用户名: 密码: 验证码:
日本伏翼(Pipistrellus abramus)种群遗传学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相对于欧洲和北美洲,第四纪冰川时期的气候变化对亚洲生物群落的分布和遗传结构形成的影响的研究报导至今还很少。在冰川后期的种群扩张期间,地理屏障对某个物种的扩散能力的促进或限制的作用同样对其种群遗传结构有重要的影响。日本伏翼(Pipistrellus abramus)在中国大陆、海南岛和舟山群岛等很多地理区域都有分布。近些年来,由于生态环境的严重破坏以及城乡建设的快速发展,对于主要栖息于居民老房里的翼手目动物类群,如日本伏翼,在某些地区其种群数量急剧下降。遗传多样性是种群长期生存繁衍和抵御疾病等外界胁迫的基础,种群数量的演变历史对种群的保护有很重要的指导作用。我们对日本伏翼的遗传多样性以及种群间的基因流动等方面进行研究,可以使我们能更全面了解日本伏翼的生存现状及其种群历史演替情况,并制定正确的、合理的动物保护措施。
     本文运用线粒体DNA和微卫星DNA两种不同分子遗传标记对日本伏翼分布于国内的17个地理种群的种群遗传结构及其种群历史情况进行研究。其结果如下:
     1、以富集法首次构建了日本伏翼微卫星DNA文库,共筛选出微卫星引物10对。以这10对引物分别扩增广西桂林的日本伏翼种群37份个体DNA样品,结果显示,每对引物扩增条带均呈现出多态性,所有微卫星位点的平均等位基因数达到10个,范围在7-13个不等。杂合度观测值和期望值范围分别为0.486-0.971和0.752-0.876。分析发现,3个微卫星位点(WW6、PA133和1-20)偏离了哈迪-温伯格平衡,但没发现任何2个位点存在连锁不平衡。成功筛选出这些微卫星位点对促进日本伏翼及本属其他物种的种群遗传结构深入研究有重要的作用。
     2、线粒体DNA数据和微卫星DNA(8对位点引物)数据共同表明,日本伏翼的不同地理种群均具有较高的遗传多样性。种群遗传多样性主要指标的变化范围较大,线粒体DNA单倍型多样性(h)为0.286-0.9,核苷酸多样性(П)为0.00025-0.01878;微卫星DNA的种群杂合度观测值(Ho)为0.58-0.89,杂合度期望值(HE)为0.67-0.82,种群的平均等位基因丰富度为4.13-10.36。
     3、以两种分子遗传标记对17个种群的研究结果共同说明,自然地理环境对日本伏翼种群结构的连续性产生明显的影响。更重要的是,这两种标记的结果都揭示,横亘在海南岛和中国大陆间的琼州海峡对日本伏翼的基因流产生显著的阻隔作用。同时,在两种遗传标记的结果中,所有种群的遗传距离与地理距离均呈显著相关(线粒体DNA, R2=0.27, P<0.001;微卫星DNA, R2=0.31, P<0.001)。
     4、线粒体DNA序列单倍型的错配分布分析(Mismatch distribution)说明,自第四纪冰期以来,大陆/舟山群岛日本伏翼种群和海南岛的日本伏翼种群都经历了种群扩张事件,且前者在TCS的基因网络分析中呈现星状拓扑结构。线粒体DNA分析结果揭示,在相互隔离7000-9000年后,大陆与舟山群岛日本伏翼种群间仍能检测到共同祖先单倍型,不过,海南岛与大陆相互隔离的时间虽然也在10000年左右,但海南岛日本伏翼种群内没能检测到共享单倍型,说明没有发现共同的祖先或通过近期种群扩张而来。
     5、微卫星DNA数据分析结果并没有完全支持线粒体DNA数据的分析结果,反之,发现在大陆/舟山群岛日本伏翼种群和海南岛日本伏翼种群间存在一些差异(见结果部分),进一步说明了只有综合运用不同分子标记对种群遗传空间尺度进行分析,才能更为准确和有效地评价物种种群遗传结构及其种群历史演化情况。
     本文运用了线粒体DNA和微卫星DNA两种不同的分子标记比较分析了日本伏翼不同种群的遗传特征与地理分布的关系,为进一步研究该物种的谱系地理学特征奠定了基础。
Compared to Europe and North America, the influence of climatic oscillations during the Pleistocene in shaping the distribution and genetic structure of biota in Asia is not well known. The influence of geographical barriers in promoting or restricting the dispersal ability of a species during post-glacial expansions will also have a large impact on its population genetic structure. The Japanese pipistrelle bat, Pipistrellus abramus, is found over a wide range in China, including Hainan Island and the Zhoushan Archipelago. Recently, in some areas, the number individuals of some bat species have dramatically been in decline due to seriously destructive ecological environment and fast development of towns. Genetic diversity is the basis of population long-term survival and resisting the diseases. Demographic history analysis is vital to population protection. In order to comprehensively understand survival status and demographic history and establish accurate protection steps for Pipistrellus abramus, it plays an important role in estimation of genetic diversity and gene flow between populations.
