用户名: 密码: 验证码:
制导炸弹投放区计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
制导炸弹是一种廉价、高效的精确制导武器,随着现代战争对精确打击需求的增长,其在武器家族中的地位也越来越重要。与常规重力炸弹相比,它不仅打击精度高,而且还可在中高空区域投放,能有效减轻飞行员操作负担,提高载机生存能力。全面评价制导炸弹武器效能,尤其是适用范围是研制方必不可少的一项工作,这个适用范围就是通常意义下的投放区。论文以某典型制导炸弹为研究对象,系统研究制导炸弹投放区的计算问题,并通过实用性分析,增强投放区计算的实用价值。论文主要研究内容包括:
     首先,建立制导炸弹投放区的计算模型,包括制导炸弹动力学模型和投放区几何模型。根据工作高度和计算精度构建合适的环境模型,并考虑工程实际需要,将过载作为控制量;为研究射面投放和离轴投放两种情况,分别建立射面质点弹道模型和离轴质点弹道模型。综合各种定义方式,给出较为完整的投放区定义。本质上,投放区边界主要由制导炸弹最优滑翔能力决定。因此,通过简单的平移变换可将投放区边界问题转化为多个最优射程问题。同时,根据制导方法、投弹方向、有无扰动将投放区分为方案型与导引型、射面与离轴、理想与实际三大类。
     基于最大值原理,引入同伦方法,提出一种高精度方案型投放区计算方法。首先利用同伦方法的大范围收敛特性,构造原最大射程问题的同伦映射,推导了最大升阻比控制规律,以最大升阻比弹道作为初始解轨迹。随着调节系数从0连续变化至1,同伦轨迹也连续过渡到原最大射程问题的解轨迹。该方法克服了最大值原理求解最优控制问题时对协态初值的过度敏感,且因最大升阻比弹道提供的初始轨迹非常接近原问题的最优解,计算收敛更快。最后,利用所提方法计算了典型条件下的射面方案型投放区和离轴方案型投放区。
     根据微分平坦理论,提出了一种基于直接法的导引型投放区计算方法。引入微分平坦变量对弹道模型进行重新描述,以该模型为基础采用直接法计算导引型投放区。导引律既是在线生成弹道的规律,也是一种路径约束。如果仍利用同伦方法进行求解,路径约束处理繁琐,且收敛效果不甚理想。经平坦变量描述的弹道模型,因大部分微分约束被转换为代数约束,需离散化的微分约束和待优化变量减少,计算量也减少,既发挥了直接法善于处理路径约束的优势,又避开了直接法计算量大的缺点。最后,利用所提方法计算了典型条件下的射面导引型投放区和离轴导引型投放区。
     由前面的分析与仿真可知,相同条件下导引型投放区的射程范围、离轴能力均小于方案型投放区。其根本原因在于导引型投放区受导引律决定的路径约束,解空间更小。针对该问题,提出一种基于复合制导体制的扩展投放区定义与计算方法,在中制导方案段定义最大水平末速的性能指标,为中末两段的顺利交班设计平滑段,并计算典型条件下的扩展型投放区。仿真结果表明,该型投放区结合了方案型与导引型投放区的优势,具有范围广、制导精度高的特点。
     围绕投放区实际使用中存在的几个问题进行了讨论。1)提出了一种选取拟合变量、指定拟合顺序以及规定计量单位的投放区数据预处理方法,并通过实例说明了该处理方法对拟合精度的贡献;2)根据实际投弹扰动因素的作用时刻,将其分成初始状态误差和飞行过程干扰两类。并给出前者独立作用时,投放区命中概率计算式。因后者作用于弹道积分的每个周期,对投放区命中概率的影响可通过拉偏试验展开分析。由综合各类扰动因素的蒙特卡洛试验揭示了投放区相应变化规律;3)从三个角度诠释投放区计算中的通用性涵义,认为提高单条弹道优化的效率、建立批量弹道计算的异常处理机制,以及寻求投放区随弹道参数连续变化的规律,都是增强通用性的途径。
     论文引入了数值计算的新方法研究制导炸弹投放区的获取问题,探索了投放区使用时存在的问题并提出了相应的解决方案,通过仿真与分析验证了所提方法的有效性。文中的论述充分结合了制导炸弹的研究背景,算例设计均以实弹参数为参考,分别给出了多种条件下的各型投放区及对比分析,对于新型制导炸弹的研制具有借鉴意义。
As a precision-guided weapon, guided bomb is cheap and highly effective. With the increase of modern warfare demand for precision strike, it is becoming more and more important in arms family. Compared with conventional gravity bomb, it has not only high accuracy but also the ability of mid-high altitude region release. This character can effectively reduce burden on the operation of the pilot and improve carrier survivability. Therefore, a comprehensive evaluation of the performance of guided weapons, particularly the scope of application of guided bomb is essential and critical. Where, the scope is always called as release region of guided bombs. Taking the typical guided bomb as an example, this dissertation studies systematically release region calculation for guided bombs, and through the application analysis of engineering, the practical value of release region is pointed out. The main content of this dissertation is shown as follows:
     Release region calculation model of a guided bomb is established, including dynamic model of guided bomb and geometric model of release region. Allowing for altitude scope and calculation accuracy, a suitable environmental model is constructed and overload is taken as control input. Then particle trajectory models on surface-launched and off-axis are set up. Synthesizing various definitions, a general definition of release region is given out. Because release region boundary is related with the utmost trajectory of guided bombs, the boundary issue was put into many rounds of optimal range calculation, through a simple translation transformation. According to guidance mode, release direction and whether or not disturbance, release region are classified into three kinds: guidance and program, on surface-launched and off-axis, ideal and actual.
