用户名: 密码: 验证码:
微污染水源水处理过程中消毒副产物及病毒类微生物变化特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究中采用铜绿微囊藻、铜绿微囊藻EPS、牛白蛋白、腐殖酸、DNA、鱼油和淀粉代表和模拟生物源有机前体物藻、藻EPS、蛋白质、腐殖酸、DNA、脂肪和多糖,通过调节臭氧浓度及溴碘离子浓度考察其消毒副产物生成特性。试验发现不同的生物源模拟化合物在消毒过程中表现出不同的DBPs生成特性。针对THMs而言,随着臭氧投加浓度的升高,铜绿微囊藻EPS和淀粉的TTHMs生成浓度变化不明显;DNA的TTHMs生成浓度随之升高;铜绿微囊藻、牛白蛋白、腐殖酸和鱼油的TTHMs生成浓度随之降低。针对HAAs而言,随着臭氧投加浓度的升高,铜绿微囊藻EPS、鱼油和牛白蛋白的THAAs生成浓度变化不明显;DNA、腐殖酸和铜绿微囊藻的THAAs生成浓度随之升高;淀粉的THAAs生成浓度随之降低。而溴碘离子的投加能够极大地增大各类生物源有机前体物的THMs生成反应活性,溴碘离子投加后生成的TTHMs浓度显著高于未投加时。溴碘离子的投加对生成的HAAs种类和浓度变化无明显影响。在溴离子对NDMA生成的影响试验中发现,溴离子可反应消耗掉一定剂量的臭氧,导致各类生物源有机物的NDMA生成浓度随溴离子投加浓度升高而降低。比较各种生物源前体物模拟化合物的DBPs生成特性表明,铜绿微囊藻及其EPS和腐殖酸普遍具有较其它生物源模拟化合物更高的DBPs前体物浓度,在经消毒反应以及溴碘离子投加后能够产生较其它生物源模拟化合物相对更高的DBPs浓度。
     不同微污染原水处理过程中DBPs生成特性变化试验通过在三种微污染原水处理过程中取样进行臭氧/氯化反应后测定消毒副产物。研究表明,不同微污染原水中均检测到了诸如多糖、腐殖酸、DNA等的生物源物质成分,以及在部分原水中检出了叶绿素a,表明不同微污染原水中微生物及藻类物质的存在,通过与上一章生物源物质的DBPs生成特性比较可知,不同微污染原水中检出的DBPs生成势种类与各种生物源物质的DBPs生成特性相符。臭氧/氯化消毒的THMs生成势浓度显著低于相对应的直接氯化消毒的THMs生成势浓度,因此认为臭氧反应能够有效氧化去除水体中的THMs前体物,降低水体中的THMs生成势浓度。而与此相反的是,臭氧/氯化消毒的HAAs生成势浓度高于相对应的直接氯化消毒的HAAs生成势浓度,表明臭氧对水体中污染物质氧化后的产物,较氧化之前能更为行之有效地与氯反应生成HAAs,臭氧的投加提高了水体中HAAs生成势浓度。混凝沉淀较其它工艺而言能够相对更有效地去除水体中的蛋白质、多糖、腐殖酸和DNA等各类生物源有机前体物,从而达到有效降低THMs和HAAs生成势的目的。但是生物工艺的应用导致了THMs和HAAs生成势浓度的升高,分析发现经过生物工艺处理后水体中蛋白质、多糖、腐殖酸和DNA等生物源有机物浓度增大,究其原因认为可能源于生物处理工艺中细菌等微生物分泌及胞内物质外泄所导致的SMP和EPS。因此可推断生物处理工艺单元中细菌等微生物的存在可能导致水体中SMP和EPS含量的升高,而这些生物源有机物成分是THMs和HAAs重要的前体物,因此生物工艺中微生物分泌及胞内物质外泄所导致的SMP和EPS将可能影响后续消毒过程中DBPs的生成特性,也因此在生物单元的出水中呈现出更高的THMs和HAAs生成势浓度。
     连续流中试试验通过建立一套中试工艺系统进行。尽管采用生物预处理后联接PACS混凝沉淀工艺的流程B中表现出对DBPs前体物替代参数较好的去除性能,但是对于含有高有机物浓度的微污染原水而言,该工艺还是稍显落后,尚不能使出水达到国家饮用水标准。而流程A采用的生物预处理、预臭氧、主臭氧以及活性炭工艺显著提高了系统对微污染源水中有机物的去除性能。研究表明适当的预臭氧浓度能够强化后续的混凝过程对有机物的去除,适当的主臭氧浓度能够促进后续的活性炭滤池对有机物的吸附去除。当流程A中预臭氧浓度为0.5mg/L,主臭氧浓度为2.5mg/L,混凝剂PACS投加剂量为8.9mg/L(以A1203计)时,流程A对微污染原水中COD的去除量能够始终维持在5.0mg/L左右,性能显著高于流程B。因此可推断原水-生物预处理-预臭氧-混凝沉淀-砂滤-主臭氧-活性炭滤池-消毒-出水的工艺流程可有效去除微污染原水中以有机物为表征的DBPs前体物成分,有助于系统对DBPs的控制性能。研究还发现溴碘离子的存在不利于臭氧对病毒微生物的灭活性能,原因在于溴碘离子能与臭氧发生反应,消耗一定剂量的臭氧,相对降低参与病毒灭活的臭氧剂量,从而降低臭氧对病毒微生物的灭活性能。然而溴碘离子的存在可提高氯对病毒的灭活性能,原因在于其可以同氯反应产生较HC10而言更强的卤化剂,增强了对病毒微生物的灭活性能。在连续流中试系统中,当臭氧和氯的投加浓度分别为0.5mg/L和1.0mg/L时,即可高效地去除天然水体中的细菌及病毒类微生物,可较好地保证饮用水的微生物安全性。
     在中国南方某市的三个生产性水厂中调查研究了不同的水厂工艺过程中DBPs和病毒类微生物的变化特性。研究发现在采用常规混凝沉淀工艺、深度两级生物处理工艺以及深度臭氧活性炭工艺的三个水厂的工艺过程中均未能检测到NDMA。CHCl3广泛地存在于A、B两厂的原水中,C厂的原水中未检出任何THMs的存在,在C厂原水中检出的MS2和Phix174噬菌体效价也低于A、B两厂原水,表明C厂的原水所受污染程度较A、B两厂的原水而言更轻。C厂过程中检出TTHMs浓度范围0-7.22pμL;B厂过程中检出TTHMs浓度范围0-24.53μg/L;A厂过程中检出TTHMs浓度范围20.54-48.04μg/L。三个水厂的处理过程中THAAs浓度水平差别不大。三个水厂所采用的不同工艺对包括溴碘代DBPs在内的各类DBPs的控制均不够理想。混凝沉淀工艺对作为DBPs前体物替代参数的UV254和TOC,蛋白质、腐殖酸、DNA和多糖等生物源物质的去除效果相对不够理想,但在MS2和Phix174噬菌体的去除中却表现出了良好的性能。A厂混凝沉淀段对UV254和TOC的去除率分别为22.05%和64.57%,对蛋白质、腐殖酸、DNA和多糖的去除率分别为41.01%、0%、10.45%和98.80%,对MS2和Phix174噬菌体的去除率分别为99.91%和99.86%;B厂混凝沉淀段对UV254和TOC的去除率分别为17.64%和11.89%,对蛋白质、腐殖酸、DNA和多糖的去除率分别为0%、56.31%、13.07%和0%,对MS2和Phix174噬菌体的去除率分别为99.95%和99.94%;C厂混凝沉淀段对UV254和TOC的去除率分别为59.79%和21.32%,对蛋白质、腐殖酸、DNA和多糖的去除率分别为0%、48.08%、2.19%和4.91%,对MS2和Phix174噬菌体的去除率分别为99.33%和99.57%。值得注意的是,在采用了两级生物处理工艺的B水厂中,在生物预处理出水的红外图谱中发现在2956cm-1的位置上出现了一个新的有机物官能团吸收峰,分析认为可能源于生物预处理中细菌等微生物分泌及胞内物质外泄所导致的SMP和EPS。而在之前章节的研究中已经表明水体中存在的各种生物源有机物成分是重要的DBPs前体物,因此生物处理中细菌、藻类等微生物分泌及胞内物质外泄所导致的生物源物质成分对DBPs生成的影响值得重视。
The investigation of the species and concentration of DBPs and their formation potential were conducted with microcystis aeruginosa cell, EPS of microcystis aeruginosa cell, fish oil, DNA, humic acids, starch and bovine serum albumin. There were NDMA precursors in microcystis aeruginosa cell, EPS of microcystis aeruginosa cell, DNA, humic acids and bovine serum albumin, and no NDMA precursors existed in fish oil and starch. With the increase of ozone dose, the variation of THMs which was produced by EPS and starch was insignificant, the concentration of THMs which was produced by DNA increased, the concentration of THMs which was produced by microcystis aeruginosa, fish oil, humic acids and bovine serum albumin decrased, the variation of HAAs which was produced by EPS of microcystis aeruginosa cell, fish oil and bovine serum albumin was insignificant, the concentration of HAAs which was produced by DNA, humic acids and microcystis aeruginosa increased, the concentration of HAAs which was produced by starch decrased. Bromide and iodide increased the reaction activity of biological source material in disinfection process. After bromide and iodide were added, the concentration of TTHMs increased, the variation of HAAs was insignificant.