     We applied both mitochondrial (cytochrome b) and microsatellite markers to examine population genetic structure and demographic history in this species. The main results are as follows:
     1. We describe the first set of ten microsatellite markers isolated in Pipistrellus abramus. The number of alleles per locus ranged from 7 to 13. The observed and expected heterozygosities values ranged from 0.486 to 0.971 and from 0.752 to 0.876, respectively. Three loci (WW6、PA133 andl-20) revealed significant departure from Hardy-Weinberg equilibrium and no linkage disequilibrium was found between loci pairs. These informative microsatellite markers will be a powerful molecular tool for studying the population genetic structure of P. abramus, as well as other species of this genus.
     2. Both results of mtDNA and microsatellite DNA (8 loci) revealed Pipistrellus abramus contain relatively high genetic diversities among different geographic populations. For the mitochondrial DNA (mtDNA) data, the haplotype diversity ranged from 0.286 to 0.9, and nucleotide diversity ranged from 0.00025 to 0.01878. For the microsatellite data, the observed heterozygosity (HO) and expected (HE) heterozygosity ranged from 0.58 to 0.89 and from 0.67 to 0.82, respectively. The allelic richness (RS) ranged from 4.13 to 10.36 among sampled populations.
     3. Our results suggest that geographical features have had a clear impact on population connectivity in P. abramus. Specifically, both markers indicate that the Qiongzhou Strait, which separates Hainan Island from the China mainland, acts as a significant barrier to gene flow. Likewise, both genetic distance of mtDNA and microsatellite DNA were significant with natural geography distance (mtDNA, R2=0.27, P<0.001; microsatellite DNA, R2=0.31, P<0.001).
     4. Mismatch distributions show that populations from China mainland/Zhoushan Archipelago and Hainan Island appear to have undergone expansions since the Pleistocene, with evidence of a star-like topology in the former. Mt DNA reveals evidence of common ancestry between the colonies sampled on the Zhoushan Archipelago and those on the mainland, which are thought to have been isolated approximately 7000-9000 years ago. Although the Qiongzhou Strait seperates the Hainan Island and mainland for over 10000 years, no haplotype was found to share among individuals sampled from the island and mainland, and it revealed that the bats sampled from the Hainan Island may colony into the island via recent population expansion since the Pleistocene.
     5. Microsatellite data did not fully support the mitochondrial data and instead detected some differentiation between the two groups, highlighting the importance of using different markers at different spatial scales.
     In summary, we were explicit that the thesis data were combined with mitochondrial (cytochrome b) and microsatellite molecular markers for comparison of different geographical populations and geography distribution. Further more, the results were the basic study of phylogeography of the Japanese pipistrelle bat, Pipistrellus abramus.
引文
Ando K, Tagawa T. Uchida TA.1980. The C-banding pattern of 6 Japanese species of vespertilionine bats (Mammalia:Chiroptera) [J]. Experienlia,36:653-654.
    Arbogast BS, Slowinski JB.1998. Pleistocene speciation and the mitochondrial DNA clock [J]. Science, 282:1955.
    Avery MI.1991. Pipistrelle:Chiroptera [M]. Pp:81-145, In Handbook of British Mammals,3rd edn (Corbet GB, Harris S ed.). Oxford:Blackwell Science, pp.
    Avise J, Walker D.1999. Species realities and numbers in sexual vertebrates:Perspective from an asexually transmitted genome [J]. Proceedings of the National Academy of Sciences of the USA,96:992-995.
