etzion, The Structure of Single-Track Gray Codes. IEEETransactions on Information Theory,1999.45(7): p.2383-2396.
    [129] C. Brites, J. Ascenso, F. Pereira. Modeling correlation noise statistics at decoder forpixel based Wyner-Ziv video coding. in Proceedings of Picture Coding Symposium.2006. Le Chesnay Cedex, France.
    [130] R. Westerlaken, R. Gunnewiek, R. Lagendijk. The Role of the Virtual Channel inDistributed Source Coding of Video. in In Proceedings of IEEE InternationalConference on Image Processing.2005. Genoa, Italy.
    [131] E. Lam, J. Goodman, A Mathematical Analysis of the DCT Coefficient Distributionsfor Iinages. IEEE Transaction on Image Processing,2000.9(10): p.1661-1666.
    [132] M. Varanasi, B.Aazhang, Parametric generalized Gaussian density estimation.Journal of the Acoustical Society of America.1989.86: p.1404-1413.
    [133] N. Eiamjumrus, S. Aramvith, Rate control Scheme based on Cauchy R-DOptimization Model. In Proceedings of IIH-MSP,2006: p.205-210.
    [134]封颖,王汉斌,基于无线传感网络的DVC码率估计算法.指挥信息系统与技术,2010.1(4): p.59-63.
    [135] C. Yu, S. Tai, Adaptive Double-Layered Initial Search Pattern for Fast MotionEstimation. IEEE Trans. on Multimedia,2006.8(6): p.1109-1116.
    [136]杨张,智海素,雷海军等, DVC边信息估计中块匹配准则算法的研究.电视技术,2012.36(13): p.35-38.
    [137] Y. Wang, J. Jeong, C. Wu, et al. Wyner-Ziv video coding with spatio-temporal sideinformation. in2007IEEE International Conference on Multimedia and Expo.2007.Piscataway, NJ, United States.
    [138] C. Wong, C. Oscar, Fast Motion Compensated Temporal Interpolation for Video.Proceedings of SPIE, Taipei, Taiwan,1995: p.1108-1118.
    [139] A. Qaralleh, E. A. C. Tian-Sheuan, Fast motion estimation by adaptive earlytermination. IEEE Signal Processing Systems Design and Implementation,2005: p.678-681.
    [140] M. Cagnazzo, T. Maugey, B. Pesquet-Popescu. A differential motion estimationmethod for image interpolation in distributed video coding. in IEEE InternationalConference on Acoustics, Speech and Signal Processing ICASSP.2009.
    [141] X. Lin, H.-T. Liu, J.-N. Wang, Recent advances in multi-view distributed video codecs.Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University,2010.31(8): p.1093-1099.
    [142] J. Ascenso, C. Brites, F. Pereira, A flexible side information generation framework fordistributed video coding. Multimedia Tools and Applications,2010.48(3): p.381-409.
    [143] S. Ye, M. Ouaret, F. Dufaux, et al. Hybrid spatial and temporal error concealment fordistributed video coding. in2008IEEE International Conference on Multimedia andExpo.2008. Hanoverian,Germany.
    [144]许静,基于MAP技术图像超分辨率重建的研究.2007,中国海洋大学.
    [145]王立国,赵妍,基于MAP的高光谱图像超分辨率方法.光谱学与光谱分析,2010.30(4): p.1044-1048.
    [146]鲁林,李翠华,张珍等,一种MRF-MAP框架下的图像超分辨率重建方法.厦门大学学报(自然科学版),2012.51(4): p.696-700.
    [147]周智恒,谢胜利,新的自适应MRF-MAP视频序列误差掩盖.电子学报,2006.34(4): p.628-633.
    [148] V. Toto-Zarasoa, A. Roumy, C. Guillemot, Source Modeling for Distributed VideoCoding. IEEE Transactions on Circuits and Systems for Video Technology,2012.22(2): p.174-87.
    [149]崔巍,复杂运动下的运动补偿插值及其在Wyner-Ziv视频编码中的应用.2010,西安电子科技大学.
    [150] D. Kubasov, J. Nayak, C. Guillemot. Optimal Reconstruction in Wyner-Ziv VideoCoding with Multiple Side Information. in IEEE Proc. of MMSP.2007. Chania,Crete,Greece.
    [151] Y. Vatis, S. Klomp, J. Ostermann. Enhanced reconstruction of the quantisedtransform coefficients for Wyner-Ziv coding. in Int. Conf. on Multimedia&Expo(ICME), Multimedia Coding and Processing Track,.2007. Beijing, China,.