     The investigation of the species and concentration of DBPs formation potential were conducted with three micropolluted raw water. No NDMA and its formation potential were detected at raw water and the processes of these three drinking water plants. The THMs formation potential which was produced by the combination of ozonation and chlorination was lower than the formation potential which was produced by single chlorination. The results clearly indicated that the THMs precursors were decreased by ozonation efficiently. The HAAs formation potential which was produced by the combination of ozonation and chlorination was higher than the formation potential which was produced by single chlorination. The results clearly indicated that the HAAs precursors were increased by ozonation. The formation potential of THMs and HAAs was removed by coagulation/sedimentation efficiently. However, soluble microbial products (SMP) and extracellular polymeric substances (EPS), the important precursors of THMs and HAAs, were produced by biological technology in water treatment process.
     Optimization of coagulation and ozonation processes for removal of organic matters in micropolluted raw water was conducted by a continuous flow pilot scale test. The water source was mainly influenced by agriculture pollution and inland waterway transportation. Coagulation/sedimentation was not enough to treat the micropolluted raw water with highly concentrated organic matter, and the extra ozonation and granular activated carbon (GAC) filtration were necessary. Proper poly-aluminum-chloride-sulfates (PACS), pre-ozone and post-ozone dosages were required for improving the removal performance of organic matters. Considering the treatment performances and economic costs, we found that the optimum PACS, pre-ozone and post-ozone dosages should be8.9mg/L Al2O3,0.5mg/L and2.5mg/L respectively. At the optimum PACS dose, removal efficiencies of93.28%turbidity,27.76%UV254and38.55%COD were achieved at Train B (the control). At the optimum pre-ozone dose, removal efficiencies of95.65%turbidity,54.81%UV254and58.14%COD were achieved at Train A. At the optimum post-ozone dose, removal efficiencies of97.09%turbidity,71.83%UV254and66.11%COD were achieved at Train A.
     The removal and inactivation of viruses in portable water was conducted in a continuous flow pilot scale system. Bacteriophage MS2was used as model organism for human enteric viruses. The effect of disinfection technologies (single or combination of ozonation and chlorination) and interfering substances (bromide and iodide) on inactivation of viruses, and the removal and inactivation performance of viruses in natural water by the continuous flow pilot scale system were investigated. The results indicated that ozone was more effective in inactivation of viruses than chlorine. The optimum dose of ozone and chlorine was0.5mg/L and1.0mg/L respectively in the combined process of ozonation and chlorination. Bromide and iodide ions in raw water were detrimental to inactivation of viruses by ozone they could consume a certain amount of ozone. However, they enhanced the inactivation of viruses by chlorine, due to the formation of stronger halogenating agent. The continuous flow pilot scale water treatment system was effective in removal of viruses in natural water at optimum conditions, which the dose of ozone and chlorine was0.5mg/L and1.0mg/L respectively.
     The removal of disinfection by-products (DBPs) and viruses at three drinking water plants (A, B and C) in a city of southern China was investigated. Coliphages MS2and Phixl74were used as indicators of viruses. The results clearly indicated that no NDMA were detected at raw water and the processes of these three drinking water plants. CHCl3exsited in the raw water of Plant A and B widely, however, no THMs was detected in the raw water of Plant C. The titer of MS2and Phix174in the raw water of Plant C was lower than Plant A and B. It can be concluded that the pollution of raw water of Plant C was slight, and the pollution of raw water of Plant A and B was serious. The removal efficiency of MS2and Phix174was over99%by conventional coagulation/sedimentation at Plant A, B and C. MS2and Phix174were not detected in the effluent of these three plants. However, the removal efficiency of UV254and TOC by coagulation/sedimentation was only22.05%and64.57%at Plant A,17.64%and11.89%at Plant B,59.79%and21.32%at Plant C respectively. Acorrding to the previous study in this paper SMP and EPS were the important precursors of THMs and HAAs. It is worthwhile to note that a new peak at2956cm-1had emerged in the infrared spectrogram of biological pretreatment effluent of Plant B. This result is presumably due to the SMP and EPS which are related to bacteria metabolism and cell lysis produced in biological filter.
引文
[1]Richardson SD. Water analysis:emerging contaminants and current issuses [J]. Analytical chemistry,2009,81(12):4645-4647.
    [2]Onstad GD, Winberg HS, Kransner SW. Occurrence of halogenated furanones in US drinking waters [J]. Environmental Science & Technology,2008, 42(9):3341-3348.
    [3]Richardson, SD. Formation and occurrence of disinfection by-products [J]. Environmental and Molecular Mutagenesis,2008,49(7):531-538.
    [4]Hrudey S E. Chlorination disinfection by-products, public health risk tradeoffs and me [J]. Water Res,2009,43 (8):2057-2092.
    [5]International programme on chemical safety disinfectants and disinfectant by-products [S]. Environmental Health Criteria 216. World Health Organization, 2000 Gen eva.
    [6]Krasner SW, Weinberg HS, Richardson SD, et al. The occurrence of a new generation of disinfection by-poducts [J]. Environ Sci Technol,2006,40 (23): 7175-7185.