    Avise JC.1998. The history and purview of phylogeography:a person reflection [J]. Molecular Ecology,7:371-379.
    Avise JC.2000. Phylogeography:the history and formation of species. [M]. Cambridge, Massachusetts: Harvard University Press.
    Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F.2004. GENETIX 4.05, Windows software for population genetics [M]. Montpellier, France:Laboratoire Genome et Populations, Universite de Montpellier.
    Bohonak AJ.1999. Dispersal, gene flow, and population structure [J]. The Quarterly Review of Biology, 74:21-45.
    Bossart JL, Prowell DP.1998. Genetic estimates of population structure and gene flow:limitations, lessons and new directions [J]. Trends in Ecology & Evolution,13:202-206.
    Bruforda MW, Wayne RK.1993. Microsatellites and their application to population genetic studies [J]. Current Opinion in Genetics & Development,3:939-943.
    Burland TM, Wilmer JW.2001. Seeing in the dark:molecular approaches to the study of bat populations [J]. Biological reviews of the Cambridge Philosophical Society,76:389-409.
    Castella V, Ruedi M, Excoffier L.2001. Contrasted patterns of mitochondrial and nuclear structure among nursery colonies of the bat Myotis myotis [J]. Journal of Evolutionary Biology,14: 708-720.
    Castella V, Ruedi M, Excoffier L, Ibanez C, Arlettaz R, Hausser J.2000. Is the Gibraltar Strait a barrier to gene flow for the bat Myotis myotis (Chiroptera:Vespertilionidae)? [J]. Molecular Ecology, 9:1761-1772.
    Chen SF, Jones G, Rossiter SJ.2007. Sex-biased gene flow and colonization in the Formosan lesser horseshoe bat:inference from nuclear an mitochondrial markers [J]. Journal of Zoology,2: 1-9.
    Chen SF, Jones G, Rossiter SJ.2008. Sex-biased gene flow and colonization in the Formosan lesser horseshoe bat:inference from nuclear and mitochondrial markers [J]. Journal of Zoology,274: 207-215.
    Chen SF, Jones G, Rossiter SJ.2010. Determinants of echolocation call frequency variation in the Formosan lesser horseshoe bat(Rhinolophus monoceros) [J]. Proceedings of the Royal Society, doi:10.1098/rspb.2009.1185.
    Chen SF, Rossiter SJ, Faulkes CG, Jones G.2006. Population genetic structure and demographic history of the endemic Formosan lesser horseshoe bat (Rhinolophus monoceros) [J]. Molecular Ecology,15:1643-1656.
    Clement M, Posada D, Crandall KA.2000. TCS:a computer program to estimate gene genealogies [J]. Molecular Ecology,18:1657-1660.
    Corbet GB, Hill JE.1992. The mammals of the Indomalayan region. [M]. England
    Natural History Museum Publications, Oxford University Press.
    Cots SD, Dallas JF, Marshall F, Irvine RJ, Langvatn R, Albon SD.2002. Microsatellite DNA evidence for genetic drift and philopatry in Svalbard reindeer [J]. Molecular Ecology,11:1923-1930.
    Duvernell DD, Lindmeier JB, Faust KE, Whitehead A.2008. Relative influences of historical and contemporary forces shaping the distribution of genetic variation in the Atlantic killifish, Fundulus heteroclitus [J]. Molecular Ecology,17:1344-1360.
    Excoffier L, Laval G, Schneider S.2005. ARLEQUIN(version 3.0):an integrated software package for population genetics data analysis [J]. Evolutionary Bioinformatics Online,1:47-50.
    Flanders J, Jones G, Benda P, Dietz C, Zhang SY, Li G, Sharifi M, Rossiter SJ.2009. Phylogeography of the greater horseshoe bat, Rhinolophus ferrumequinum:contrasting results from mitochondrial and microsatellite data [J]. Molecular Ecology,18:306-318.
    Fujika E, Mantani S, Fukuda M, Hiryu S, Riquimaroux H, Watanable Y.2008. Ecolocation and flight strategics of Japanese house bats(Pipistrellus abramus) to attack a prey in the field revealed by a microphone array.[J]. Acoustics 08 Paris,7:5935-5929.