     The homotopy method based on maximum principle is developed to calculate program release region whose demand for precision is higher than efficiency. The homotopy map for maximum range problem is built by using homotopy method with a large scope convergence property, and the control law of maximum lift-drag ratio is deduced. Then the maximum lift-drag ratio trajectory is regarded as the initial solution, and the optimal solution of original maximum range is obtained through successively increasing the adjustment parameter from zero to one. The method overcomes initial costates guess puzzle and has a fast convergence rate which thanks to maximum lift-drag ratio trajectory close to true optimal solution. Finally, program release regions on surface-launched and off-axis are calculated by using proposed method.
     Proper flat outputs are introduced and used to reformulate trajectory model, then the direct method is adopted to calculate guidance release region on the basis of the reformulated trajectory model. Guidance law is not only used to generate trajectory online but also as a path constraint. If above homotopy method is adopted to calculate release region of guidance type, the path constraint is complicated to deal with and the convergence rate is low. Most differential constraints of reformulated trajectory model are transformed into algebraic ones. Hence, less differential constraints need discretizing and less decision variables need optimizing. When direct method is utilized to solve maximum range problem, the cost on computation is not a troublesome problem. Finally, guidance release regions on surface-launched and off-axis are calculated based on the reformulated trajectory model.
     Range and off-axis angle of the release region of guidance type are smaller than those of program type under the same conditions. The reason is that solution space becomes smaller while guidance path constraint is imposed. Therefore, compound guidance scheme is adopted to expand release region. After maximum final velocity in horizon for midcourse is taken as performance indicator and smooth handover is designed from the midcourse to the terminal, the expanding type release region is calculated. Expanding type release region has both advantages of program type and guidance type through analysis of the calculation results.
     The problems are discussed from the practical application of release region. 1) A data preprocessing method is brought forward in order to select appropriate fitting variables, fitting queue and units of measurement, and effectiveness of proposed method is validated by illustration. 2) According to the time span of effection, the disturbances are divided into two classes: initial state error and flight course interference. The hit probability expressions are given when the former acts individually. But the latter influences each period of trajectory integral, deflection tests are necessary to analyze hit probability when flight course interference acts individually. After that, the shift mode of ideal release region is obtained by monte carlo examination considering disturbances of both classes. 3) The generality of release region calculation is expatiated from three points of view, so the conclusion is that efficiency of trajectory optimization, error disposal on group trajectories computation and relation between release region and trajectory parameters are the ways to generality.
     This dissertation introduces new methods for numerical calculation to obtain release region of guided bomb, and explored the problems in the appliction of release region and puts forward corresponding solutions. Referring the actual guided bomb’s characters during shooting, some typical instances are designed and release regions are worked out by using proposed methods under various release conditions. What’s more, detailed analysis is made and some conclusions are drawn according to above calculated results, which shows proposed methods will be helpful in development of new types of guided bombs.
引文
[1]王东石.中远程空空导弹攻击区计算及火控误差分析[D].北京:北京航空航天大学,2000.
    [2]《兵器工业科学技术词典》编辑委员会.兵器工业科学技术词典--航空炸弹[M].北京:国防工业出版社,1993.
    [3]韩品尧.战术导弹总体设计原理[M].哈尔滨:哈尔滨工业大学出版社,2000.
