用户名: 密码: 验证码:
光谱分析的化学计量学研究及其在土壤近红外分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近红外(NIR)光谱是一种直接定量分析技术,由于不需要化学反应,可以实时分析样品,使得它在应用上有很大的优势,同时也在方法上需要克服很大的困难,因为对于复杂体系而言,近红外光谱包含有各种噪音,必须利用有效的化学计量学方法去消除,这其中有很多具有挑战性的数学问题,如定标样品分析、光谱预处理模式、光谱波段的优选等等。
     土壤是农业可持续发展最重要的组成部分,土壤中的营养成分(有机质、总氮)的含量是衡量土壤肥力的一个重要指标。土壤成分的无试剂简便快速测定方法是现代农业急需的关键技术之一。由于土壤是含有多组分的复杂体系,土壤近红外光谱的高精度分析模型的研究具有重要意义,本文将以此为目标,研究若干核心的化学计量学方法。
     首先研究基于Savitzky-Golay(SG)平滑的光谱预处理方法;其次研究基于移动窗口偏最小二乘(MWPLS)的连续光谱波段的优选方法,和基于等间隔移动窗口多元线性回归(ECMWMLR)的离散光谱波长组合的优选方法,并结合SG平滑做进一步的模型优化;为了降低模型复杂性和设计专用仪器的参考,本文还提出一种基于最优组合波长的光谱降维方法,并利用实验证实了它的有效性;此外,为了得到稳定、可靠的模型,本文所有模型都是基于多个定标集和预测集的划分得到的,并且建立了一种合理的定标集和预测集的划分方法。
     本文建立计算机算法平台,集成上述NIR光谱分析的化学计量学方法,分别建立土壤有机质、总氮的NIR光谱分析模型,并进行模型检验。土壤有机质的最优MWPLS模型:波段为1692-1880 nm,PLS因子数为14,预测均方根偏差(RMSEP),预测相关系数(R_P)分别为0.275 (%),0.870;最优ECMWMLR模型:起点波长为1786 nm,点数为9,间隔为20,RMSEP,R_P分别为0.265 (%),0.871。土壤总氮的最优MWPLS模型:波段为1600-2198 nm,PLS因子数为11,RMSEP,R_P分别为0.0145 (%),0.886;最优ECMWMLR模型:起点波长为1716 nm,点数为9,间隔为31,RMSEP,R_P分别为0.0141 (%),0.891。结果表明,本文建立的优化模型,其效果明显优于传统的全谱PLS模型和SG-PLS模型,而且模型更为简单、稳定,为近红外光谱应用于土壤分析建立了高精度实用模型,所得到的光谱波段和光谱波长组合也为专用近红外仪器设计提供了重要参考。所建立的方法框架和计算机算法平台还可以应用到其他复杂体系的近红外光谱分析中。
Near-infrared (NIR) spectroscopy is a direct quantitative analysis technique. It can analyze samples in real time without chemical reactions, which makes it a great advantage on the application, but also there are great difficulties in methods to overcome. As for complex systems, the near-infrared spectrum includes a variety of noises, chemometrics methods must be used to eliminate these noises, of which there are many challenging mathematical problems, such as the calibration samples analysis, spectral preprocessing modes, spectral waveband selection optimization and so on.
     Soil is the most important sustainable development of agriculture component. The nutritional content of the soil (organic matter, total nitrogen) is an important indicator to measure soil fertility. Simple and rapid reagent-free determination method for soil content is the critical need for modern agricultural technologies. As soil is a complex system with multi-component, the study of high precision models of near-infrared spectroscopy analysis for soil is much significant, taking this as the objective, we research a number of core chemometrics methods in this paper.
     Firstly, we study the spectral preprocessing methods based on Savitzky-Golay (SG) smoothing; secondly, research the optimization methods for continuous spectral waveband on moving window partial least squares (MWPLS), explore the optimization method for discrete spectral wavelength combination founded on equidistant combination moving window multiple linear regression (ECMWMLR), and then further optimize models joined with SG smoothing; thirdly, for reducing model complexity and providing the reference of designing special instruments, we propose a spectral dimension reduction method based on the optimal combinational wavelength, and experimentally confirmed its effectiveness. In addition, to get stable and reliable results, all optimal models in this paper are obtained by multiple divisions of calibration set and prediction set, and a rational dividing method is proposed.