    Funakoshi K, Uchida TA.1978. Studies on the physiological and ecological adaption of temperate insectivorous bats:Ⅲ. Annual activity of the Japanese house-dwelling bat, Pipistrellus abramus [J]. Journal of the Faculty of Agriculture Kyushu University,27:55-56.
    Funakoshi K, Uchida TA.1982. Age composition of summer colonies in the Japanese house-dwelling bat, Pipistrellus abramus [J]. Journal of the Faculty of Agriculture of Kyushu University,27: 55-64.
    Furman A, Coraman E, Bolgin R, Karatas A.2009. Molecular ecology and phylogeography of the bent-wingbat complex (Miniopterus schreibersii) (Chiroptera:Vespertilionidae) in Asia Minor and adjacent regions [J]. Zoologica Scripta,38:129-141.
    Goodman SJ.1997. R(st) calc:A collection of computer programs for calculating estimates of genetic differentiation from microsatellite data and determining their significance [J]. Molecular Ecology,6:881-885.
    Goudet J.1995. FSTAT:A computer program to calculate F-statistics [J]. Journal of Heredity,86: 485-486.
    Goudet J, Perrin N, Waser P.2002. Test for sex-biased dispersal using bi-parentally inherited genetic makers [J]. Molecular Ecology,11:1103-1114.
    Gur-Arie R, Cohen CJ, Eitan Y, Shelef L, Hallerman EM, Kashi Y.2000. Simple sequence repeats in Escherichia coli:Abundance, distribution, composition, and polymorphism [J]. Genome Research,10:62-71.
    Hall TA.1999. BioEdit:a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT [J]. Nuclear Acids Symposium Series,41:95-98.
    Han BY, Hua PY, Gu XM, Miller-Butterworth CM, Zhang SY.2008. Isolation and characterization of microsatellite loci in the long-fingered bat Miniopterus fuliginosus [J]. Molecular Ecology Resources,8:799-801.
    Hardy OJ, Charbonnel N, Freville H, Heuertz M.2003. Microsatellite allele sizes:A simple test to assess their significance on genetic differentiation [J]. Genetics,163:1467-1482.
    Hardy OJ, Vekemans X.2002. SPAGEDi:a versatile computer program to analyse spatial genetic structure at the individual or population levels [J]. Molecular Ecology Notes,2:618-620.
    I lewitt GM.1999. Post-glacial re-colonization of European biota [J]. Biological Journal of the Linnean Society,68:87-112.
    Hirai T, Kimura S.2004. Diet composition of the common bat Pipistrellus abramus (Chiroptera; Vespertilionidae), revealed by fecal analysis [J]. Japanese Journal of Ecology,54:159-163.
    Hiryu S, Hagino T, Fujioka E.2008. Adaptive echolocation sounds of insectivorous bats, Pipistrellus abramus, during foraging flights in the field [J]. Journal of the Acoustical Society of America, 124:51-56.
    Hiryu S, Hagino T, Riquimaroux H, Watanabe Y.2007. Echo-intensity compensation in echolocating bats (Pipistrellus abramus) during flight measured by a telemetry microphone [J]. The Journal of the Acoustical Society of America,121:1749-1757.
    Hoffmann FG, Owen JG, Baker RJ.2003. MtDNA perspective of chromosomal diversification and hybridization in Peters' tent-making bat (Uroderma bilobatum:Phyllostomidae) [J]. Molecular Ecology,12:2981-2993.
    Hua PY, Chen JP, Zhang LB, Liang B, Rossiter SJ, Zhang SY.2007. Isolation and characterization of microsatellite loci in the flat-headed bat (Tylonycteris pachypus) [J]. Molecular Ecology Notes, 7:486-488.
    Huang WJ, Huang X.1982. The seasonal activity of Pipistrellus abramus in relation to environmental factors [J]. Acta Zoologica Sinica,2:143-155.
    Huelsenbeck JP, Ronquist F.2001. MRBAYES:Bayesian inference of phylogenetic trees [J]. Bioinformatics,17:754-755.
    Jakobsson M, Rosenberg NA.2007. CLUMPP:a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure [J]. Bioinformatics,23:1801-1806.