    [7]Boorman GA, Dellarco V, Dunnick JK, et al. Drinking water disinfection byproducts:review and approach to toxicity evaluation [J]. Environ Health Perspect,1999,107 (Supp 11):207-217.
    [8]Krasner SW, Mc Guire MJ, Jacangelo JG, et al. The occurrence of disinfection byproducts in U.S. drinking water [J]. J Am Water Works Assoc,1989,81(8): 41-53.
    [9]Richardson SD. New disinfection by-product issues:emerging DBPs and alternative routes of exposure [J]. Global NEST Journal,2005,7(1):43-60.
    [10]Qin F, Zhao YY, Zhao YL, et al. Atoxic disinfection by-product,2,6-dichloro-1, 4-benzoquinone, identified in drinking water [J]. Angew and te Chemie,2010,49 (4):790-792.
    [11]陈宜菲.我国水环境污染现状及其防治[J].黑龙江科技信息,2008(35):187-188.
    [12]江曙光.中国水污染现状及防治对策[J].现代农业科技,2010,7:313-315.
    [13]FB Daniel. Comparative Sub chronic Toxicity Studies of Three Disinfectants [J]. AWWA.1990,78:61-69.
    [14]陈超,张晓健,韩宏大.顺序氯化消毒控制卫生学指标的效果[J].中国给水排水,2005,21(10):5-8.
    [15]Fenster L, Waller K, WindhamG, et al. Trihalomethane levels in home tap water and semen quality[J]. Epidemiology,2003,14(6):650-658.
    [16]Windham GC, Waller K, Anderson M, et al. Chlorination by-products in drinking water and menstrual cycle function [J]. Environ Health Perspect,2003, 111(7):35-41.
    [17]倪婉敏,张杭君,张建英,姚超英.微囊藻毒素与饮用水消毒副产物复合诱导草鱼淋巴细胞凋亡[J].应用生态学报,2009,20(1):228-232.
    [18]MJ Rodriguez, J Serodes, R Danielle. Formation and fate of haloacetic acids (HAAs) within the water treatment plant [J]. Water Research,2007,41(18): 4222-4232.
    [19]Hunter ES, Roger EH, Schmid JE, et al. Comparative effects of haloacetic acids in whole embryo culture [J].Teratology,1996,54(2):57-64.
    [20]Komulainen H. Carcinogenicity of the drinking water mutagen 3-chloro-4-(dichloromethyl)- 5- hydroxy- 2(5H)- furanone in the rat[J]. J. Nat. Cancer Inst, 1997,89(12):848-856.
    [21]Matsumura H.3- chloro- 4- (dichloromethyl)- 5- hydroxy- 2(5H)- furanone (MX) induces gene mutations and inhibits metabolic cooperation in cultured Chinese hamster cells [J]. Journal of Toxicology and Environmental Health,1994, 43(1):65-72.
    [22]Nishikawa A. Promoting Effects of 3- chloro-4-(dichloromethyl)- 5-hydroxy-2 (5H)-furanone on Rat Glandular Stomach Carcinogenesis Initiated with N-Methyl-N theta- nitro-N-nitrosoguanidine [J].Cancer Research,1999,59(9): 2045-2049.
    [23]Laaksonen M. Enhancement of 3-methylcholanthrene-induced neoplastic transformation by 3 - chloro- 4 - (dichloromethyl) - 5 - hydroxy - 2 (5H)-furanone in the two- stage transformation assay in C3H10T1/2 cells [J]. Archives of Toxicology,2001,75(10):613-617.
    [24]Nunn JW, Chipman JK. Induction of DNA strand breaks by 3-chloro-4-(dichlor-omethyl)- 5- hydroxy-2 (5H)- furanone and humic substances in relation to gluta thione and calcium status in human white blood cells[J].Mutation Research,1994, 341(2):133-140.
    [25]Plewa MJ, Wagner ED, Jazwierska P, et al. Halonitromethane drinking water disinfection byproducts:chemical characterization and mammalian cell cytotoxicity and genotoxicity. Environment Science and Technology,2004,38 (1):62-68.
    [26]D Gerrity, B Mayer, H Ryu, et al. A comparison of pilot-scale photocatalysis and enhanced coagulation for disinfection byproduct mitigation [J]. Water Research, 2009,43(6):1597-1610.
    [27]CS Uyguner, SA Suphandag, A Kerc, et al. Evaluation of adsorption and coagulation characteristics of humic acids preceded by alternative advanced oxidation techniques [J]. Desalination,2007,210(1-3):183-193.
    [28]胡翔,孙治荣,曹雨佳,等.聚硅酸硫酸铁强化混凝去除微污染水源水中天然有机污染物[J].环境科学与管理,2008,33(4):88-94.
    [29]曲久辉,林谡,田宝珍,等.高铁酸盐氧化絮凝去除水中腐殖质的研究[J].环境科学学报,1999,19(5):510-514.
    [30]梁好,韦朝海,盛选军,等.高铁酸盐去除水中消毒副产物前体物的研究[J].环境科学与技术,2004,27(2):66-68.
    [31]林涛,陈卫,王磊磊.臭氧-生物活性炭对南方河网典型污染物的去除特性[J].环境科学,2009,30(5):1397-1401.
    [32]KC Chen, YH Wang, YH Chang. Using catalytic ozonation and biofiltration to decrease the formation of disinfection by-products [J]. Desalination,2009, 249(3):929-935.
    [33]BS Karnik, SH Davies, MJ Baumann, et al. The effects of combined ozonation and filtration on disinfection by-product formation [J]. Water Research,2005, 39(13):2839-2850.
    [34]L Defrance, MY Jaffrin, B Gupta, et al. Contribution of various constituents of activated sludge to membrane fouling [J]. Bioresource Technology,2000,73(2): 105-112.
    [35]RK Henderson, A Baker, SA Parsons, et al. Characterisation of algogenic organic matter extracted from cyanobacteria, green algae and diatoms [J]. Water Research,2008,42(13):3435-3445.
    [36]刘晓飞,马军.臭氧/高锰酸盐复合预氧化控制氯化消毒副产物前质[J].中国给水排水,2006,22(9):1-9.
    [37]张永吉,南军,周玲玲,等.高锰酸钾对水中天然有机物氯化活性的影响[J].环境科学,2006,27(9):1798-1801.
    [38]王世和.生物流化床法预处理受污染的饮用水源[J].环境污染与防治,1990,12(5):27-31.
    [39]刘建广,鲁巍,张晓健,等.利用生物曝气滤池修复受污染水源[J].环境污 染与防治,2004,26(6):461-464.
    [40]宋向阳MBBR和陶粒生物滤池预处理受污染黄河源水研究[J].中国给水排水,2008,24(17):12-15.
    [41]吴为中,王占生.不同生物接触氧化法的净化效果及其生物膜特性的比较[J].环境科学学报,2000,20(增刊):44-50.
    [42]孙治荣,秦媛,张素霞,等.微污染水源水中消毒副产物前体物的去除[J].环境污染与防治,2004,26(5):321-325.
    [43]董秉直,金伟,陈艳,等.生物预处理去除有机物的特点[J].工业水处理,2005,25(6):40-42.
    [44]Y Choi, Y Choi. The effects of UV disinfection on drinking water quality in distribution systems [J]. Water Research,2010,44(1):115-122.