     We build up a computer algorithm platform, for the integration of chemometrics methods for NIR spectroscopy analysis, and respectively establish NIR analysis models for soil organic matter and total nitrogen, and further examine the models. For organic matter, its optimal MWPLS model shows, the waveband is 1692-1880 nm, PLS factor is 14, root mean square error of prediction (RMSEP) and correlation coefficient of prediction (RP) are 0.275 (%) and 0.870, respectively; while in its optimal ECMWMLR model, the beginning wavelength is 1786 nm, the number of adopted wavelengths is 9, the gap of adopted wavelengths is 20, RMSEP and RP are 0.265 (%) and 0.871, respectively. For nitrogen, its optimal MWPLS model indicates, the waveband is 1600-2198 nm, PLS factor is 11, RMSEP and RP are 0.0145 (%) and 0.886, respectively; while in its optimal ECMWMLR model, the beginning wavelength is 1716 nm, the number of adopted wavelengths is 9, the gap of adopted wavelengths is 31, RMSEP and RP are 0.0141 (%) and 0.891, respectively. Results prove that the prediction effects of these optimal models are obviously better than that of the traditional analysis models, such as PLS and SG-PLS models on the whole spectral collecting region, and these optimal model is more simple and stable, providing high precision practical model for NIR spectroscopy applying to soil analysis, the spectral wavebands and the spectral wavelength combinations provide important references for designing specific NIR instrument. The methodological framework and the computer algorithm platform here can also be used for the NIR spectroscopy analysis of other complex systems.
引文
[1] D. A. Burns, E. W. Ciurczak, Handbook of near-infrared analysis, 2nd ed. [M]. New York: Marcel dekker inc, 2001
    [2] W. L. Wolf, G. J. Zissis, The Infrared Handbook, revised edition [M]. New York: Wiley & Son, 1993
    [3] H. W. Siesler, Y. Ozaki, S. Kawata, Near-infrared Spectroscopy: Principle Instruments and Applications [M]. Weinheim (Germany): Wiley-VCH, 2002
    [4] P. Williams, K. Norris, Near-infrared Technology in the Agricultural and Food Industries (Second Edition) [M]. Minnesota (USA):the American Association of Cereal Chemists, Inc St Paul, 2001
    [5]陆婉珍主编,现代近红外光分析技术(第二版)[M].北京:中国石化出版社, 2007
    [6]严衍禄主编,近红外光谱分析基础与应用[M].北京:中国轻工业出版社, 2005
    [7]徐广通,袁洪福,陆婉珍,现代近红外光谱技术及应用进展[J].光谱学与光谱分析, Vol. 20, No. 2, 2000, pp.134-142
    [8]褚小立,许育鹏,陆婉珍,用于近红外光谱分析的化学计量学方法研究与应用进展[J].分析化学, Vol. 36, No. 5, 2008, pp.702-709
    [9]袁洪福,陆婉珍,近红外光谱技术正在掀起一场分析效率革命[J].现代仪器, Vol. 5, No. 1, 1999, pp.19-24
    [10] A. Moron, D. Cozzolino, Application of near infrared reflectance spectroscopy for the analysis of organic C, total N and pH in soil of Uruguay [J]. Journal of Near Infrared Spectroscopy, Vol. 10, 2002, pp.215-221
    [11] D. Cozzolino, A. Moron, Potential of near-infrared reflectance spectroscopy and chemometrics to predict soil organic carbon fractions [J]. Soil & Tillage Research, Vol. 85, 2006, pp.78-85
    [12] M. Confalonieri, F. Fornasier, A. Ursino, The potential of near infrared reflectance spectroscopy as a tool for the chemical characterization of agricultural soils [J]. Journal of Near Infrared Spectroscopy, Vol. 9, 2001, pp.123-131