    Jensen J, Bohonak A, Kelley S.2005. Isolation by distance, web service [J]. BMC Genetics,6:13.
    Ke WY.1995. Reproductive cycle of the house bat, Pipistrellus abramus, in Pingtung County, southern Taiwan(Master thesis). MAster,, Taichung, China. [D]. Tung-Hai University, Taichung, China.
    Keith M, Chimimba C, Reyers B, van Jaarsveld A.2005. Taxonomic and phylogenetic distinctiveness in regional conservation assessments:a case study based on extant South African Chiroptera and Carnivora [J]. Animal Conservation,8:279-288.
    Kerth G, Kiefer A, Trappmann C.2003. High gene diversity at swarming sites suggest hot spots fo gene flow in the endangered Bechstein's bat [J]. Conservation Genetics,4:491-499.
    Kerth G, Mayer F, Konig B.2000. Mitochondrial DNA (mtDNA) reveals that female Bechstein's bat live in the breeding habitat [J]. Molecular Ecology,9:793-800.
    Kerth G, Mayer F, Petit E.2002. Extreme sex-biased dispersal in the communally breeding,nonmigratory Bechstein's bat (Myotis bechsteinii) [J]. Molecular Ecology,11: 1491-1498.
    Kerth G, Morf L.2004. Behavioural and genetic data suggest that Bechstein's bats predominantly mate outside the breeding habitat [J]. Ethology,110:987-999.
    Kimberly AS, Robert JT.2006. Microsatellites for ecologists:a practical guide to using and evaluating microsatellite markers [J]. Ecology Letters,9:615-629.
    Kimura M, Weiss GH.1964. Stepping stone model of population structure and the decrease of genetic correlation with distance [J]. Genetics,49:561-567.
    Kingston T, Rossiter SJ.2004. Harmonic-hopping in Wallacea's bats [J]. Nature,429:654-657.
    Koopman KF.1993. Order Chiroptera [M]. Pp:137-241, In Mammal species of the world:a taxonomic and geographic reference (Wilson DE, Reeder DM ed.). Washington D C:Smithsonian Institute Press,2142 pp.
    Lee LL.1995. A preliminary study on the reproductive pattern of Pipistrellus abramus in northern Taiwan [J]. Acta Zoology Taiwanica,6:61-66.
    Lee YF, Lee LL.2005. Food habits of Japanese pipistrelles Pipistrellus abramus (Chiroptera: Vespertilionidae) in northern Taiwan [J]. Zoological Studies,44:95-101.
    Levin E, Yom-Tov Y, Barnea A, Huchon D.2008. Genetic diversity and phylogeography of the greater mouse-tailed bat Rhinopoma microphyllum (Briinnich,1782) in the Levant [J]. Acta Chiropterologica,10:207-212.
    Levinson G, Gutman GA.1987. High frequencies of short frameshifts in poly-CA/TG tandem repeats borne by bacteriophage M13 in Escherichia coli K-12 [J]. Nucleic Acids Research,15: 5323-5338.
    Li G, Jones G, Rossiter SJ, Chen SF, Parsons S, Zhang SY.2006. Phylogenetics of small horseshoe bats from east Asia based on mitochondrial DNA sequence variation [J]. Journal of Mammalogy, 87:1234-1240.
    Li YC, Korol AB, Fahima T, Beiles A, Nevo E.2002. Microsatellites:genomic distribution, putative functions and mutational mechanisms:a review [J]. Molecular Ecology,11:2453-2465.
    Lin LK, Motokawa M, Harada M.2002. Karyological study of the house bat Pipistrellus abramus (Mammalia:Chiroptera) from Taiwan with comments on its taxonomic status [J]. The Raffles Bullietin of Zoology,50:507-510.
    Lu DJ.1988. Activity patterns of the house bat, Pipistrellus abramus, in Chu-tung (Master thesis, Unpublished) [D]. National Taiwan University, Taipei, China.
    Luikart G, England PR.1999. Statistical analysis of microsatellite DNA data [J]. Tree,14:253-256.
    Luo F, Ma I, Li AA, Wu FJ, Chen QC, Zhang SY.2007. Echolocation calls and neurophysiological correlations with auditory response properties in the inferior Colliculus of Pipistrellus abramus (Microchiroptera:Vespertilionidae) [J]. Zoological Studies,46:622-630.
