用户名: 密码: 验证码:
遗传性耳聋基因诊断新技术的研究和应用与非综合征性耳聋家系的分子遗传学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全国性聋病分子流行病学研究数据显示,尽管遗传性耳聋具有广泛的遗传异质性,但大多数非综合征性遗传性耳聋仅由为数不多的几个基因突变所致,如GJB2基因、线粒体DNA基因、SLC26A4基因等,从而奠定了在中国开展耳聋基因诊断的理论基础,同时也催生出新的耳聋整体预防思路和方法。本课题致力于通过设计经济、高效、快速、高通量适合中国国情的耳聋基因诊断方法,为建立标准化、规范化的耳聋基因诊断、遗传咨询和产前诊断模式提供技术支持,使耳聋基因组研究所取得的伟大成果能够被广泛应用于中国临床遗传性耳聋病因学诊断和聋儿出生缺陷防控的实践,实现其“基础-临床”的顺利转化,从而推动国内临床耳聋基因诊断、遗传咨询和基于耳聋基因诊断的产前诊断工作的广泛开展,最终实现总体降低耳聋发生及出生缺陷的目标。本课题另外一个重要内容就是收集到湖南地区一个表现为X-连锁或母系遗传方式的遗传性耳聋大家系,通过对这一家系的临床特征及分子病因学研究,进一步探讨mtDNA突变同非综合征耳聋之间的关系,并为进行耳聋致病基因的功能研究打下了基础。本研究包括以下三个部分。
     第一部分运用PE-DHPLC技术快速检测中国人群非综合征型耳聋热点基因突变
     目的:建立针对中国人几种常见的遗传性耳聋基因型的基因诊断新方法。方法:PCR扩增的靶序列,经引物延伸,得到中国人非综合征性耳聋6个常见突变的特异性延伸片段(GJB2-235delC GJB2-299delAT、PDS IVS7-2A>G、PDS A2168G、mtDNA A1555G. mtDNA C1494T),用全变性高效液相色谱分析延伸片段混合物,分离图谱可鉴定被检样本的基因型。结果:所选择的120例散发非综合征性耳聋样品的引物延伸变性高效液相色谱与经测序验证在结果吻合,前来遗传咨询的4个小家系的引物延伸变性高效液相色谱与测序结果亦相吻合,该法的准确率达100%。结论:该法是一种准确、高效的检测非综合征性耳聋基因突变的分析方法,可用于非综合征性耳聋基因及其他遗传疾病的诊断及遗传咨询。
     第二部分基因芯片技术在散发非综合征性耳聋基因诊断中的应用
     第一章基因芯片技术应用于耳聋基因检测的可行性研究
     目的:分析基因芯片技术应用于非综合征性耳聋基因检测的准确性,为建立新的基因检测方法提供依据。方法:通过对122例散发的非综合征性耳聋患者进行芯片及测序的双盲检测实验,验证GJB2_235delC在这些散发样本中的分布情况结果:随机选取的122例样本的GJB2_235delC的芯片检测与测序结果基本吻合,该法的准确率达89.9%。结论:该款芯片具有快速、高通量、高准确性、等特点,适合于大样本量遗传性耳聋的基因检测。
     第二章基因芯片检测技术在散发非综合征性耳聋患者中的应用
     目的:应用Goldengate耳聋基因芯片检测散发非综合征性耳聋患者,研究散发非综合征性耳聋的热点突变基因及耳聋基因位点的关联分析,为建立新的基因检测方法提供依据及模型。方法:对389例散发DNA样本(其中正常人DNA样本102例,散发非综合征性耳聋患者的DNA样本287例)进行芯片检测,应用关联分析研究耳聋及所选位点的相关性结果:6个位点WFS1_Leu829Pro、GJB3_Arg32Trp、OTOF IVS5+1、TMIE IVS2 2、PCDH15 3 BP DEL 5601 5603aac及SLC26A4_Gly497Ser与耳聋的关联分析为负相关;rs4809261、rs7421943、MYH14_Arg726Ser、TMPRSS3_PRO404LEU、rs878042、COCH_MET512THR、MYO3A_IVS7_2、TMC1_Tyr259Cys. GJB2_Arg165Trp、rs10515535、rs568619、rs7600176、rs3664、WHRN_IVS2+1、rs46791555及COL9A3_9_BP_DEL_541_549ggtccccca与耳聋的关联分析为正相关。结论:基因芯片技术的建立及成功运用是对聋病基因检测手段的创新和突破,同时表明NSHL具有高度的遗传异质性。
     第三部分线粒体12SrRNA 1555A>G突变在一个中国耳聋大家系的特殊表现及分析
     目的线粒体突变是导致耳聋的重要原因,本文旨在探讨线粒体基因组1555A>G突变在一个中国耳聋大家系的特殊表现及分析。方法收集一遗传性耳聋大家系5代48人,提取样品DNA后,首先采用X-linkage连锁分析,未发现变异,再采用DNA直接测序法对家系成员进行线粒体全基因组、GJB2编码区及POU3F4基因进行序列分析。结果经过计算,连锁分析所有位点LOD值结果均小于1,不支持连锁;经mtDNA基因组序列分析发现12 SrRNA基因A1555G突变是此家系的唯一致病突变,同时患者均携带一新的变异14163C>T。结论线粒体A1555G突变是本家系耳聋的主要原因,环境因素及氨基甙类抗生素可能参与A1555G突变表型表达的调节,14163C>T为中国人群未报道新突变,可能对该家系A1555G突变所致耳聋的外显率及表型有影响。
As the results of the national epidemiological for deafness show, hereditary hearing loss is extremely heterogeneous. Most of non-syndromic hereditary hearing losses, nevertheless, are found out to result from mutations of few genes, such as GJB2,mtDNA,SLC26A4,et al. This fact grounds the establishment of genetic testing and prenatal diagnosis for hearing loss in China. Our study is dedicated to found economic, high-effective, rapid and high-flux technologies for genetic testing of deafness, and standardize and normalize the contents and processes of genetic testing, consulting and prenatal diagnosis, to make the accomplishment of human genome project widely available in diagnosis for deafness and reduction of deaf baby, and to eventually promote genetic testing, consulting and prenatal diagnosis in China. Another role of our study is to investigate the clinical character and molecular genetic mechanism of a large family inherited as X-linked or maternally type of nonsyndromic deafness, which supply foundation for function study of genetic deafness genes. We carried out our research as the following three parts:
     Part one:Accurate and rapid diagnosis of common NSHL gene mutations by a multiplex primer extension and denaturing high-performance liquid chromatography technique
     Objectives:Nonsyndromic hearing loss (NSHL) is a common inherited disorder of the nervous system worldwide, and rapid and accurate genotyping methodologies for specific NSHL-causing gene mutations are needed for the diagnosis of the disease in different ethnic populations. Methods:In this study, we performed a novel multiplex primer extension (PE) reaction in combination with denaturing high-performance liquid chromatography (DHPLC) to simultaneously detect and genotype the 6 most common mutations in NSHL (GJB2-235delC, GJB2-299delAT, PDS-A2168G, PDS IVS7-2A>G, mtDNA-A1555G, and mtDNA-C1494T) in the Chinese population. This method involved the amplification of the target sequence, followed by a purification step, a multiplex PE reaction, and DHPLC analysis performed on the Transgenomic Wave DNA fragment analysis system under fully-denaturing conditions. Results:In a contrast analysis, this technique successfully and accurately genotyped 100%(120/120) of the samples previously detected by direct sequencing. For the four deafness genealogy for genetic consultion, this technique also successfully and accurately genotyped 100% of the members simutaniously detected by sequencing. Conclusion:The present study validated the combined PE/DHPLC approach as a simple, rapid, highly accurate, and cost-effective approach for genotyping common disease-causing mutations, and it strongly suggests that this technique may be successfully used in other genetic diseases.
     Part two:Application of DNA Chips in Clinical Genetic Testing for Sopratic genetic Deafness
     Chapter I:Feasibility Investigation of DNA Chips Applied in Clinical Genetic Testing for Sopratic genetic Deafness
     Objectives:To investigate the feasibility of DNA Chips, and to found a new genetic detecting technology, we use the Illumina Goldengate gene chips in this part. Methods:In order to test the feasibility of DNA Chips, we detected the GJB2_235delC mutation in 122 sporadic NSHL individuals through DNA Microarray and DNA sequencing at the same time. Results:The results get from the DNA Chips is the same as the traditional methods of sequencing. The detecting rate is 100%. Conclusion:Illumina GoldenGate DNA Chips appears to have some inherent advantages in genetic diagnosis of NSHL, such as low time consuming, high performance and accuracy, which make it fit to be used in clinic practice.
     Chapter II:Clinical Application of DNA Chips in Rapid Genetic Testing of Sopratic Non-Syndromic Hearing Loss
     Objectives:To detect the hot genes in sporadic NSHL patients and the association analysis between these genes and genetic deafness. Methods:389 sporadic patients were collected and detected by Illumina GoldenGate DNA Chips. Results:WFS1_Leu829Pro, GJB3_Arg32Trp, OTOF_IVS5+1, TMIE_IVS2_2, PCDH15_3_BP_DEL_5601_5603aac and SLC26A4_Gly497Ser appeared negative correlation with NSHL; While rs480926、rs7421943、MYH14_Arg726Ser、TMPRSS3_PRO404LEU、rs878042、COCH MET512THR、MY03A IVS7 2、TMC1_Tyr259Cys、GJB2_Arg165Trp、rs10515535、rs568619. rs7600176、rs3664、WHRN(DFNB31)_IVS2+、rs4679155及COL9A3_9_BP_DEL_541_549ggtccccca appeared positive correlation with NSHL Conclusion:The Illumina GoldenGate DNA Chips dependent new technique could be well applied for mutation detecting of deafness genes and confirmed the high genetic heterogeneity of genetic deafness.