    [45]W Liu, L M Cheung, X Yang, et al. THM, HAA and CNC1 formation from UV irradiation and chlor(am)ination of selected organic waters [J]. Water Research, 2006,40(10),2033-2043.
    [46]魏宏斌,严煦世.氧化法去除水中有机物的研究与应用现状[J].中国给水排水,1996,12(5):19-22.
    [47]JJ Qin, MH Oo, KA Kekre, et al. Reservoir water treatment using hybrid coagulation-ultrafiltraion [J]. Desalination,2006,193(1-3):344-349.
    [48]M Siddiqui, G Amy, J Ryah, et al. Membrane for the control of natural organic matter from surface waters [J]. Water Research,2000,34(13):3355-3370.
    [49]AW Zularisam, AF Ismail, R Salim. Behaviours of natural organic matter in membrane filtration for surface water treatment:a review [J]. Desalination,2006, 194(1-3):211-231.
    [50]Y Tan, JE Kildu, M Kitis, et al. Dissolved organic matter removal and disinfection byproduct formation control using ion exchange [J]. Desalination, 2005,176(1-3):189-200.
    [51]Ⅱ Tumbas, B Dalmacija, Z Tamas, et al. The effect of different drinking water treatment processes on the rate of chloroform formation in the reactions of natural organic matter with hypochlorite [J]. Water Research,1999,33(18): 3715-3722.
    [52]B Bolto, D Dixon, R Eldridge, et al. Removal of natural organic matter by ion exchange [J]. Water Research,2002,36(20):5057-5065.
    [53]A Deepatana, M Valix. Steric hindrance effect on adsorption of metal-organic complexes onto aminophosphonate chelating resin [J]. Desalination,2008, 218(1-3):297-303.
    [54]陈卫,韩志刚,刘成,等.磁性离子交换树脂对原水中有机物去除效能的研究[J].中国环境科学,2009,29(7):707-712.
    [55]Y Tan, J E Kilduff. Factors affecting selectivity during dissolved organic matter removal by anion-exchange resins [J]. Water Research,2007,41(18): 4211-4221.
    [56]张文中,李正兆.粉末活性炭强化处理京杭运河常州段微污染原水[J].中国给水排水,2009,25(3):77-84.
    [57]董秉直,陈艳,高乃云,等.粉末活性炭-超滤膜处理微污染原水试验研究[J].同济大学学报(自然科学版),2005,33(6):777-780.
    [58]刘百仓,韩帮军,马军等.粉末活性炭吸附去除松花江原水中有机物的研究[J].中国给水排水,2008,24(21):38-41.
    [59]张晓健,朱玲侠,陈超,等.组合工艺控制有机物及消毒副产物前体物的特性研究[J].给水排水,2005,31(5):27-32.
    [60]魏守强,刘瑛,王实倩.电化学法处理水中腐殖酸的研究[J].当代化工,2004,33(6):350-353.
    [61]傅剑锋.富里酸光电降解抑制三氯甲烷生成能机理[J].东南大学学报(自然科学版),2006,36(6):972-975.
    [62]张胜华,靳慧征,张奎.超声空化作用于水中天然有机质特性研究[J].声.学技术,2008,27(3):365-368.
    [63]A Chin, P R Berube. Removal of disinfection by-product precursors with ozone-UV advanced oxidation process [J].Water Research,2005,39(10):2136-2144.
    [64]R Toor, M Mohseni. UV-H2O2 based AOP and its integration with biological activated carbon treatment for DBP reduction in drinking water [J]. Chemosphere,2007,66(11):2087-2095.
    [65]张可欣.预臭氧/生物滤池去除消毒副产物的前体物研究[J].中国给水排水,2006,22(15):44-46.
    [66]郭召海,杨敏,张昱,等.预臭氧与后臭氧-生物活性炭联用工艺研究[J].环境科学,2005,26(6):79-83.
    [67]吴红伟,刘文君,王占生.臭氧组合工艺去除饮用水源水中有机物的效果[J].环境科学,2000,21(4):29-33.
    [68]刘海龙,杨栋,赵智勇,等.高藻原水预臭氧强化混凝除藻特性研究[J].环境科学,2009,30(7):1914-1919.
    [69]季民,刘卫华,任智勇,等.新型组合工艺对微污染原水中有机污染物和消 毒副产物前体物的去除[J].水处理技术,2004,30(6):333-337.
    [70]张捍民,张兴文,杨凤林,等.生物陶粒柱-PAC-MBR系统处理饮用水研究[J].大连理工大学学报,2002,42(6):669-673.
    [71]王琳,王宝贞,王欣泽,等.活性炭与超滤组合工艺深度处理饮用水[J].中国给水排水,2002,18(2):1-4.
    [72]李灵芝,王占生.GAC-NF组台工艺处理微污染饮用水的研究[J].水处理技术,2003,29(1):222-224.
    [73]PC Singer, K Bilyk. Enhanced coagulation using a magnetic ion exchange resin [J]. Water Research,2002,36(16):4009-4022.
    [74]MK Korbutowicz, KM Nowak, T Winnicki. Water treatment using MIEXR DOC/ultrafiltration process [J]. Desalination,2006,221(1-3):338-344.
    [75]CJ Johnson, PC Singer. Impact of a magnetic ion exchange resin on ozone demand and bromate formation during drinking water treatment [J]. Water Research,2004,38(17):3838-3850.
    [76]R Zhang, S Vigneswaran, H Ngo, et al. A submerged membrane hybrid system coupled with magnetic ion exchange (MIEXR) and flocculation in wastewater treatment [J]. Desalination,2007,216 (1-3):325-333.
    [77]刘卫华,季民,杨洁,等.高藻水预氧化除藻效能与水质安全性分析[J]中国公共卫生,2005,2](11):1323-1325.
    [78]王丽花,周鸿,张晓健,等.常规工艺对消毒副产物及前体物的去除[J].给水排水,2001,27(4):35-37.
    [79]Heller-Grossman L, Manka J, Limoni-Relis B, et al. Formation and distribution of haloacetic acids, THM and TOX in chlorination of bromide-rich lake water [J]. Water Research,1993,27(8):1323-1331.
    [80]张晓健,李爽.消毒副产物总致癌风险的首要指标参—卤代乙酸[J].给水排水,2000,26(8):1-6.
    [81]沈保红,赵淑华,李景舜,等.饮水中氯化消毒副产物的控制[J].中国卫生工程学,2005,4(2):105-107.
    [82]裴剑,张璐,李伟英.饮用水消毒剂二氧化氯研究进展[J].四川环境,2009,28(3):75-77.
    [83]黄君礼,李海波,毛宁,等.二氧化氯和液氯消毒饮用水致突变性的比较[J].环境化学,1998,17(4):381-387.
    [84]王小文,张晓健,陈超,等.芳香类有机物生成氯化消毒副产物特性及其与化学结构的关系[J].环境科学,2006,27(8):1603-1607.
    [85]Jun Wen Li, Zuobin Yu, Xinpei Cai, et al. Trihalomethanes formation in water treated with chlorine Dioxide [J]. Water Research,1996,30(10):2371-2376.
    [86]王丽莎,张彤,胡洪营.污水氯、二氧化氯消毒处理中水质及毒性变化的比较[J].环境科学,2005,26(6):75-78.