    Miller-Butterworth CM, Eick G, Jacobs DS, Schoeman MC, Harley EH.2005. Genetic and phenotypic differences between South African long-fingered bats, with a global miniopterine phylogeny [J]. Journal of Mammalogy,86:1121-1135.
    Monda K, Simmons RE, Kressirer P, Su B, Woodruff DS.2007. Mitochondrial DNA Hypervariable Region-1 sequence variation and phylogeny of the concolor Gibbons, Nomascus [J]. American Journal of Primatology,69:1285-1306.
    Moreira PRL, Morielle-Versute E.2006. Genetic variability in species of bats revealed by RAPD analysis [J]. Genetics and molecular Research,5:804-815.
    Ngamprasertwong T, Mackie IJ, Racey PA, Piertney SB.2008. Spatial distribution of mitochondrial and microsatellite DNA variation in Daubenton's bat within Scotland [J]. Molecular Ecology, 17:3243-3258.
    Obara Y, Tomiyasu T, Saitoh K.1976. Chromosome studies in the Japanese Vespertilionid bats. Ⅱ G-banding pattern of Pipistrellus abramus Temminck [J]. Proceedings of the Japan Academy, 52:383-386.
    Parker PG, Snow AA, Schug MD, Booton GC, Fuerst PA.1998. What molecules can tell us about populations:choosing and using a molecular marker [J]. Ecology,79:361-382.
    Peakall R, Smouse PE.2006. GENALEX 6:genetic analysis in Excel-population genetic software for teaching and research [J]. Molecular Ecology Notes,6:288-295.
    Petit E, Mayer F.1999. Male dispersal in the noctule bat (Nyctalus noctula):where are the limits? [J]. Proceedings Biological sciences,266:1717-1722.
    Piry S, Alapetite A, Cornuet JM, Paetkau D, Baudouin L, Estoup A.2004. GENECLASS 2:a software for genetic assignment and first generation migrant s detection [J]. Journal of Heredity,95: 536-539.
    Piry S, Luikart G, Cornuet JM.1999. Bottleneck:computer program for detecting recent reductions in the effective population size using allele frequency data [J]. Journal of Heredity,90:502-503.
    Posada D, Crandall KA.1998. MODELTEST:testing the model of DNA substitution [J]. Bioinformatics,14:817-818.
    Pritchard JK, Stephens M, Donnelly P.2000. Inference of population structure using multilocus genotype data [J]. Genetics,155:945-959.
    Racey PA.1982. Ecology of reproduction [M]. Pp:57-104, In Ecology of bats (Kunz TH ed.). New York:Plenum Press,425 pp.
    Racey PA, Barratt EM, Burland TM, Deaville R, Gotelli D, Jones G, Piertney SB.2007. Microsatellite DNA polymorphism confirms reproductive isolation and reveals differences in population genetic structure of cryptic pipistrelle bat species [J]. Biological Journal of the Linnean Society,90:539-550.
    Raymond M, Rousset F.1995. GENEPOP (version 3.3):Updated version of GENEPOP (v.1.2) Population genetics software for exact tests and ecumenicism [J]. Journal of Heredity,86: 248-249.
    Redondo RAF, Brina LPS, Silva RF, Ditchfield AD, Santos FR.2008. Molecular systematics of the genus Artibeus (Chiroptera:Phyllostomidae) [J]. Molecular Phylogenetics and Evolution,49: 44-58.
    Rivers NM, Butlin RK, Altringham JD.2005. Genetic population structure of Natterer's bats explained by mating at swarming sites and philopatry [J]. Molecular Ecology,14:4299-4312.
    Rogers AR, Harpending H.1992. Population growth makes waves in he distribution of pairwise genetic differences [J]. Molecular Biology and Evolution,9:552-569.
    Rosenberg NA.2004. DISTRUCT:a program for the graphical display of population structure [J]. Molecular Ecology Notes,4:137-138.
    Rossiter SJ, Benda P, Dietz C, Zhang S, Jones G.2007. Rangewide phylogeography in the greater horseshoe bat inferred from microsatellites:implications for population history, taxonomy and conservation [J]. Molecular Ecology,16:4699-4714.