    [4]吴静,邓堃,柳世考.美军精确制导武器及其对抗技术的分析[J].飞航导弹,2007, (6):12~16.
    [5]吴思.中国精确制导炸弹的发展与最新动向[J].现代兵器,2006, (12):44~47.
    [6]李向林,于本水.防空导弹总体设计方法的新发展-弹族化设计[J].现代防御技术,2002,30(3):14~20.
    [7]李保平.航空制导炸弹的发展技术途径与关键技术[J].弹箭与制导学报, 2006,26(3):100~103.
    [8]辜益山,李斌.21世纪美国空军机载精确制导武器发展态势[J].世界空军装备, 2004, (1):11~17.
    [9]范金荣.制导炸弹发展综述[J].现代防御技术,2004,32(3):27~31.
    [10] JDAM炸弹的使用过程.http:// www.xooob.com/291483_445639.html,2008.
    [11]孙明玮,彭南楠,杨明.导弹最优滑翔弹道的设计及存在的问题[J].飞行力学,2006,24(1):26~29.
    [12] Saraf A, James A L, Kenneth D M.Landing Footprint Computation for Entry Vehicles[R].AIAA 2004-4774,2004:1~14.
    [13]史金光,王中原,易文俊.滑翔增程弹飞行弹道[J].火力与指挥控制, 2007, 32(11):88~90.
    [14] Kluever C A.Unpowered Approach and Landing Guidance Using Trajectory Planning[R].AIAA 2004-4770,2004:1~18.
    [15] Kenneth R H, Kluever C A.Terminal Area Energy Management Trajectory Planning for an Unpowered Reusable Launch Vehicle [R].AIAA 2004-5183,2004:1~18.
    [16] Kluever C A, Horneman K R.Terminal Trajectory Planning and Optimization for an Unpowered Reusable Launch Vehicle[R].AIAA 2005-6058,2005:1~23.
    [17] Hattis P D, Campbell D P, Carter D W, Conley M M.Providing Means for Precision Airdrop Delivery from High Altitude[R].AIAA 2006-6790,2006:1~16.
    [18] Bennett A W. Design of a Precision Airdrop System[R]. AIAA 97-1469, 1997: 169~176.
    [19] Stein J M, Madsen C M, Strahan A L.An Overview of the Guided Parafoil SystemDerived from X-38 Experience[R].AIAA 2005-1652,2005:1~14.
    [20] Carter D, George S, Hattis P, Singh L.Autonomous Guidance, Navigation, and Control of Large Parafoils[R].AIAA 2005-1643,2005:1~16.
    [21] Wright R, Benney R, Hugh J M.Precision Airdrop System[R].AIAA 2005-1644,2005:1~14.
    [22]董志荣.现代火控理论及研究进展[J].情报指挥控制系统与仿真技术, 2003, (3):43~47.
    [23]张求知,李克己.激光制导炸弹的火控原理及应用[J].电光与控制, 2000,80(4):29~35.
    [24]陆彦.航空火力控制技术[M].北京:国防工业出版社,1994.
    [25] Franke M E, Gurler A.Use of Cargo Aircraft for Launching Precision-Guided munitions[R].AIAA 2004-1250,2004:1~12.
    [26]叶文青.第四代歼击机超机动攻击的火控及综合火/飞系统的智能控制与仿真研究[D].南京:南京航空航天大学,2001.
    [27]陈绍炜,陈勇,吴福平.制导炸弹可达域的快速积分解算[J].西北工业大学学报,2001,19(3):447~450.
    [28]薛晓中.激光制导炸弹的“篮筐”与弹道设计[J].兵工学报弹箭分册,1992, (1):33~37.
    [29]周明德,郝富春,崔乃刚,李中郢.激光制导炸弹投弹区及投弹篮筐的计算分析[J].弹箭与制导学报,1996, (2):49~55.
    [30]汪浩生,李东文.激光制导航空炸弹攻击区仿真计算[J].火力与指挥控制,1997, (3):7~13.
    [31]谢奇峰,冯金富,于雷,汪浩生.激光制导炸弹投放域分析[J].火力与指挥控制,2006,31(5):57~60.
    [32]陈绍炜,龚诚,李平安.无推力可控弹可达域和投放域计算[J].系统工程与电子技术,2001,23(2):28~30,81.
    [33]杜洪斌.某型激光制导炸弹投放方案及弹道拟合[J].航空与航天,2004, (4):16~18.