    [87]Liu W, Cheung L M, Yang X, et al. THM, HAA and CNCl formation from UV irradiation and chlor(am)ination of selected organic waters [J]. Water Research, 2006,40(10),2033-2043.
    [88]张永吉,刘文君.紫外线消毒对光复活时大肠杆菌活性的影响[J].中国给水排水,2006,22(17):46-49.
    [89]韩畅,刘绍刚,仇雁翎,等.饮用水消毒副产物分析及相关研究进展[J].环境保护科学,2009,35(1):12-16.
    [90]焦中志,陈忠林,陈杰,等.氯胺消毒对消毒副产物的控制研究[J].哈尔滨工业大学学报,2005,37(11):1486-1495.
    [91]刘静,陈超,张晓健.组合氯化消毒工艺的卤代消毒副产物生成特性[J].环境科学,2009,30(9):2538-2542.
    [92]王家玲,唐非,谷康定,等.饮水中非挥发性有机污染物致突变性的防治对策[J].中国环境科学,1999,19(2):114-118.
    [93]唐非,谷康定,丁建东,等.二氧化氯与氯联合消毒减少消毒副产物[J].中国给水排水,2003,19(11):55-57.
    [94]Kruithof JC, Kamp PC, Martijn BJ. UV/H2O2 treatment:A practical solution for organic contaminant control and primary disinfection [J]. Ozone-Science & Engineering,2007,29(4):273-280.
    [95]于祚斌,蔡心培,周英田,等.简易曝气法去除水中三卤甲烷的研究[J].环境与健康杂志,1994,11(5):206-209.
    [96]叶必雄,王五一,魏建荣,等.饮用水中消毒副产物的消减措施[J].环境化学,2008,27(4):539-540.
    [97]伍海辉,高乃云,万容芳,等.高级氧化技术降解卤乙酸效果及动力学研究[J].哈尔滨工业大学学报,2007,39(12):1974-1978.
    [98]赵世嘏,高乃云,楚文海.UV/H202/微曝气降解三氯乙酸的试验研究[J].给水排水,2009,35(5):139-143.
    [99]Chellam S. Effect of nanofiltration on trihalomethane and haloacetic acid precursor removal and speciation in waters containing low concentrations of bromide ion [J]. Environmental Science & Technology,2000,34(9):1813-1820.
    [100]邹宗柏,吕锡武,孔青春.UV-微03法去除饮用水中CC14的研究[.J].环境 与健康杂志,1997,14(2):54-56.
    [101]李天玉,陈咏梅,刘永康,等.Fe-Si/Mg-Al滤料电化学催化降解饮用水中氯仿的研究[J].中国环境科学,2008,28(6):527-530.
    [102]顾春晖,郑正,杨光俊,等.辐照降解饮用水氯化消毒副产物的研究[J].环境科学与技术,2005,28(2):3-8.
    [103]Souliotis VL, Henneman JR, Reed CD, et al. DNA adduct s and liver DNA replication in rat s during chronic exposure to N-nitrosodimet hylamine (NDMA) and their relationships to the dose-dependence of NDMA hepatocarcinogenesis [J]. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis, 2002,500(1-2):75-87.
    [104]Changha Lee, Jeyong Yoon, Urs Von Gunten. Oxidative degradation of N-nitrosodimethylamine by conventional ozonation and the advanced oxidation p rocess ozone/hydrogen peroxide [J]. Water Research,2007,41(3):581-590.
    [105]Mari Asami, Masami Oya, Koji Kosaka. A nationwide survey of NDMA in raw and drinking water in Japan [J]. Science of the Total Environment,2009, 407(11):3540-3545.
    [106]Kimoto WI, Dooley CJ, Carre J, et al. Nitrosamines in tap water after concentration by a carbonaceous adsorbent [J]. Water Research,1981,15(9): 1099-1106.
    [107]William A Mitch, David L Sedlak. Formation of N-nitrosodimethylamine (NDMA) from dimethylamine during chlorination [J]. Environ Science & Technology,2002,36(4):588-595.
    [108]Choi J, Valentine R L. N-nitrosodimethylamine formation by free chlorine enhanced nitrosation of dimethylamine[J]. Environ Science & Technology, 2003,37(21):4871-4876.
    [109]Lv, Chun Lin, Liu, et al. Theoretical studies on formation of N-nitrosodimethylamine [J]. Journal of Molecular Structure-Theochem,2007, 802(1-3):1-6.
    [110]Keefer LK, Roller PP. N-nitrosation by nitrite ion in neutral and basic medium [J]. Science,1973,181:1245-1247.
    [111]梁闯,徐斌,高乃云,等.氯化消毒副产物NDMA的生成与控制研究进展[J].中国给水排水,2008,24(22):6-11.
    [112]Mitch WA, Sharp JO, Trussell R R, et al. N-nitrosodimethylamine (NDMA) as a drinking water contaminant:a review [J]. Environ Science & Technology, 2003,20(5):389-404.
    [113]Delalu H, Marchand A. Determination desconditions de formation dela formaldehyde dimethylhydrazine asymetrique (FDMH) paroxidation de la dimethylhydrazine asymetrique (UDMH) par la chloramine. Ⅱ. Mecanisme reactionnel de formation de la FDMH formulation et modelisation [J]. Journal of Chemical Physics,1987,84(9):997-1001.
    [114]Junghoon Choi, Stephen E Duirk, Richard L Valentine. Mechanistic studies of N-nitrosodimethylamine (NDMA) formation in chlorinated drinking water [J]. Journal of Environmental Monitoring,2002,4(2):249-252.
    [115]Schreiber IMarie, Mitch Williama. Nitrosamine formation pathway revisited:t he importance of chloramine speciation and dissolved oxygen [J]. Environmental Science & Technology,2006,40(19):6007-6014.
    [116]Schreiber IMarie, Mitch William A. Influence of the order of reagent addition on NDMA formation during chloramination [J]. Environmental Science & Technology,2005,39(10):3811-3818.
    [117]Przemysiaw Andrzejewski, Barbara Kasprzyk-Hordern, Jacek Nawrocki. N-nitrosodimethylamine (NDMA) formation during ozonation of dimethylamine-containing waters [J]. Water Research,2008,42:863-870.
    [118]Przemyslaw Andrzejewski, Jacek Nawrocki. N-nitrosodimethylamine (NDMA) as a product of potassium permanganate reaction with aqueous solutions of dimethylamine (DMA) [J]. Water Research,2009,43:1219-1228.
    [119]William A. Mitch David L. Sedlak. Characterization and Fate of N-Nitrosodimethylamine Precursors in Municipal Wastewater Treatment Plants [J]. Environmental Science & Technology,2004,38(5):1445-1454.
    [120]Gerecke AC, Sedlak DL. Precursors of N-mitrosodimethylamine in natural waters [J]. Environmental Science & Technology,2003,37(7):1331-1336.
    [121]Masami Oya, Koji Kosaka, Mari Asami, et al. Formation of N-nitrosodimethylamine (NDMA) by ozonation of dyes and related compounds [J]. Chemosphere,2008,73:1724-1730.
    [122]Wei-Hsiang Chen, Thomasam Young. NDMA Formation during Chlorination and Chloramination of Aqueous Diuron Solutions [J]. Environmental Science & Technology,2008,42:1072-1077.