    Rossiter SJ, Jones G, Ransome RD, Barrattt EM.2000. Genetic variation and population structure in the endangered greater horseshoe bat Rhinolophus ferrumequinum [J]. Molecular Ecology,9: 1131-1135.
    Rossiter SJ, Ransome RD, Faulkes CG, Le Comber SC, Jones G.2005. Mate fidelity and intra-lineage polygyny in greater horseshoe bats [J]. Nature,437:408-411.
    Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R.2003. DnaSP, DN A polymorphism analyses by the coalescent and other methods [J]. Bioinformatics,19:2496-2497.
    Ruedi M, Walter S, Fischer MC, Scaravelli D, Excoffier L, Heckel G.2008. Italy as a major Ice Age refuge area for the bat Myotis myotis (Chiroptera:Vespertilionidae) in Europe [J]. Molecular Ecology,17:1801-1814.
    Russell AL, Medellin RA, McCracken GF.2005. Genetic variation and migration in the Mexican free-tailed bat (Tadarida brasiliensis mexicana) [J]. Molecular Ecology,14:2207-2222.
    Salgueiro P, Coelho MM, Palmeirim JM, Ruedi M.2004. Mitochondrial DNA variation and population structure of the island endemic Azorean bat (Nyctalus azoreum) [J]. Molecular Ecology,13: 3357-3366.
    Scandura M, Iacolina L, Crestanello B, Pecchioli E, Di Benedetto MF, Russo V, Davoli R, Apollonio M, Bertorelle G.2008. Ancient VS. recent processes as factors shaping the genetic variation of the European wild boar:are the effects of the last glaciation still detectable? [J]. Molecular Ecology,17:1745-1762.
    Schlotterer C.2000. Evolutionary dynamics of microsatellite DNA [J]. Chromosoma,109:365-371.
    Shao WW, Hua PY, Zhou SY, Zhang SY, Chen JP.2008. Charaterization of Microsatellite loci in the lesser dawn bat (Eonycteris spelaea) [J]. Molecular Ecology Resources,8:695-697.
    Simmons NB.2005. Order Chiroptera. In:Mammal species of the world:a taxonomic and geographic reference (3rd edition) (eds. Wilson DE, Reeder DM), pp.312-525 [M]. Baltimore:The Johns Hopkins University Press.
    Slatkin M.1995. A measure of population subdivision based on microsatellite allele frequencies [J]. Genetics,139:457-462.
    Smouse PE, Peakall R.1999. Spatial autocorrelationv analysis of individual multiallele and multilocus genetic structure [J]. Heredity,82:561-573.
    Stadelmann B, Lin LK, Kunz TH, Ruedi M.2007. Molecular phylogeny of New World Myotis (Chiroptera,Vespertilionidae) inferred from mitochondrial and nuclear DNA genes [J]. Molecular Phylogenetics and Evolution,43:32-48.
    Strelkov PP.1969. Migratory and stationary bats (Chiroptera) of the European part of the Soviet Union [J]. Acta Zoologica Cracoviensia,14:393-679.
    Su YJ, Wang T, Zheng B, Jiang Y, Chen GP, Gu HY.2004. Population genetic structure and phylogeographical pattern of a relict tree fern, Alsophila spinulosa (Cyatheaceae), inferred from cpDNA atpB-rbcL intergenic spacers [J]. Theoretical and Applied Genetics,109: 1459-1467.
    Su YJ, Wang T, Zheng B, Jiang Y, Chen GP, Ouyang PY, Sun YF.2005. Genetic differentiation of relictual populations of Alsophila spinlosa in southern China inferred from cpDNA trnL-F noncoding sequences [J]. Molecular Phylogenetics and Evolution,34:323-333.
    Swofford D.2002. PAUP*:Phylogenetic analysis using parsimony (*and other methods).4.0b10 ed. [M]. Sunderland, Massachusetts:Sinauer Associates.
    Takayama S.1959. The chromosomes of a bat, Pipistrellus tralatitus abramus [J]. Japanese Journal of Genetics,34:107-110.
    Tamura K, Dudley J, Nei M, Kumar S.2007. MEGA 4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0 [J]. Molecular Biology and Evolution,24:1596-1599.
    Templeton AR, Crandall KA, Sing CF,1992, A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. Ill.Cladogram estimation [J]. Genetics,132:619-633.