     Part three:Special penetrance and analysis of hearing loss in a five-generation Chinese family with the mitochondrial 12S rRNA A1555G mutation
     Objectives:Mutations in mitochondrial DNA (mtDNA) have been found to be associated with sensorineural hearing loss. However, the variable clinical phenotype and incomplete penetrance of mtDNA 1555A>G-induced hearing loss complicate our understanding of this mutation Methods:Here, we performed clinical, genetic, and X-linkage analysis of a 5-generation Chinese family in which all the affected individuals were male. Results:Using X-linkage analysis and mtDNA sequencing, we detected an identical homoplasmic 1555A>G mutation in 9 individuals, and a previously unreported variant 14163C>T in mtDNA. Conclusions:Analysis of the complete mtDNA genome and x-linkage of this family revealed that the 1555A>G may lead to deafness. The 14163C>T is a never-reported variant and may synergism the development of the deafness.
引文
[1]Leshinsky-Silver E, Berman Z, Vinkler C, et al. A novel missense mutation in the connexin 26 gene associated with autosomal recessive sensorineural deafness[J]. Hearing Research,2005,202:258-261.
    [2]Walter E. Nance, Michael J. Kearsey. Relevance of Connexin Deafness to Human Evolution[J]. The American Society of Human Genetics,2004,74: 1081-1087
    [3]鲁雅洁,程洪波,邢光前,等.非综合征型耳聋GJB2基因和mtDNA 12SrRNA A1555G位点的突变分析[J].南京医科大学学报:自然科学版,2008,28:855-860.Lu Ya-jie, Cheng Hong-bo, Xing Guang-qian, et al. Mutation analysis about nonsyndromic hearing loss (NSHL) of gene GJB2 and site mtDNA 12SrRNA A1555G[J]. Journal of NanJing Medical University:natural science section, 2008,28:855-860
    [4]贺定华,冯永,夏昆,等.GJB2基因在遗传性聋中的检测[J].听力学及言语疾病杂志,2005,13:301.He Ding-hua, Feng Yong, Xia Kun, et al. Detection of gene GJB2 in heredity deafness[J]. Journal of Audiology and Speech disease,2005,13:301
    [5]Mafong DD, Shine J, Lalwania K. Use of laboratory evaluation and radiologic imaging in the diagnostic evaluation of children with sensorineural hearing loss[J]. Laryngoscope,2002,112:1-7
    [6]Forge A, Becker D, Casalotti S, et al. Gap junctions in the inner ear:comparison of distribution patterns in different vertebrates and assessment of connexin composition in mammals[J]. J Comp Neurol,2003,467:207-231
    [7]Xiao W, Oefner PJ. Denaturing high-performance liquid chromatography:A r eview. Hum Mutat,2001,17(6):439-474
    [8]Giordano M, Mellai M, Hoogendoom B, et al. Determination of SNP allele frequenciesin pooled DNAs by primer extension genotyping and denaturing high-performance liquid chromatography. J Biochem Biophys Methods,2001,4(2)7:101-11
    [9]Kalatzis V. Petit C. The fundamental and medical impacts of recent progress in research on hereditary hearing loss[J]. Hum Mol Genet,2000,7:1589-1597.
    [10]Morton CC. Genetics, genomics and gene discovery in the auditory system[J]. Hum Mol Genet,2002,11:1229-1240
    [11]Nance WE, Kearsey MJ. Relevance of connexin deafness (DFNB1) to human evolution [J]. Am J Hum Genet,2004,74:1081-7
    [12]Thomas Friedman, James Battey, Bechara Kachar, et al. Modifier genes of hereditary hearing loss[J]. Neurotology,2005,2:122-143
    [13]Denoyelle F, Marlin S, Weil D, et al. Clinical features of the prevalent form of childhood deafness, due to a connexin26 gene defection:implications for genetic counselling[J]. Lancet,1999,353:1298-1303.
    [14]Colosimo A, Guida V, De Luca A, et al. Reliability of DHPLC in mutational screening of hereditary hearing loss alleles[J]. Hum Mutat,2002,19:287-295
    [15]Hoogendoorn B, Owen MJ, Oefner PJ, et al. Genotyping single nucleotide polymorphisms by primer extension and high performance liquid chromatography[J]. Hum Genet,2002,104:89-93.
    [16]Siemering K, Manji SS, Hutchison WM, et al. Detection ofmutations in genes associated with hearing loss using a microarray-based approach[J]. J Mol Diagn,2006,8:483-489.