    [13] J. B. Misra, R. S. Mthur, D. M. Bhat, Near-Infrared Transmittance Spectroscopy: a PotentialTool for Non-Destructive Determination of Soil Content [J]. Journal of the Science of Food and Agriculture, Vol. 80, 2000, pp.237-240
    [14] B. Ludwig, R. Nitschke, T. Urselmans, Use of mid-infrared spectroscopy in the diffuse-reflectance mode for the prediction of the composition of organic matter in soil and litter [J]. Journal of Plant Nutrition and Soil Science, Vol. 171, 2008, pp.384-391
    [15] R. A. V. Rossel, T. Behrens, Using data mining to model and interpret soil diffuse reflectance spectra [J]. Geoderma, Vol. 158, No. 1-2, 2010, pp.46-54
    [16] T. Urselmans, K. Michel, M. Helfrich, Near-infrared spectroscopy can predict the composition of organic matter in soil and litter [J]. Journal of Plant Nutrition and Soil Science, Vol. 169, 2006, pp.168-174
    [17] L. Cecillon, N. Cassagne, S. Czarnes, R. Gros, Predicting soil quality indices with near infrared analysis in a wildfire chronosequence. Science of the total environment [J]. Vol. 407, 2009, pp.1200-1205
    [18]朱尔一,杨芃原,化学计量学技术及应用[M].北京:科学出版社, 2001
    [19]倪永年,化学计量学在分析化学中的应用[M].北京:科学出版社, 2004
    [20]梁逸曾,俞汝勤,分析化学手册(10)-化学计量学[M].北京:化工出版社, 2001
    [21]刘树森,易忠胜,基础化学计量学[M].北京:科学出版社, 1999
    [22]于秀林,多元统计分析及程序[M].北京:中国统计出版社, 1993
    [23]王惠文,偏最小二乘回归方法及其应用[M].北京:国防工业出版社, 2000
    [24]袁洪福,陆婉珍,现代光谱分析中常用的化学计量学方法[J].现代科学仪器, Vol. 5, 1998, pp.6-9
    [25] Feudalern, Woodyna, Transfer of Multivariate Calibration Models: A review [J]. Chemometrics and Intelligent Laboratory Systems, Vol. 64, 2002, pp.181-192
    [26] V. B. Maurel, E. F. Ahumada, B. Palagos, et al. Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy [J]. Trac-Trends in Analytical Chemistry, Vol. 29, No. 9, 2010, pp.1073-1081
    [27] R. K. H. Galvao, M. C. U. Araujo, W. D. Fragoso, et al. A variable elimination method to improve the parsimony of MLR models using the successive projections algorithm [J]. Chemometrics and Intelligent Laboratory Systems, Vol. 92, No. 1, 2008, pp.83-91
    [28] Y. Sulub, B. Wabuyele, P. Gargiulo, et al. Real-time on-line blend uniformity monitoring using near-infrared reflectance spectrometry: A noninvasive off-line calibration approach [J]. Journal of Pharmaceutical and Biomedical Analysis, Vol. 49, No. 1, 2009, pp.48-54
    [29] J. Chen; X. Z. Wang, A new approach to near-infrared spectral data analysis using independent component analysis [J]. Journal of Chemical Information and Computer Sciences, Vol. 41, No. 4, 2001, pp.992-1001
    [30] Y. N. Shao, Y. He, J. Y. Mao, Quantitative analysis using NIR by building principal component-multiple linear regression-BP algorithm [C]. 2006 IEEE International Conference on Automation Science and Engineering, Vols 1-2, 2006, pp.161-164
    [31] S. Kasemsumran, Y. P. Du, K, Maruo, et al. Improvement of partial least squares models for in vitro and in vivo glucose quantifications by using near-infrared spectroscopy and searching combination moving window partial least squares [J]. Chemometrics Intell. Lab. Syst., Vol. 82, 2006, pp.97-103
    [32] P. Geladi, B. R. Kowalski, An Example of 2-block Predictive Partial Least-squares Regression with Simulated Data [J]. Analytica Chimica Acta, Vol. 185, 1986, pp.19-32