    Veith M, Beer N, Kiefer A.2004. The role of swarming sites for maintaining gene flow in the brown long-eared bat (Plecotus auritus) [J]. Heredity,93:342-349.
    Velazco PM, Patterson BD.2008. Phylogenetics and biogeography of the broad-nosed bats, genus Platyrrhinus(Chiroptera:Phyllostomidae) [J]. Molecular Phylogenetics and Evolution,49: 749-759.
    Wang H, Liang B, Feng J, Sheng LX, Zhang SY.2003. Molecular phylogenetic of Hipposiderids (Chiroptera:Hipposideridae) and Rhinolophids (Chiroptera:Rhinolophidae) in China based on mitochondrial cytochrome b sequences [J]. Folia Zoology,52:259-268
    Wang JT, Wang PX.1980. The relationship between sea level rising and climate change on cast of China (in Chinese with English abstract) [J]. Chinese Journal of Geography,35:299-313.
    Weir BS, Cockerham CC.1984. Estimating F-statistics for the analysis of population structure [J]. Evolution,38:1358-1370.
    Weyeneth N, Goodman SM, Stanley WT, Ruedi M.2008. The biogeography of Miniopterus bats (Chiroptera:Miniopteridae) from the Comoro Archipelago inferred from mitochondrial DNA [J]. Molecular Ecology,17:5205-5219.
    Winters JB, Waser PM.2003. Gene dispersal and outbreeding in a philopatric mammal [J]. Molecular Ecology,12:2251-2259.
    Xing FW, Wu TL, Li ZX, Ye HG, Chen BH.1995. Endemic plants of Hainan island [J]. Journal of Tropical and Subtropical Botany,3:1-12.
    Xu LJ, He CF, Shen C, Jiang TL, Shi LM, Sun KP, Berquist SW, Feng J.2010. Phylogeography and population genetic structure of the great leaf-nosed bat (Hipposideros armiger) in China [J]. Journal of Heredity:10.1093/jhered/esq1039.
    Yang SH.1996. Activity pattern and food habits of Myotis formosus watasei and Pipistrellus abramus in Yunlin(Master thesis, Unpublished) [D]. National Taiwan University, Taipei, China.
    Zhang JS, Han NJ, Jones G, Lin LK, Zhang JP, Zhu GJ, Huang DW, Zhang SY.2007. A new species of Barbastella (Chiroptera:Vespertilionidae) from north China [J]. Journal of Mammalogy,88: 1393-1403.
    王应祥.2003.中国哺乳动物种和亚种分类目录与分布大全[M].北京:中国林业出版社.
    朱曦,曹炜斌,王军.2010.舟山普陀山兽类区系及分布[J].浙江林学院学报,27:110-115.
    周宇爝.2009.分子标记发展简史[J].现代农业科技,11:264-270.
    苟德明,王智新.1996.动物线粒体DNA特性及其多态性研究进展。[J].遗传育种,22:7-10.
    殷留勇,谢兴夫,史怡君,单才华.1985.家蝠的染色体[J].动物学报,31:27-298.
    高武,陈卫,傅必谦.1996.北京地区翼手类的区系及其分布.[J].河北大学学报,16:5.
    冯江,刘颖,陈敏,李振新,张喜臣.2003.普通伏翼蝠(Pipistrellus abramus)回声定位及母婴交流行为研究[J].自然科学学进展,12:1246-1252.
    刘少英,冉江洪,林强,刘世昌,刘志君.2001.三峡工程重庆库区翼手类研究[J].兽类学报,21:123-131.
    吴毅,张成菊,梁智文,易祖盛.2007.广州市翼手目物种多样性的研究[J].广州大学学报(自然科学版),6:14-17.
    张玲.2007.微卫星DNA标记研究进展及应用[J].安徽农业科学,35:972-975.
    张恒嘉,黄致融,郑先佑.2008.东亚家蝠与高头蝠楼栖蝙蝠屋之选择因子[J].环境与生态学报,1:15-26.
    张德兴.2002.分子生态学.见:现代生态学(主编:葛峰),pp.7-31[M].北京:科学出版社.
    罗荣.1993.贵州兽类志[M].贵阳:贵州科技出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700