    [123]Carsten K Schmidt,Heinz-Jurgen Brauch. N,N-Dimethylsulfamide as Precursor for N-Nitrosodimethylamine (NDMA) Formation upon Ozonation and its Fate During Drinking Water Treatment [J]. Environmental Science & Technology. 2008,42,6340-6346.
    [124]Lee W, Wsterhoff P, Croue JP. Dissolved organic nitrogen as a precursor for chloroform, dichloroacetonit rile, N-nit rosodimet hylamine, and t richloronit romet hane [J]. Environmental Science & Technology,2007,41(15):5485-5490.
    [125]Pehlivanoglu-Mantas E, Sedlak DL. The fate of wastewater-derived NDMA precursors in the aquatic environment [J]. Water Research,2006,40(6): 1287-1293.
    [126]李伟,徐斌,夏圣骥,等.饮用水中溶解性有机氮类化合物的控制研究进展[J].中国给水排水,2009,25(8):22-26.
    [127]李伟,徐斌,夏圣骥,等.DON的水处理特性及生成NDMA潜能的分析[J].中国给水排水,2009,25(17):35-38.
    [128]Chang Ha Lee, Yun Ho Lee, Carsten Schmidt. Oxidation of Suspected N-nitrosodimethylamine (NDMA) precursors by ferrate (V I):kinetics and effect on the NDMA formation potential of natural waters [J]. Water Research, 2008,42(1-2):433-441.
    [129]Tomaszewska M, Mozia S. Removal of organic matter from water by PAC/UF system [J]. Water Research,2002,36(16):4137-4143.
    [130]Yoon Y, Lueptow RM. Removal of organic contaminants by RO and NF membranes [J]. Journal of Membrane Science,2005,261(1-2):76-86.
    [131]Guzzella L, Feretti D, Monarca S. Advanced oxidation and adsorption technologies for organic micropollutant removal from lake water used as drinking water supply [J]. Water Research,2002,36(17):4307-4318.
    [132]Lee S, Lueptow RM. Reverse osmosis filtration for space mission wastewater: membrane p roperties and operating conditions [J]. Journal of Membrane Science,2001,182(4):77-90.
    [133]Lee Changha, Schmidt Carsten, Yoon Jeyong, et al. Oxidation of Nnitrosodimethylamine (NDMA) precursors with ozone and chlorine dioxide:kinetics and effect on NDMA formation potential [J]. Environmental Science & Technology,2007,41(6):2056-2063.
    [134]Klein RG. Calculations measurements on the volatility of N-nitrosamines and their aqueous-solutions [J]. Toxicology,1982,23(2-3):135-147.
    [135]Stefan MI, Bolton JR. UV Direct Photolysis of N-Nitrosodimethylamine (NDMA):Kinetic and Product Study [J]. Helvetica Chimica Acta,2002, 85(5):1416-1426.
    [136]Swaim Paul. Royce Alan, Smith Tim, et al. Effectiveness of UV advanced oxidation for destruction of micro-pollutants [J]. Ozone-Science & Engineering, 2008,30(1):34-42.
    [137]徐冰冰,陈忠林,齐飞,等.紫外光降解水中痕量NDMA的效能研究[J].环境科学,2008,29(7):1908-1913.
    [138]Sharpless C M, Linden K G. Experimental and model comparisons of low-and medium-pressure Hg lamps for the direct and H2O2 assisted UV photodegradation of N-nitrosodimethylamine in simulated drinking water [J]. Environmental Science & Technology,2003,37(9):1933-1940.
    [139]Megan H Plumlee, Martin Reinhard. Photochemical Attenuation of N-Nitrosodimethylamine (NDMA) and other Nitrosamines in Surface Water [J]. Environmental Science Technology,2007,41:6170-6176.
    [140]樊丽琴,杨贤庆,陈胜军,等.光照及温度对N-二甲基亚硝胺和N-二乙基亚硝胺降解的影响研究[J].南方水产,2009,5(3):53-58.
    [141]Jaesang Lee, Wonyong Choi, Jeyong Yoon. Photocatalytic Degradation of N-Nitrosodimethylamine:Mechanism, Product Distribution, and TiO2 Surface Modification [J]. Environmental Science & Technology,2005,39(17): 6800-6807.
    [142]徐冰冰,陈忠林,齐飞,等.UV/03对亚硝基二甲胺降解产物的控制研究[J].环境科学,2008,29(12):3421-3427.
    [143]Hiramoto K, Ryuno Y, Kikugawa K. Decomposition ofN-nitrosamines, and concomitant release of nitric oxide by Fenton reagent under physiological conditions [J]. Mutation Research,2002,520:103-111.
    [144]Quanlin Zhou, Sally McCraven, Julio Garcia, et al. Field evidence of biodegradation of N-Nitrosodimethylamine (NDMA) in groundwater with incidental and active recycled water recharge [J]. Water Research,2009,43: 793-805.
    [145]Yang WC, Gan J, Liu WP, et al. Degradation of N-nitrosodimethylamine (NDMA) in landscape soils [J]. Journal of Environmental Quality,2005,34(1): 336-341.
    [146]Mallik MAB, Tesfai K. Transformation of nitrosamines in soil and invitro by soil-microorganisms [J]. Bulletin of Environmental Contamination and Toxicology,1981,27(1):115-121.
    [147]Jonathan O Sharp, Thomas K Wood, Lisa Alvarez-Cohen. Aerobic Biodegradation of N-Nitrosodimethylamine (NDMA) by Axenic Bacterial Strains [J]. Biotechnology and Bioengineering,2005,89(5):608-618.
    [148]Frierdich AJ, Shapley JR, Strathmann TJ. Rapid reduction of N-nitrosamine disinfection byproducts in water with hydrogen and porous nickel catalysts [J]. Environmental Science & Technology,2008,42 (1):262-269.
    [149]Douglas Gunnison, Mark E. Zappi, Cynthia Teeter, et al. Attenuation mechanisms of N-nitrosodimethylamine at an operating intercept and treat groundwater remediation system [J]. Journal of Hazardous Materials,2000,73 (2):179-197.
    [150]Jinwook Chung, Chang-Hoon Ahn, Zhuo Chen, et al. Rittmann. Bio-reduction of Nnitrosodimethylamine (NDMA) using a hydrogen-based membrane biofilm reactor [J]. Chemosphere,2008,70:516-520.
    [151]Kommineni S, ElaW P, Arnold R G, et al. NDMA treatment by sequential GAC adsorp tion and Fenton2driven destruction [J]. Environmental Engineering Science,2003,20(4):361-373.
    [152]代晓东,鲍旭晨,朱勇军,等.改性活性炭去除水中的二甲基亚硝胺[J].炭素技术,2010,29(2):11-15.
    [153]Plummee MH, Montserrat LM. N-nitrosodimethylamine (NDMA) removal by reverse osmosis and UV treatment and analysis via LC-MS/MS [J]. Water Research,2008,42 (1-2):347-355.
    [154]Eva Steinle-Darling, Marco Zedda, Megan H. et al. Evaluating the impacts of membrane type, coating, fouling, chemical properties and water chemistry on reverse osmosis rejection of seven nitrosoalklyamines, including NDMA [J]. Water Research,2007,41(17):3959-3967.