    [33] M. J. Mcshane, et al. Assessment of Partial Least-squares Calibration and Wavelength Selection for Complex Near-Infrared Spectra [J]. Applied Spectroscopy, Vol. 52, No. 6, 1998, pp.878-884
    [34] S. R. Delwiche, J. B. Reeves, The effect of spectral pre-treatments on the partial least squares modelling of agricultural products [J]. Journal of Near Infrared Spectroscopy, Vol. 12, No. 3, 2004, pp.177-182
    [35] B. Igne, J. B. Reeves, G. McCarty, et al. Evaluation of spectral pretreatments, partial least squares, least squares support vector machines and locally weighted regression for quantitative spectroscopic analysis of soils [J]. Journal of Near Infrared Spectroscopy, Vol. 18, No. 3, 2010, pp.167-176
    [36] M. Shane, et al. Assessment of Partial Least-squares Calibration and Wavelength Selection for Complex Near-infrared Spectral [J]. Applied Spectroscopy, Vol. 52, No. 6, 1998, pp.878-884
    [37] X. B. Zou; J. W. Zhao; H. P. Mao, et al. Genetic Algorithm Interval Partial Least Squares Regression Combined Successive Projections Algorithm for Variable Selection in Near-Infrared Quantitative Analysis of Pigment in Cucumber Leaves [J]. Applied Spectroscopy, Vol. 64, No. 7, 2010, pp.786-794
    [38] J. J. Fang, X. M. Wei, J. H. Qiang, Z. X. Huang, Y. P. Du, Simultaneous determinatioin ofmain composition and additive in vinegar by NIR and partial least squares [J]. Computer and Applied Chemistry, Vol. 27, No. 3, 2010, pp.351-354
    [39] X. Y. Luo, L. Zhang, N. Liu, Y. P. Du, The study of relationship between infrared spectra and concentration of micro formaldehyde passively sampled by chitosan film with chemometric methods [J]. Computer and Applied Chemistry, Vol. 26, No. 3, 2009, pp.283-286
    [40]沈林峰,沈掌泉,应用近红外光谱和偏最小二乘回归法预测玉米中淀粉含量[J].化学分析计量, Vol. 17, No. 6, 2008, pp.26-28
    [41] A. Savitzky, M. J. E. Golay, Smoothing and differentiation of data by simplified least squares procedures [J]. Anal. Chem., Vol. 36, No. 8, 1964, pp.1627-1637
    [42] P. A. Gorry, General.Least-Squares Smoothing and Differentiation by the Convolution (Savitzky-Golay) Method [J]. Analytical Chemistry, Vol. 62, 1990, pp.570-573
    [43] S. R. Delwiche, J. B. Reeves, A Graphical Method to Evaluate Spectral Preprocessing in Multivariate Regression Calibrations: Example with Savitzky-Golay Filters and Partial Least Squares Regression [J]. Applied Spectroscopy, Vol. 64, No. 1, 2010, pp.73-82
    [44] J. M. Chen, T. Pan, X. D. Chen, Application of second derivative spectrum prepares in quantification measuring glucose-6-phosphate and fructose-6-phosphate using a FTIR/ATR method [J]. Optics Preci. Eng., Vol. 14, No. 1, 2006, pp.1-7
    [45] P. Cao, T. Pan, X. D. Chen, Choice of wave band in design of minitype near-infrared corn protein content analyzer [J]. Optics Preci. Eng., Vol. 15, No. 12, 2007, pp.1952-1958
    [46] J. Xie, T. Pan, J. M. Chen, et al. Joint optimization of Savitzky-Golay smoothing models and partial least squares factors for near-infrared spectroscopic analysis of serum glucose [J]. Chinese Joumal of Analytical Chemistry, Vol. 38, No. 3, 2010, pp.342-346
    [47]郑咏梅,张铁强,等.平滑、导数、基线校正对近红外光谱PLS定量分析的影响研究[J].光谱学与光谱分析, Vol. 24, No. 12, 2004, pp.1546-1548