    [17]Giordano M, Mellai M, Hoogendoorn B, et al. Determination of SNP allele frequencies in pooled DNAs by primer extension genotyping and denaturing high performance liquid chromatography[J]. J Biochem Biophys Methods,2001, 47:101-110
    [18]Pagon R, Hanson N, Neufeld-Kaiser W, et al. Genetic testing. Western Med J 2001,174:344-347.
    [19]ACMG. Genetics Evaluation Guidelines for the Etiologic Diagnmb of Congenital Hearing Loss. Genetic Evaluation of Congenital Hearing Loss Expert PaneL ACMG statement. Genet Med 2002,4:162-171.
    [20]Morton NE. Genetic epidemiology of hearing impairment. Ann NY Acad Sci, 1991,630:16.
    [21]王国建,戴朴,韩东一. 基因芯片在内耳基因功能与突变检测中的应用.中国听力语言康复科学杂志,2007:33.36.
    [22]Siemering K, Manji SS, Hutchison WM, et al. Detection of mutations in genesassociated with hearing loss using a microarray-based approach. J Mol Diagn.2006,8:483-9.
    [23]Cremers FP, Kimb erling WJ, Kfilm M, et al. Development of a genotyping microarray for Usher syndrome. J Med Ge net,2006,14: 21-26.
    [24]Gardner.P, Oitmaa.E, Messner.A, et al. Simultaneous multigene mutation detection in patients with sensorineural hearing loss through a novel diagnostic microarray:a new approach for newborn screening follow-up. Diatrics,2006, 9:85-94.
    [25]Li CX, Pan Q, Guo YG, et al. Construction of a multiplex allele specific PCR-based universal array(ASPUA)and its application to hearing loss screening. Hum Mutat,2008,29:306-314.
    [26]Edelstein RL, Tamanaha CR,Sheehan PE, et al. The BARC biosensor applied to the detection of biological warfare agents. Biosens Bioelectron, 2000,14:805-13.
    [27]郭永刚,张冠斌,熊强,等.基于磁珠的可见光检测微阵列信号的新方法.分析科学学报,2007,23:1-4.
    [28]Young TL, Ices E, Lynch E, et al. Non-syndromic progressive hearing loss DFNA38 is caused by heterozygous missense mutation in the Wolfram syndrome gene WFS1. Hum Mo 1 Genet.2001,10(22):2509-2514.
    [29]Kelsell DP, Dunlop J, Stevens HP, et al. GJB3 mutations in hereditary nonsyndromic seorineural deafness. Nature,1997,387(6628):80-83
    [30]varga R, Kelley P M, Keats B J, et al. Non-syndrornic recessive auditory neuropathy is the result of mutation in the otoferlin(OTOF) gene. J Med Genet.2003,40:45-48.
    [31]Lynch ED, Lee MK, Morrow JE, et al. Nonsyndromic deafness DFNAlassociated with mutation of a human homolog of the Drosophila gene diaphanous. Science.2004,6(3):12-15
    [32]Steel K. P. New interventions in hearing impairment. BMJ.2000, 320(4):622-625.
    [33]Park HJ, Shaukat S, Liu XZ, et al. Origins and frequencies of SLC26A4(PDS) mutations in east and south Asians:global implications for the epidemiology of deafness. J Med Genet.2003,40(4):242-248.
    [34]Zelante L, Gaspafini P, EstiviU X, et al. Connexin26 mutations associated with the most common form of non-syndromic neurosensory auiosomal recessive deafness(DFNB1) in Mediterraneans. Hum Mol Genet.1997,6: 1605-1609
    [35]Luft R, Lkkos D, Palmieri G, et al. A case of severe hypermetabolism ofnonthyroid origin with a defect in the maintenance of mitochondrial respiratorycontrol:A correlated Clinical, Biochemical and morphological study. J Clin Invest,1962,41:1776-1804.
    [36]Guan MX, Fischel, Ghodsian N, et al. Nuclear background determ-inesbiochemical phenotype in the deafness associated with mitochondrial 12SrRNA A1555G mutation. Human Molecular Genetics,2001,10(6): 573-580.
    [37]赵辉,李荣华,王秋菊,等.母系遗传药物性聋与非综合征性聋大家系与基因突变的研究.中华耳科学杂志,2005,3(1):1-12.
    [38]谢鼎华主编耳鼻喉咽临床遗传学第一版湖南科学技术出版社,2002,67.
    [39]]Van Camp G, Willems PJ, Smith RJH. Nonsyndromic hearing impairment: unparalleled heterogeneity. AM J Ham Genet,1997,60:758-764
    [40]Wang QJ, Lu CY, Li N, et al. Y-linked inheritance of non-syndromic hearing impairment in a large Chinese family. J Med Genet,2004,41(6): 80-83
    [41]Anderson S, Bankier AT, Barrell BG, et al. Sequence and organization of the human mitochondrial genome. Nature,1981,290(5806):456-465
    [42]Jacobs H, Hutchin T, Kappi T, et al. Mitochondrial DNA mutations in patients with postlingual, nonsyndromic hearing impairment. Eur J Hum Genet,2005,13(1):26-33.