    [34]梁卓,管雪元,孙瑞胜.基于复合制导律的“惯性/卫星”制导炸弹投放域计算[J].弹道学报,2007,19(3):27~30.
    [35]侯明善.防区外投放制导炸弹滑翔段垂直面最优制导[J].兵工学报,2007,28(5):572~575.
    [36] West W J.Developmental Testing of a Laser-Guided Bomb Simulation[R].AIAA 2008-1629,2008:1~16.
    [37] Betts J T.Survey of numerical methods for trajectory optimization[J].Journal of Guidance, Control, and Dynamics,1998,21(2):193~207.
    [38] Shaffer P J.Optimal Trajectory Reconfiguration and Retargeting for the X-33Reusable Launch Vehicle[D]. Monterey California: Naval Postgraduate School,2004.
    [39] Robert T.Trajectory Optimization for a Fixed-trim Reentry Vehicle Using Direct Collocation and Nonlinear Programming[C]//AIAA Guidance, Navigation, and Control Conference & Exhibit.Denver, USA,2000.
    [40] Bonnard B, Faubourg L, Launay G, Trelat E.Optimal Control With State Constraints and the Space Shuttle Rentry Problem[J].Dynamic Control Systems,2003, (9):155~199.
    [41] Anhtuan D N, David B D.Footprint Determination for Reusable Launch Vehicles Experiencing Control Effector Failures[R].AIAA 2002-4775,2002:1~18.
    [42] Schultz. R L.Three-Dimensional Trajectory Optimization for Aircraft[J].Guidance Control and Dynamics,1990,13(6):936~943.
    [43]罗新成,唐玉棋,于雷.基于BP网络的反辐射导弹允许发射区火控解算[J].弹箭与制导学报,2004,24(4):294~299.
    [44]王彦辉.飞机敏捷性对RBF解算的空空导弹发射区的影响[J].弹箭与制导学报,2006,26(1):934~940.
    [45]胡朝晖,李东文,汪浩生.通用空空导弹攻击区仿真研究[J].弹箭与制导学报,2002,22(3):18~23,27.
    [46]王锡泉,黄惠晶.空空导弹大离轴角发射条件下的控制研究[J].战术导弹控制技术,2006,4(55):10~12,49.
    [47]马登武,刘琰,田振华.空空导弹的越肩发射技术综述[J].海军航空工程学院学报,2007,22(3):377~381.
    [48]雍恩米.飞行器轨迹优化数值方法综述[J].宇航学报,2008,29(2):397~406.
    [49] Elnagar G, Kazemi M A, Razzaghi M.The Pseudospectral Legendre Method for Discretizing Optimal Control Problems[J].IEEE Transaction on Automatic Control, 1995,40(10):1793~1796.
    [50] Hull D G.Conversion of Optimal Control Problems into Parameter Optimization Problems[J].Journal of Guidance, Control, and Dynamics,1997,20(1):57~60.
    [51] Hargraves C R, Paris S W.Direct trajectory optimization using nonlinear programming and collocation[J]. Guidance, Control and Dynamics, 1987,10(2):338~342.
    [52] Conway B A, Larson K M.Collocation vs differential inclusions[J].Guidance, Control and Dynamics,1998,21(545):780~785.
    [53] Bulirsch R, Montrone F, Pesc H.Abort landing in the presence of windshear as a minimax optimal control problem, part 2: Multiple shooting and homotopy[J]. Journal of Optimization Theory and Applications,1991,70(2):223~254.
    [54] Martell C A, Lawton J A.Adjoint variable solutions via an auxliliary optimizationproblem[J].Guidance Control and Dynamics,1995, (18):1267~1271.
    [55] Faiz N, Agrawal S K, Murray R M.Trajectory planning of differentially flat systems with dynamics and inequalities[J].Guidance, Control and Dynamics,2001,24(2):219~227.
    [56]张可村,赵英良.数值计算的算法与分析[M].北京:科学出版社,2003.
    [57]贾沛然,陈克俊,何力.远程火箭弹道学[M].长沙:国防科技大学出版社,1993.
    [58]赵汉元.飞行器再入动力学和制导[M].长沙:国防科技大学出版社,1997.
    [59] Sheu D L, Chen Y M, Chang Yuan Jen. Optimal Glide for Maximum Range[R].AIAA-98- 4462,1998:771~781.
    [60]张有济.战术导弹飞行力学设计[M].北京:宇航出版社,1996.