    [48] J. H. Jiang, R. J. Berry, H. W. Siesler, Y. Ozaki, Wavelength interval selection in multicomponent spectral analysis by moving window partial least-squares regression with applications to mid-infrared and near-infrared spectroscopic data [J]. Anal. Chem. Vol. 74, 2002, pp.3555-3565
    [49] S. Kasemsumran, Y. P. Du, K. Murayama, M. Huehne, Y. Ozaki, Near-infrared spectroscopic determination of human serum albumin,γ-globulin, and glucose in a control serum solution with searching combination moving window partial least squares [J]. Anal.Chim. Acta, Vol. 512, 2004, pp.223-230
    [50] Y. P. Du, Y. Z. Liang, J. H. Jiang, R. J. Berry, Y. Ozaki, Spectral regions to improve prediction ability of PLS modes by changeable size moving window partial least squares and searching combination moving window partial least squares [J]. Anal. Chim. Acta, Vol. 501, 2004, pp.183-191
    [51] H. Y. Fu, S. Y. Huan, L. Xu, L. J. Tang, J. H. Jiang, et al. Moving window partial least-squares discriminant analysis for identification of different kinds of bezoar samples by near infrared spectroscopy and comparison of different pattern recognition methods[J]. Journal of Near Infrared Spectroscopy, Vol. 15, No. 5, 2007, pp. 291-297
    [52] S. Kasemsumran, V. Keeratinijakal, W. Thanapase, Y. Ozaki, Near infrared quantitative analysis of total curcuminoids in rhizomes of Curcuma longa by moving window partial least squares regression [J]. Journal of Near Infrared Spectroscopy, Vol. 18, No. 4, 2010, pp.263-269
    [53] S. Fang; M. Q. Zhu, C. H. He, Moving window as a variable selection method in potentiometric titration multivariate calibration and its application to the simultaneous determination of ions in Raschig synthesis mixtures [J]. Journal of Chemometrics, Vol. 23, No.3-4, 2009, pp.117-123
    [54]潘涛,罗运平,陈星旦,等,人体血糖近红外光谱分析的等间隔波数组合的优选[C].全国第二届近红外光谱会议论文集,湖南·长沙, 2008, pp.663-667
    [55] T. Pan, J. Xie, H. Z. Chen, H. Yin, X. D. Chen, Equidistant Combination Moving Window MLR Method for Wavenumbers Selection of NIRS Analysis [C], The Proceedings of The 14th International Conference of Near Infrared Spectroscopy, Symposium on November 7-16, 2009, Bangkok, Thailand, pp. 867-870
    [56] T. Pan, J. Xie, H. Z. Chen, H. Yin, X. D. Chen, ECMWMLR Method and the Stability for Wavelength Selection in NIR Spectroscopy Analysis [C]. The 2nd Asian Symposium on Near Infrared Spectroscopy, Shanghai, China, 2010, pp.13-14
    [57]尹浩,地中海贫血筛查指标的FTIR/ATR光谱分析方法研究,暨南大学博士学位论文, 2010年
    [58] L. Liu,; X. P. Ye, A. M. Saxton, et al. Pretreatment of near infrared spectral data in fast biomass analysis [J]. Journal of Near Infrared Spectroscopy, Vol. 18, No. 5, 2010, pp.317-331
    [59] A. Rinnan; F. Vandenberg, S. B. Engelsen, Review of the most common pre-processing techniques for near-infrared spectra [J]. Trac-Trends in Analytical Chemistry, Vol. 28, No.10, 2009, pp.1201-1222
    [60] T. Isaksson, et al. The Effect of Multiplicative Scatter Correction (MSC) and Linearity Improvement in NIR spectroscopy [J]. Applied Spectroscopy, Vol. 42, No. 7, 1988, pp.1273-1284
    [61] R. J. Barnes, Standard Normal Variate Transformation and De-trending of Near-Infrared Diffuse Reflectance Spectra [J]. Applied Spectroscopy, Vol. 43, No. 5, 1989, pp.772-777