    [155]Gui L, Gillham RW, Odziemkowski MS. Reduction of N-Nitrosodimethylamine with Granular Iron and Nickel-Enhanced Iron.1. Pathways and Kinetics [J]. Environmental Science & Technology,34(16): 3489-3494.
    [156]Odziemkowski MS, Gui L, Gillham RW. Reduction of N-Nitrosodimethylamine with Granular Iron and Nickel-Enhanced Iron.2. Mechanistic Studies [J]. Environmental Science & Technology,2000,34(16): 3495-3500.
    [157]Matthew G Davie, Kaimin Shih, Federico A Pacheco. Palladium-Indium Catalyzed Reduction of N-Nitrosodimethylamine:Indium as a Promoter Metal [J]. Environmental Science & Technology,2008,42(8):3040-3046.
    [158]Office of Water (4606-M), United State Environmental Protection Agency. Technologies and costs document for the final long term 2 enhanced surface water treatment rule and final stage 2 disinfectants and disinfection byproducts rule. EPA 815-R-05-013[R].2005.
    [159]Hewitt J, Bell D, Simmons GC, et al. Gastroenteritis outbreak caused by waterborne norovirus at a New Zealand ski resort [J].A ppl Environ Microbiol, 2007,73(12):7853.
    [160]Albert MJ, Faruque AS, Faruque SM, et al. Case control study of enteropathogens associated with childhood diarrhea in Dhaka, Bangladesh [J]. Journal of Clinical Microbiology,1999,37 (11):3458-3464.
    [161]Aggarwal R, Krawczynski K. Hepatitis E:an overview and recent advances in clinical and laboratory research [J]. J Gastroenterol Hepatol,2000,15 (1):9-20.
    [162]任金法.饮用水水源污染对人体健康的威胁及安全饮水的对策[J].中国卫生检验杂志,2009,19(4):942-944.
    [163]黄淑华,钟新光.一起水源性诺如病毒感染性腹泻爆发的调查[J].热带医学杂志,2007,7(8):819.
    [164]United State Environmental Protection Agency. Technologies and costs document for the final long term-enhanced surface water treatment rule and final stage disinfectants and disinfection byproducts rule[R]. EPA 815-R-05-013, 2005.
    [165]Gerba CP, Rose JB. International guidelines for water recycling: microbiological considerations [C]. In: Angelakis AN, Paranychianakis NV, Tsagarakis KP. Water science and technology:water supply. England:IWA Publishing,2003,3 (4):311-316.
    [166]World Health Organization. Guidelines for drinking water quality. WHO-WA 675 [S].3 rd Edition,675,2004.
    [167]曾光明,黄瑾辉.三大饮用水水质标准指标体系及特点比较[J].中国给水排水,2003,19(7):30-32.
    [168]European Union. Council directive 98/83/EC on the quality of water intended for human consumption [S]. EU Council Directive 98/83/EC,1998.
    [169]王延勇.我国饮用水水质标准存在的问题及发展方向[1J].职业与健康,2007.11:24-26.
    [170]United State Environmental Protection Agency, National Primary Drinking Water Regulations, (2002) EPA 816-F-09-004.
    [171]白晓慧,张玲,原喆,等.饮用水水质安全性及其保障策略[J].中国公共卫生,2004,20(9):1147-1148.
    [172]Federal Provincial Committee on Environmental and Occupational Health of Canada. Guidelines for Canadian drinking water quality.6th Edition [S]. 96-EHD-196.1996.
    [173]Federalk Provincial Territorial Committee on Health and the Environment of Canada. Guidelines for Canadian drinking water quality summary table[S].2008.
    [174]National Health and Medical Research Council and Natural Resource Management Ministerial Council of Australian Government. Australian Drinking water guidelines [S]. ISBN On line:1864961244,2004.
    [175]中华人民共和国卫生部,国家标准化管理委员会.生活饮用水卫生标准[S].GB5749-2006.2006.
    [176]张岚,陈昌杰,陈亚妍.我国生活饮用水卫生标准[J].中国公共卫生,2007,23(11):1281-1282.
    [177]梅尔(著),张甲耀(译).环境微生物学[M].下册:北京:科学出版社,2004:657-658.
    [178]李梅,胡洪营.F-RNA噬菌体及其作为水中肠道病毒指示物的研究进展[J].生态环境,2005,14(4):585-589.
    [179]李梅,胡洪营.噬菌体作为水中病毒指示物的研究进展[J].中国给水排水,2005,21(2):23-26.
    [180]Havelaar AH. Bacteriophages as models of enteric viruses in the environment [J]. ASM News,1993,59:614-619.
    [181]IAWPRC Study Group on Health Related Water Microbiology. Bacteriophages as model viruses in water quality control [J]. Water Research,1991,25 (5): 529-545.
    [182]Casteel MJ, Schmidt CE, Sobsey MD. Chlorine disinfection of produce to inactivate hepatitis A virus and coliphage MS2 [J]. International Journal of Food Microbiology,2008,125 (3):267-273.
    [183]United States Environmental Protection Agency. Method 1601:Male specific (F+) and somatic coliphage in water by two-step enrichment procedure[S]. EPA 821-R-01-030,2001.
    [184]United States Environmental Protection Agency. Method 1602:Male specific (F+) and somatic coliphage in water by single agar layer (SAL) procedure [S]. EPA821-R-01-029,2001.
    [185]陆德源.医学微生物学(第三版)[M].北京:人民卫生出版社,1991:268.
    [186]Farahbakhsh K, Smith DW. Removal of coliphages in secondary effluent by microfiltration- mechanisms of removal and impact of operating parameters [J]. Water Res,2004,38(3):585-592.
    [187]梅尔(著),张甲耀(译).环境微生物学[M].下册:北京:科学出版社,2004:733-734.
    [188]Hsu Y. Resistance of infectious RNA and transforming DNA to iodine which inactivates f2 phage and cells [J]. Nature,1964,203(494):152-153.
    [189]Cramer WN, Kawata K, Kruse WK. Chlorination and iodination of poliovirus and f2 [J]. J Wat Poll Con Fed,1976,48 (1):61-76.
    [190]Alvarez ME, O'Brien RT. Mechanisms of inactivation of poliovirus by chlorine dioxide and iodine [J]. Appl Environ Microbiol,1982,44(8):1064-1071.
    [191]李志.消毒剂杀灭噬菌体φX174效果及机理的初步研究[D],硕士学位论文.四川:四川大学公共卫生学院,2001:21-22.
    [192]Brion GM, Silverstein J. Iodine disinfection of a model bacteriophage, MS2, demonstrating apparent rebound [J]. Water Res,1999,33(1):169-179.
    [193]Office of Water (4606-M), United State Environmental Protection Agency. Technologies and costs document for the final long term 2 enhanced surface water treatment rule and final stage 2 disinfectants and disinfection byproducts rule. EPA 815-R-05-013 [R].2005.
    [194]Tyrrell SA, Rippey SR, Watkins WD. Inactivation of bacterial and viral indicators in secondary sewage effluents, using chlorine and ozone [J]. Water Res,1995,29(11):2483-2490.
    [195]Straub TM, Gerba CP, Zhou X, et al. Synergistic inactivation of Escherichia coli and MS2 coliphage by chloramine and cupric chloride [J]. Water Res,1995, 29(3):811-818.