    [61]王中原,周卫平.外弹道设计理论与方法[M].北京:科学出版社,2004.
    [62] Sheu D L, Chen Y M. Optimal Three-Dimensional Glide for Maximum Reachable Domain[R].AIAA-99-4245,1999:587~597.
    [63]钱杏芳,林瑞雄,赵亚男.导弹飞行力学[M].北京:北京理工大学出版社,2000.
    [64]李晓楠.机载显示系统关键技术研究[D].北京:北京邮电大学,2007.
    [65]李明兴.武直火控平显模拟器[D].长春:长春理工大学,2005.
    [66] Vinh N X.Optimal Trajectories in Atmospheric Flight [M].Amster-dam:Elsevier Scientific Publishing Co,1981.
    [67] Holsapple R, Venkataraman R, Doman D.A modified simple shooting method for solving twopoint boundary-value problem[C]//Proceedings of IEEE Aerospace Conference.2003.
    [68] Seywald Hans, Kumar Renjith R.A Finite Difference Based Scheme for Automatic Costate Calculation[R].AIAA-94-3583-CP,1994:368~378.
    [69]谭述君,钟万勰.线性时变系统二次最优控制问题的保辛近似求解[J].应用数学和力学,2007,28(3):253~262.
    [70]谭述君,钟万勰.非线性最优控制系统的保辛摄动近似求解[J].自动化学报,2007,33(9):1004~1008.
    [71]高索文,吴志刚,王本利,马兴瑞.精细积分区段混合能矩阵的一种计算方法[J].应用数学和力学,2001,22(5):493~498.
    [72]周浩,周韬,陈万春,殷兴良.高超声速滑翔飞行器引入段弹道优化[J].宇航学报,2006,27(5):970~973.
    [73]周浩,陈万春,殷兴良.高超声速飞行器滑行航迹优化[J].北京航空航天大学学报,2006,32(5):513~517.
    [74]王大轶,李铁寿,马兴瑞.月球最优软着陆两点边值问题的数值解法[J].航天控制,2000, (3):44~49.
    [75]钟益林,彭乐群,刘炳文.常微分方程及其Maple, MATLAB求解[M].北京:清华大学出版社,2007.
    [76]谢学书.最优控制理论与应用[M].北京:清华大学出版社,1986.
    [77] Seywald H, Kumar R R.Method for Automatic Costate Calculation[J].Guidance Control and Dynamics 1996, (19):1252–1261.
    [78]毛云英.动态系统与最优控制[M].北京:高等教育出版社,1994.
    [79]冯国楠.最优控制理论与应用[M].北京:北京工业大学出版社,1991.
    [80]卢险峰.最优化方法应用基础[M].上海:同济大学出版社,2003.
    [81] Bvp6c Solver.http://www.mathworks.com/bvp_tuorial,2007.
    [82] Kierzenka J, Shampine L F.A BVP Solver Based on Residual Control and the Matlab PSE[J].ACM TOMS,2001, (27):299~316.
    [83]赵善友.防空导弹武器寻的制导控制系统设计[M].北京:宇航出版社,1992.
    [84]林波,孟秀云,刘藻珍.有末端姿态角约束的机载布撒器导引律设计[J].弹箭与制导学报,2005,25(2):18~20.
    [85]侯明善.精确对地攻击姿态约束最优末制导设计[J].兵工学报,2008,29(1):63~67.
    [86] Milam M B.Real-Time Optimal Trajectory Generation for Constrained Dynamical Systems [D].Pasadena:California Institute of Technology,2003.
    [87] Fliess M, Levine J, Martin P ,Rouchon P.Flatness and Defect of Nonlinear Systems: Introductory Theory and Examples[J]. International Journal of Control, 1995, 61(6): 1327~1361.
    [88] Rathinam M. Differentially Flat Nonlinear Control Systems[D]. Pasadena, California:California Institute of Technology,1997.
    [89]黄奕勇,张育林.配点法研究[J].弹道学报,1998,10(3):40~43.
    [90] Albert L, Bruce A.Direct Optimization Using Collocation Based on High-Order Gauss-Lobatto Quadrature Rules[J].Guidance Control and Dynamics, 1996, 19(3): 592~599.
    [91]涂良辉,袁建平,岳晓奎,罗建军.基于直接配点法的再入轨迹优化设计[J].西北工业大学学报,2006,24(5):653~657.
    [92] Dickmanns E, Well K.Approximate solution of optimal control problems using third order Hermite polynomial functions[C]//in Optimization Techniques, G.-I. Marchuk, Eds. New York: Springer-Verlag, Lecture Notes in Computer Science, 1975:158~166.