    [43]Andreassi MG. Coronary atherosderosis and somatic mutations an overview of the contributive factors for oxidative DNA damage. Mutat Res,2003, 543(1):67-86
    [44]Prezant T, Agapian J, Bohlman M, et al.Fischelghodsian N:Mitochondrial ribosomal-RNA mutation associated with both antibiotic-induced and non-syndromic deafness. Nat Genet 1993,4:289-294.
    [45]袁慧军,姜泗长,杨伟炎等氨基糖甙类抗生素致聋家系线粒体点突变分析.巾华耳鼻咽喉杂志,1998,33:67-70.
    [46]GuanMX, Fischel-GhodsianN, AttardiG. Biochemical evidence for nuclear Geneinvolvementin phenotype of phenotype of nonsyndromic deafness associated with mitochondriall2SrRNAmutation. Hum Mol Genet,1996,5: 963-971.
    [47]Estivill-X,GoveaN,BarceloA,etal.Familialprogressivesensorineural deafness is mainly due to the mtDNA A1555G mutation and is enhanced by treatment of aminoglycosides[J]. Am J Hum Genet,1998,62:243-247
    [48]Fischel-Ghodsian N, Prezant T, Chaltraw W, et al. Mitochondrial gene mutation is a significant predisposing factor in aminoglycoside ototoxicity. Am J Otolaryngol,1997,18(3):173-178.
    [49]Usmni S, Abe S, Akita J, et al. Prevalence of mitochondrial genemutations among hearing impaired patients. J Med Genet,2000,37(1):38-40.
    [50]Li Z, Li R, Liao Z, et al. Mutational arialysis ofthe mitochondrial 12S rRNA gene in Chinese pediatric subjects with aminoglycoside induced and non-syndromic hearing loss. Hum Genet,2005,117(1):9-15.
    [51]Fischel-Ghodsian N. Mitochondrial Deafness. Ear Hearing.2003,24(4): 303-313.
    [52]Reid FM, Vernham GA, Jacobs HT. A novel mitochondrial point mutation in a maternal pedigree with sensorineural deafness.HumMutat,1994,3:23-26
    [53]Yao Y-G, Salas A, Bravi C-M, et al.A reappraisal of complete mtDNA variation in East Asian families with hearing impairment. Hum Genet 2006,119: 505-515.
    [54]Torroni A, Cruciani F, Rengo C, et al. The 1555A>G mutation in the 12S rRNA gene of human mtDNA:Recurrent origins and founder events in families affected by sensorineural deafness. Am J Hum Genet 1999,65:1349-1358.
    [55]Casano R, Bykhovskaya Y, Johnson D, et al.Hearing loss due to the mitochondrial 1555A>G mutation in Italian families. Am J Med Genet 1998,79: 88-91.
    [56]Guan M-X, Fischel-Ghodsian N, Attardi G.A biochemical basis for the inherited susceptibility to aminoglycoside ototoxicity. Hum Mol Genet 2000,9: 1787-1793.
    [57]Tang X-W, Yang L, Zhu Y, et al. Very low penetrance of hearing loss in seven Han Chinese pedigrees carrying the deafness-associated 12 S rRNA 1555A> G mutation. Gene,2007,393:11-19.
    [58]Kong Q-P, Bandelt H-J, Sun C, et al.Updating the East Asian mtDNA phylogeny:a prerequisite for the identification of pathogenic mutations.Hum Mol Genet 2006,15:2076-2086.
    [59]Ballana E, Govea N, De Cid R, et al.Detection of unrecognized low-level mtDNA heteroplasmy may explain the variable phenotypic expressivity of apparently homoplasmic mtDNA mutations. Hum Mutat,2008,29:248-257.
    [60]Abe S, Kelley PM, Kimberling WJ, et al. Conexin26 gene(GJB2) mutationmodulates the severity of heating loss associated with the 1555A>G mitochondrial mutation. Am J Med Genet.2001,103(4):334-338.
    [61]韩明鲲 王秋菊 韩东一POU3F4基因与X连锁的遗传性聋国际耳鼻喉科头颈外科杂志,2008,5(32):153-154
    [1]Topsakal V, Van Camp G, Van de Heyning P. Genetic testing for hearing impairment. B-ENT,2005,1:125-135.
    [2]Morton, N.E.. Genetic epidemiology of hearing impairment. Ann N Y Acad Sci, 1991,630:16-31.