    [62] M. Blanco, Effect of Data Preprocessing Methods in Near-Infrared Diffuse Reflectance Spectroscopy for the Determination of the Active Compound in a Pharmaceutical Preparation [J]. Applied Spectroscopy, Vol. 51, No. 2, 1999, pp.240-246
    [63] A. Gei, P. Macdougalld, H. Martens, Linearization and Scatter-correction for Near Infrared Reflectance Spectra of Meat [J]. Applied Spectroscopy, Vol. 39, No. 3, 1985, pp.491-500
    [64]高荣强等,近红外光谱的数据预处理研究[J].光谱学与光谱分析, Vol. 12, No. 24, 2004, pp.1563-1565
    [65]夏柏杨,任芊.近红外光谱分析技术的一些数据处理方法的讨论[J].光谱实验室, Vol. 22, No. 3, 2005, pp.629-634
    [66]杨树筠,用重铬酸钾氧化法简便快速测定土壤有机质含量[J].现代农业, Vol. 4, 1997, pp.23
    [67]吴晓荣,叶祥盛,赵竹青,流动注射法与凯氏定氮法测定土壤全氮的比较[J].华中农业大学学报, Vol. 28, No. 5, 2009, pp.560-563
    [68]严衍禄,景茂,等,近红外漫反射光谱分析测量误差的研究[J].北京农业大学学报, Vol. 16, 1990, pp.37-48
    [69]谢军,潘涛,陈洁梅,等,血糖近红外光谱分析的Savitzky-Golay平滑模式与PLS因子数的联合优选,分析化学, Vol.38, No.3, 2010, pp.342-346
    [70]黄富荣,潘涛,张甘霖,潘贤章,刘登飞,应用近红外漫反射光谱快速测定土壤锌含量[J].光学精密工程, Vol. 18, No. 3, 2010, pp.386-392
    [71]曹璞,潘涛,陈星旦,小型近红外玉米蛋白质成分分析仪器设计的波段选择,光学精密工程, Vol. 15, No. 12, 2007, pp.1952-1958
    [72]潘涛,李仕萍,罗运平,等,甘蔗清汁锤度的近红外光谱定量分析[C].全国第一届近红外光谱学术会议论文集,北京, 2006, 517-523
    [73]陈洁梅,潘涛,陈星旦,二阶导数光谱预处理在用FT-IR/ATR方法定量测定葡萄糖-6-磷酸和果糖-6-磷酸中的应用[J].光学精密工程, Vol. 14, No. 1, 2006, pp.1-7
    [74] H. Yin, T. Pan, X. C. Wei, J. M. Chen, et al. A simultaneous quantification method of thalassemia screening multiple indicators using FTIR/ATR spectroscopy [C]. 2009 Symposium on Photonics and Optoelectronics, SOPO 2009, Symposium on 14-16 Aug. 2009
    [75] T. Pan, J. Xie, J. M. Chen, et al. Joint Optimization of Savitzky-Golay Smoothing Modes and PLS Factors was Applied to Near Infrared Spectral Analysis of Serum Cholesterol [C]. 2010 4th International Conference on Bioinformatics and Biomedical Engineering, iCBBE 2010, Symposium on 18-20 June 2010
    [76] H. Yin, T. Pan, J. Xie, J. M. Chen, et al. Wavenumbers Selection for FTIR/ATR Spectroscopy Analysis of Hemoglobin in Human Whole Blood [C] 2010 4th International Conference on Bioinformatics and Biomedical Engineering, iCBBE 2010, Symposium on 18-20 June 2010
    [77] J. M. Chen, L. L. Wu, T. Pan, et al. A Quantification Method of Glucose in Aqueous Solution by FTIR/ATR Spectroscopy [C]. Proceedings - 2010 7th International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2010, Vol. 5, 2010, pp.2159-2163
    [78] T. Pan, G. Q. Jiang, J. M. Chen, Waveband Selection of NIR Spectroscopy Analysis for Glucose Aqueous Solution Based on Savitzky-Golay Smoothing [J]. Advanced Materials Research, Vols. 181-182, 2011, pp.712-716
    [79] T. Pan, J. Xie, Y. Shan, et al. Equidistant Five Wavenumbers Selection for NIR Spectroscopy Analysis of Glucose in Human Serum [J]. Advanced Materials Research, Vols. 181-182, 2011, pp.647-650
    [80]尹浩,潘涛,田佩玲,韩筠,等, FTIR/ATR光谱应用于人体血液血红蛋白的快速定量分析[J].光谱实验室, Vol. 26, No. 2, 2009, pp. 431-436
    [81]胡愉华,潘涛,陈星旦,等,甘蔗初压汁近红外光谱分析的波段优选[J].光谱实验室, Vol. 26, No. 1, 2009, pp.90-95
    [82]梁家杰,潘涛,陈星旦,胡愉华,白砂糖色值近红外光谱分析的波段选择[J].红外技术, Vol. 31, No. 2, 2009, pp.90-94
    [83]刘登飞,潘涛,陈洁梅,等,甘蔗清糖浆锤度近红外光谱分析的模型优化[J].光谱实验室, Vol. 27, No. 2, 2010, pp.704-707

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700