    [93] Gath P F, Well K H.Trajectory Optimization Using A Combination of Direct Multiple Shooting and Collocation[C]//AIAA Guidance, Navigatin, and Control Conference and Exhibit. Montreal, Canada, 2001.
    [94] Lawerence C, Tits A.Nonlinear equality constraints in feasible sequential programming[J].Optimization Methods and Software,1996, (6):265~282.
    [95]沈明辉,周伯昭.SQP方法在最优中制导律中的应用[J].弹道学报, 2006, 18(3):48~50.
    [96]马正午,王佩玲.非线性最优化导论—问题求解[M].北京:中国展望出版社,1986.
    [97]袁亚湘,孙文瑜.最优化理论与方法[M].北京:科学出版社,1993.
    [98] Smith M E, Schwimley S.X-45A/Small Smart Bomb Separation Analysis[R].AIAA 2006-827,2006:1~8.
    [99]刘莉,李怀建.机载布撒器滑翔方案弹道优化与方案弹道库设计[J].弹箭与制导学报,2004,24(3):61~64.
    [100]何明,周军.确保交接的变结构中制导律及弹道匹配设计[J].弹箭与制导学报, 2005,25(1):286~288.
    [101] Weiss M, Bucco D.Handover analyis for tactical guided weapons using the adjoint method[R].AIAA 2005-6157,2005:1~11.
    [102]王延.近距空空导弹中末制导交接班策略研究[D].西安:西北工业大学,2006.
    [103]孙一捷.命中方程的实用求解技术[D].南京:南京理工大学,2000.
    [104]张贤椿,郭治.火炮射表逼近函数的解析延拓[J].兵工学报,2008,29(5):629~632.
    [105]石振东,刘国庆.实验数据处理与曲线拟合技术[M].哈尔滨:哈尔滨船舶工程学院出版社,1991.
    [106] A A德米特里耶夫斯基, Ji H雷申科, C C波哥吉斯托夫.外弹道学[M].韩子鹏,薛晓中,张莺,等译.北京:国防工业出版社,2000.
    [107] Fletcher D J, Wilson S A, Jokic M D.Guided Weapon Danger Area Generation– Implementing a Probabilistic Approach[R].AIAA 2006-6381,2006:1~10.
    [108]盛骤,谢式千,潘承毅.概率论与数理统计[M].北京:高等教育出版社,1997.
    [109]姚渊.多任务智能驾驶员模型研究[D].北京:北京航空航天大学,2003.
    [110]屈香菊.驾驶员控制模型的建模研究[D].北京:北京航空航天大学,2003.
    [111]杨新.综合飞行/火力控制系统及其评价研究[D].北京:北京航空航天大学,2000.
    [112]沙定国.误差分析与测量不确定度评定[M].中国计量出版社,2003.
    [113] Rogers R M, Fellow A.Drag-vs-Entry Trajectory Control to Accommodate Uncertain Winds[R].AIAA 2002-4538,2002:1~5.
    [114] Betts J T.Trajectory Optimization in the Presence of Uncertainty[J].Journal of the Astronautical Sciences,2006,54(2):227~243.
    [115]张颖,刘艳秋.软计算方法[M].北京:科学出版社,2002.
    [116]宁波,陈刚,陈卫东.基于蒙特卡洛法的水下火箭攻击弹道数学仿真研究[J].系统仿真学报,2006,Vol. 18(Suppl. 2):8~12.
    [117]袁子怀,钱杏芳.有控飞行力学与计算机仿真[M].北京:国防工业出版社,2001.
    [118]周德云,苏晓阳,阳治平.某型飞机采用DCCIP方式投放炸弹的精度分析[J].火力与指挥控制,2007,32(2):13~15.
    [119] Motoda T, Miyazawa Y.Identification of Influential Uncertain Parameters fromMonte Carlo Simulation Data[R].AIAA-2001-4397,2001:1~10.
    [120] Bollino K P.High-Fidelity Real-Time Trajectory Optimization for Reusable Launch Vehicles[D].Monterey, California:Naval Postgraduate School,2006.
    [121]赵元民.函数逼近方法[M].哈尔滨:黑龙江科学技术出版社,1981.
    [122]邵华平,何正友,覃征.几种函数逼近方式的逼近能力比较与综合[J].湖南师范大学自然科学学报,2003,26(4):22~26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700