    [3]Marazita, M.L, L.M. Ploughman, B. Rawlings, et al. Genetic epidemiological studies of early-onset deafness in the U.S school-age population. Am J Med Genet,1993.46(5):486-91.
    [4]Corlin R J, et al. Hereditary Hearing Loss and its Syndromes [M]. Orford University Press,1995
    [5]谢鼎华主编耳鼻喉咽临床遗传学第一版湖南科学技术出版社,2002,67.
    [6]Van Camp G, Willems PJ, Smith RJH. Nonsyndromic hearing impairment: unparalleled heterogeneity. AM J Ham Genet,1997,60:758-764
    [7]Wang QJ, Lu CY, Li N, et al. Y-linked inheritance of non-syndromic hearing impairment in a large Chinese family. J Med Genet,2004,41(6): 80.
    [8]Marazita ML, Ploughman LM, Rawlings B et al. Genetic epidemiological studies of early-onset deafness in the U.S. school-age population. Am J Med Genet,1993,46:486.
    [9]Morton CC, Nance WE. Newborn hearing screening-a silent revolution. N. Engl. J. Med,2006,354:2151.
    [10]Davis AC. Hearing in Adults. London:Whurr,1995.
    [11]Toriello HV, Reardon W, Gorlin RJ. Hereditary Hearing Loss and its Syndromes. Oxford University Press Inc, Oxford,2004.
    [12]Morton NE. Genetic epidemiology of hearing impairment. Ann NY Acad Sci, 1991,630:16.
    [13]冯永,刘铮铮,胡浩,等MITF基因的新突变导致Waardenburg综合征Ⅱ例.中华耳鼻咽喉头颈外科杂志,2007.42(10):787-8.
    [14]Hofstra, R.M., J. Osinga, G. Tan-Sindhunata, et al., A homozygous mutation in the endothelin-3 gene associated with a combined Waardenburg type 2 and Hirschsprung phenotype (Shah-Waardenburg syndrome). Nat Genet,1996. 12(4):445-7.
    [15]Edery, P., T. Attie, J. Amiel, et al., Mutation of the endothelin-3 gene in the Waardenburg-Hirschsprung disease (Shah-Waardenburg syndrome). Nat Genet, 1996.12(4):442-4.
    [16]Pingault, V., N. Bondurand, K. Kuhlbrodt, et al. SOX10 mutations in patients with Waardenburg-Hirschsprung disease. Nat Genet,1998.18(2):171-3.
    [17]Fraser, F.C., D. Ling, D. Clogg, et al., Genetic aspects of the BOR syndrome--branchial fistulas, ear pits, hearing loss, and renal anomalies. Am J Med Genet,1978.2(3):241-52.
    [18]Heimler, A. and E. Lieber, Branchio-oto-renal syndrome:reduced penetrance and variable expressivity in four generations of a large kindred. Am J Med Genet,1986.25(1):15-27.
    [19]Konig, R., S. Fuchs, and C. Dukiet, Branchio-oto-renal (BOR) syndrome: variable expressivity in a five-generation pedigree. Eur J Pediatr,1994.153(6): 446-50.
    [20]Stratakis, C.A., J.P. Lin, and O.M. Rennert, Description of a large kindred with autosomal dominant inheritance of branchial arch anomalies, hearing loss, and ear pits, and exclusion of the branchio-oto-renal (BOR) syndrome gene locus (chromosome 8q13.3). Am J Med Genet,1998.79(3):209-14.
    [21]Ruf, R.G., P.X. Xu, D. Silvius, et al., SIX1 mutations cause branchio-oto-renal syndrome by disruption of EYA1-SIX1-DNA complexes. Proc Natl Acad Sci U S A,2004.101(21):8090-5.
    [22]Kalatzis, V., I. Sahly, A. El-Amraoui, et al., Eyal expression in the developing ear and kidney:towards the understanding of the pathogenesis of Branchio-Oto-Renal (BOR) syndrome. Dev Dyn,1998.213(4):486-99.
    [23]Xu, P.X., W. Zheng, L. Huang, et al., Sixl is required for the early organogenesis of mammalian kidney. Development,2003.130(14):3085-94.
    [24]Zheng, W., L. Huang, Z.B. Wei, et al., The role of Six1 in mammalian auditory system development. Development,2003.130(17):3989-4000.
    [25]Williams, C.J., A. Ganguly, E. Considine, et al., A-2-->G transition at the 3' acceptor splice site of IVS17 characterizes the COL2A1 gene mutation in the original Stickler syndrome kindred. Am J Med Genet,1996.63(3):461-7.
    [26]Richards, A.J., J.R. Yates, R. Williams, et al., A family with Stickler syndrome type 2 has a mutation in the COL11A1 gene resulting in the substitution of glycine 97 by valine in alpha 1(XI) collagen. Hum Mol Genet,1996,5(9): 1339-43.