    [152] D. Landgrebe, Information Extraction Principles and Methods for Multispectral andHyperspectral Image Data, in Information Processing for Remote Sensing, Chen,Editor.1999, World Scientific Publishing Company. p.3-38.
    [153] E. Christophe, D. Leger, C. Mailhes, Quality Criteria Benchmark for HyperspectralImagery. IEEE Trans. Geoscience and Remote Sensing,2005.43(9): p.2103-2114.
    [154] J. Mielikainen, Lossless compression of hyperspectral images using lookup tables.IEEE Signal Process. Letters,2006.13(3): p.157-160.
    [155] G. Jean-Michel, T. Carole, H. Romain, et al. On-board compression of hyperspectralsatellite data using band–reordering. in SPIE.2011. San Diego, USA.
    [156]肖江,吴成柯,李云松等,多光谱图像的3D EBCOT压缩编码算法.西安电子科技大学学报,2005.32(4): p.549-554.
    [157] X. Tang, W. Pearlman, Three-dimensional wavelet-based compression ofhyperspectral images in Hyperspectral Data Compression, ed. F. Rizzo G. Motta, andJ. A. Storer.2006: Kluwer Academic Publishers.
    [158]张晓玲,沈兰荪,张培强,基于三维自适应预测的高光谱图像无损压缩算法.电子学报,2004.32(6): p.957-959.
    [159]宋娟,李云松,吴成柯等,基于L∞最小搜索和陪集码的高光谱图像无损及近无损压缩.电子学报,2011.39(7): p.1551-1555.
    [160]宋娟,吴成柯,张静等,基于分类和陪集码的高光谱图像无损压缩.电子与信息学报,2011.33(1): p.231-234.
    [161] J. Zhang, G. Liu, An Efficient Reordering Prediction-Based Lossless CompressionAlgorithm for Hyperspectral Images. IEEE Geoscience and Remote Sensing Letters,2007.4(2): p.283-287.
    [162] H. Xiaoran, C. Anni, Z. Bojin, A new encoder rate-allocation method for distributedvideo coding. Frontiers of Electrical and Electronic Engineering in China,2011.6(4):p.535-41.
    [163] X. Li, M. Wien, J.-R. Ohm, Rate-complexity-distortion optimization for hybrid videocoding. IEEE Transactions on Circuits and Systems for Video Technology,2011.21(7): p.957-970.
    [164] NASA/JPL LAB.2012; Available from: http://aviris.jpl.nasa.gov/.
    [165] X. Wu, Y. Li, C. Wu, et al., Block Based Iterative Linear Prediction at Decoder forHyper-spectral Imagery Compression Using Distributed Source Coding. Journal ofXidian University,2010.37(4): p.683-688.
    [166] P. Yu-Shan, S. Yun-Chung, W. Ja-Ling, High efficient distributed video coding withparallelized design for LDPCA decoding on CUDA based GPGPU. Journal of VisualCommunication and Image Representation,2012.23(1): p.63-74.
    [167] R. Oh, J. Park, B. Jeon. Fast Implementation of Wyner-Ziv Video Codec usingGPGPU. in IEEE Conference BMSB.2010. Shanghai, China.
    [168] G. Falcao, L. Sousa, V. Silva. Massive Parallel LDPC Decoding on GPU. in PPoPP.2008.
    [169] G. Falcao, V. Silva, L. Sousa. How GPUs can outperform ASICs for fast LDPCdecoding. in ICSACM2009.2009.
    [170] Y. Chang, M. Huang, B. Huang, et al. Design of High Throughput GPU-BasedPlatform for Decoding of LDPC Codes. in Proceedings of SPIE.2010. San Diego,USA.
    [171] W. J. van der Laan, A. C. Jalba, J. B. T. M. Roerdink, Accelerating Wavelet Lifting onGraphics Hardware Using CUDA. IEEE Transactions on Parallel and DistributedSystems,2011.22(1): p.132-46.
    [172] F. Massanes, M. Cadennes, J. G. Brankov, Compute-unified device architectureimplementation of a block-matching algorithm for multiple graphical processing unitcards. Journal of Electronic Imaging,2011.20(3).
    [173] X. Wu, Y. Li, C. Wu, et al. Is the CCSDS Rice Coding Suitable for GPU MassivelyParallel Implementation. in Proc. SPIE8183.2011. Prague.
    [174]2012; Available from:http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/NVIDIA_CUDA_Programming_Guide_4.2.pdf.
    [175] A. Liveris, Z. Xiong, C. Georghiades, Compression of binary sources with sideinformation at the decoder using LDPC codes. IEEE Communications Letters,2002.6(10): p.440-442.
    [176] L. C. source.2012; Available from:http://www.stanford.edu/~divad/software/ldpca.zip.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700