    [27]Vikkula, M, E.C. Mariman, V.C. Lui, et al., Autosomal dominant and recessive osteochondrodysplasias associated with the COL11A2 locus. Cell,1995.80(3): 431-7.
    [28]Amagawa Y, Kitamura K, Ishida T et al. A gene for a dominant form of non-syndromic sensorineural deafness (DFNA11) maps within the region containing the DFNB2 recessive deafness gene. Hum Mol Genet,1996,5:849.
    [29]Yang JJ, Tsai CC, Hsu HM, et al. Hearing loss associated with enlarged vestibular aqueduct and Mondini dysplasia is caused by splice-site mutationin the PDS gene. Hear Res,2005,199:22.
    [30]Emmett JR. The large vestibular aquaduct syndrome. Am J Otol,1985,6: 387-403.
    [31]Jackler RK, De La Cruz A. The large vestibular aquaduct syndrome. Laryngoscope,1989,99:1238-30.
    [32]Usher CH. On the inheritance of retinitis pigm entosa, with notes of cases. R Lond Ophthalmol Hosp Rep,1914,19:130-236.
    [33]Gorlin R,J, Toriello H V, Cohen MM. Hereditary hearing loss and its syndromes. Oxford University Press,1995.
    [34]Boughman JA, Vemon M, Shaver KA. Usher syndrome:definition and estimate of prevalence from two high-risk popultions. J Chronic Dis,1983,36 (8):595-603.
    [35]Hope C I, Bundey S, Proops D, et al. Usher syndrome in the city of B irm ingham-prevalence and clinical classification. Br J Ophthalmol,1997,81 (1): 46-53.
    [36]Tamayo ML, BemalJE, Tamayo GE, et al. Usher syndrome:results of a screening programin Colombia. Clin Genet,1991,40 (4):304-311.
    [37]Rosenberg T, Haim M, Hauch AM, et al. The prevalence of Usher syndrome and other retinal dystrophy-hearing impairment associations. Clin Genet 1997, 51(5):314-321.
    [38]Vemon M. U sher's syndrome-deafess and progressive blindness.Clinical cases, prevention,theory and literature survey. J Chronic Dis,1969,22(3):133-151.
    [39]Smith R JH, Berlin CI, Hejtmancik, et al. Clinical diagnosis of the Usher syndromes. Am J Med Genet,1994 50 (1):32-38.
    [40]Pakarinen L, Karjalainen S, Simola K, et al. Usher's syndrome type 3 in Finland. Laryngoscope,1995,105(6):613-617.
    [41]Heller, A.J., C. Stanley, W.T. Shaia, et al. Localization of biotinidase in the brain:implications for its role in hearing loss in biotinidase deficiency. Hear Res,2002.173(1-2):62-8.
    [42]van den Brink, D.M. and R.J. Wanders, Phytanic acid:production from phytol, its breakdown and role in human disease. Cell Mol Life Sci,2006 63(15): 1752-65.
    [43]Schulze-Bahr, E., Q. Wang, H. Wedekind, et al. KCNE1 mutations cause jervell and Lange-Nielsen syndrome. Nat Genet,1997.17(3):267-8.
    [44]Wolf, B., R. Spencer, and T. Gleason, Hearing loss is a common feature of symptomatic children with profound biotinidase deficiency. J Pediatr,2002, 140(2):242-6.
    [45]王彤,叶军,韩连书.羧化全酶合成酶缺陷病的临床诊治及基因突变分析.中国当代儿科杂志,2009,8(15):34-36
    [46]van den Brink, D.M. and R.J. Wanders, Phytanic acid:production from phytol, its breakdown and role in human disease. Cell Mol Life Sci,2006 63(15): 1752-65.
    [47]Govan, J.A., Ocular manifestations of Alport's syndrome:a hereditary disorder of basement membranes? Br J Ophthalmol,1983.67(8):493-503.
    [48]Barker, D.F., S.L. Hostikka, J. Zhou, et al., Identification of mutations in the COL4A5 collagen gene in Alport syndrome. Science,1990.248(4960):1224-7.
    [49]Mohr, J. and K. Mageroy, Sex-linked deafness of a possibly new type. Acta Genet Stat Med,1960,10:54-62.
    [50]Tranebjaerg, L., C. Schwartz, H. Eriksen, et al., A new X linked recessive deafness syndrome with blindness, dystonia, fractures, and mental deficiency is linked to Xq22. J Med Genet,1995,32(4):257-63.
    [51]Jin, H., M. May, L. Tranebjaerg, et al., A novel X-linked gene, DDP, shows mutations in families with deafness (DFN-1), dystonia, mental deficiency and blindness. Nat Genet,1996,14(2):177-80.
    [52]Koehler, CM., D. Leuenberger, S. Merchant, et al., Human deafness dystonia syndrome is a mitochondrial disease. Proc Natl Acad Sci USA,1999,96(5): 2141-6.
    [53]Van den Ouweland JM, Lemkes HH, Ruitenbeek W, et al. Mutation in mitochondrial tRNA(Leu)(UUR) gene in a large pedigree with maternally transmitted type Ⅱ diabetes mellitus and deafness. Nat Genet,1992,1: 368-371.
    [54]Usami, S., S. Abe, J. Akita, et al. Prevalence of mitochondrial gene mutations among hearing impaired patients. J Med Genet,2000,37(1):38-40.
    [55]Majamaa, K., J.S. Moilanen, S. Uimonen, et al., Epidemiology of A3243G, the mutation for mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes:prevalence of the mutation in an adult population. Am J Hum Genet, 1998.63(2):447-54.
    [56]Kadowaki, T., H. Kadowaki, Y. Mori, et al. A subtype of diabetes mellitus associated with a mutation of mitochondrial DNA. N Eng J Med,1994.330(14): 962-8.
    [57]姚生,郑日亮,毕鸿雁,等.线粒体DNAA3243G点突变在成年人的临床表现特点.中华神经科杂志,2007,40:220-224.
    [58]Cremers, C.W., H.A. Marres, and P.M. van Rijn. Nonsyndromal profound genetic deafness in childhood. Ann N Y Acad Sci,1991.630:191-6.
    [59]Van Camp, G., P.J. Willems, and R.J. Smith, Nonsyndromic hearing impairment:unparalleled heterogeneity. Am J Hum Genet,1997.60(4):758-64.
    [60]Zelante, L., P. Gasparini, X. Estivill, et al., Connexin26 mutations associated with the most common form of non-syndromic neurosensory autosomal recessive deafness (DFNB1) in Mediterraneans. Hum Mol Genet,1997.6(9): 1605-9.
    [61]Estivill, X., P. Fortina, S. Surrey, et al., Connexin-26 mutations in sporadic and inherited sensorineural deafness. Lancet,1998.351(9100):394-8.
    [62]Kelley, P.M., D.J. Harris, B.C. Comer, et al., Novel mutations in the connexin 26 gene (GJB2) that cause autosomal recessive (DFNB1) hearing loss. Am J Hum Genet,1998.62(4):792-9.
    [63]Scott, D.A., M.L. Kraft, R. Carmi, et al., Identification of mutations in the connexin 26 gene that cause autosomal recessive nonsyndromic hearing loss. Hum Mutat,1998.11(5):387-94.
    [64]Zbar, R.I., A. Ramesh, C.R. Srisailapathy, et al., Passage to India:the search for genes causing autosomal recessive nonsyndromic hearing loss. Otolaryngol Head Neck Surg,1998.118(3):333-7.
    [65]Snoeckx, R.L., P.L. Huygen, D. Feldmann, et al, GJB2 mutations and degree of hearingloss:a multicenter study. Am J Hum Genet,2005.77(6):945-57.
    [66]De Kok, Y.J., S.M. van der Maarel, M. Bitner-Glindzicz, et al., Association between X-linked mixed deafness and mutations in the POU domain gene POU3F4. Science,1995,267(5198):685-8.
    [67]Wang, Q.J., C.Y. Lu, N. Li, et al, Y-linked inheritance of non-syndromic hearing impairment in a large Chinese family. J Med Genet,2004.41(6):80.
    [68]Jazobs HT, Hutchin TP, Timo K, et al. Mitochondrial DNA mutations in patients with postlingual, nonsyndromic hearing impairment. Eur J Hum Genet, 2005,13:26-33
    [69]Estivill-X, GoveeN, BarceloA, et al. Familial progressive sensorineural deafness is mainly due to the mtDNA A1555G mutation and is enhanced by treatment of aminoglycosides[J]. AmJHumGenet,1998,62:27.
    [70]Fischel-Ghodsian, N., Mitochondrial mutations and hearing loss:paradigm for mitochondrial genetics. Am J Hum Genet,1998,62(1):15-9.
    [71]于丽玫,于飞.遗传性聋病相关诊断技术及其意义.中国听力语言康复科学杂志,2007:10-13.
    [72]Rudea F. Genomics and proteomics tools for the clinic. Curr Opin Mol Ther,2000,2:633-642.
    [73]Siemering K, Mi SS, Hutchison WM, et al. Detection of mutations in genes associated with hearing loss using a microarray based approach. J Mol Diagn,2006.8:483-489
    [74]Gardner P, Oitmaa E, Messner A, et ol. Simultaneous multigene mutation detection in patients with sensorineural hearing loss through a novel diagnostic microarray:a new appmach for newborn screening follow-up. Pediatrics, 2006,118:985-994.
    [75]Cremers FP, Kimb erling WJ, Kfilm M, et al. Development of a genotyping microarray for Usher syndrome. J Med Genet,2006,14: 21-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700