    [196]Meng QS, Gerba CP. Comparative inactivation of enteric adenoviruses, poliovirus and coliphages by ultraviolet irradiation [J]. Water Res,1996,30(11): 2665-2668.
    [197]Sommer R, Pribil W, Appelt S, et al. Inactivation of bacteriophages in water by means of non-ionizing (UV-253.7 nm) and ionizing (Gamma) Radiation:a comparative approcach [J]. Water Res,2001,35(13):3109-3116.
    [198]陈昭斌.噬菌体作指示病毒用于消毒效果评价的研究[D],博士学位论文四川:四川大学,2006.
    [199]Koiyunen J, Heinonen-Tanski H. Inactivation of enteric microorganisms with chemical disinfectants, UV irradiation and combined chemical/UV treatment [J]. Water Res,2005,39(8):1519-1526.
    [200]王炜红,陈微娜,葛洪,等.多种消毒剂对病毒灭活效果的实验研究[J].中国感染控制杂志,2005,4(4):301-304.
    [201]Office of Drink Water, United States Environmental Protection Agency. The guidance manual for compliance with the filtration and disinfection requirements for public water systems using surface water sources. EPA 68-01-6989[R).1990.
    [202]郭美婷,胡洪营,李莉.污水紫外线消毒工艺的影响因素研究[J].中国环境科学,2007,27(4):534-538.
    [203]张永吉,刘文君.浊度对紫外灭活大肠杆菌和MS2噬菌体的影响[J].中国给水排水,2006,22(1):27-31.
    [204]Butkus MA, Talbot M, Labare MP. Feasibility of the silver-UV process for drinking water disinfection [J]. Water Res,2005,39(20):4925-4932.
    [205]骆文静,张进,胡艳冰.铜离子加银离子与游离氯协同灭活水中病毒效果的试验观察[J].中国消毒学杂志,1998,15(1):18-20.
    [206]谷康定,唐非,谭铁强,等.饮水消毒剂对水中指示菌和病毒的灭活及消毒副产物生成的影响[J].应用与环境生物学报,2003,9(3):293-297.
    [207]Conroy RM, Elmore-Meegan M, Joyce T, et al. Solar disinfection of drinking water and diarrhea in Maasai children:a controlled field trial [J]. Lancet,1996, 348(9043):1695-1697.
    [208]Sinton LW, Hall CH, Lynch PA, et al. Sunlight inactivation of fecal indicator bacteria and bacteriophages from waste stabilization pond effluent in fresh and saline waters [J]. Appl Environ Microbiol,2002,68(3):1122-1131.
    [209]Davies CM, Roser DJ, Feitz AJ, et al. Solar radiation disinfection of drinking water at temperate latitudes:Inactivation rates for an optimized reactor configuration [J]. Water Res,2009,43(3):643-652.
    [210]Drees KP, Abbaszadegan M, Maier RM. Comparative electrochemical inactivation of bacteria and bacteriophage [J]. Water Research,2003,37(10): 2291-2300.
    [211]C. Chen, X.J. Zhang, L.X. Zhu, J. Liu, W.J. He and H.D. Han, Disinfection by-products and their precursors in a water treatment plant in North China: Seasonal changes and fraction analysis, Sci. Total Environ.,397 (2008) 140-147.
    [212]A. Nasser, D. Weinberga, N. Dinoora, B. Fattala and A. Adina, Removal of hepatitis a virus (HAV), poliovirus and MS2 coliphage by coagulation and high rate filtration, Water Sci. Technol., 31 (1995) 63-68.
    [213]K. Kiyoshi, N. Kazuyuki and M. Yasumoto, Coliphage rejection under ultramembrane filtration, Desalination,106 (1996) 89-97.
    [214]S. Chowdhury, P. Champagne, P.J. McLellan, Uncertainty characterization approaches for risk assessment of DBPs in drinking water:a review, J. Environ. Manage.,90 (2009) 1680-1691.
    [215]JC. Lou, TW. Chang and CE. Huang, Effective removal of disinfection by-products and assimilable organic carbon:an advanced water treatment system, J. Hazard. Mater.,172 (2009) 1365-1371.
    [216]Hong H C, Mazumder A, Wong M H, Liang Y. Yield of trihalomethanes and haloacetic acids upon chlorinating algal cells, and its prediction via algal cellular biochemical composition [J]. Water Research,2008,42(20):4941-4948.
    [217]Plummer JD, Edzwald JK. Effect of ozone on algae as precursors for trihalomethane and haloacetic acid production [J]. Environmental Science & Technology,2001,35(18):3661-3668.
    [218]Oliver BG, Shindler DB. Trihalomethanes from the chlorination of aquatic algae [J]. Environmental Science & Technology,1980,14(12):1502-1505
    [219]方晶云,马军,王立宁等.臭氧预氧化对藻细胞及胞外分泌物消毒副产物生成势的影响[J].环境科学.2006,27(6):1127-1132.
    [220]Huang J, Graham N, Templeton M R, Zhang Y, Collins C, Nieuwenhuijsen M. A comparison of the role of two blue-green algae in THM and HAA formation [J]. Water Research,2009,43 (12):3009-3018.
    [221]刘翔,黄映恩,刘燕,代瑞华.活性污泥和生物膜的胞外聚合物提取方法比较[J].复旦学报(自然科学版,2011,50(5):556-562.
    [222]Rittmanna BE, Stilwella D, Garsidea JC, Amy GL, Spangenbergc C, Kalinskyc, A and Akiyoshi E. (2002). Treatment of a colored groundwater by ozone-biofiltration:pilot studies and modeling interpretation. Water Res.,36, 3387-3397.
    [223]Singer PC. (1994). Control of disinfection by-products in drinking water. J. Environ. Eng. ASCE,120(4),727-744.
    [224]Nishjima W, Kim WH., Shoto E. and Okada M. (1998). The performance of an ozonation-biological activated carbon process under long term operation. Water Sci. Technol.,38(6),163-169.
    [225]Xie, S. G, Shi, D. W., Wen, D. H., Wang, R. and Xi, D. L. (2007). "Control of bromate and THM precursors using ozonation combined system". Biomed. Environ. Sci.,20,217-225.
    [226]Chiang, P. C., Chang, E. E., Chang, P. C. and Huang, C. P. (2009). "Effects of pre-ozonation on the removal of THM precursors by coagulation". Sci. Total Environ.,407,5735-5742.
    [227]Kim, W. H., Nishjima, W., Shoto, E. and Okada, M. (1997). Pilot plant study on ozonation and biological activated carbon process for drinking water treatment. Water Sci. Technol.,35(8),21-28.
    [228]Tskeuchi, Y., Mochidzuki, K., Matsunobu, N., Kojima, R., Motohashi, H. and Yoshimoto, S. (1997). Removal of organic substances from water by ozone treatment followed by biological activated carbon treatment. Water Sci. Technol., 35(7),171-178.
    [229]Office of Research and Development, United Stated Environmental Protection Agency. USEPA manual of methods for virology [M]. Washington D.C.:United Stated Environmental Protection Agency,1984:Chapter 14,14-1.
    [230]M.R. Karim, E.R. Rhodes, N. Brinkman, L. Wymer and G.S. Fout, New electropositive filter for concentrating enteroviruses and noroviruses from large volumes of water, Appl. Environ. Microbiol.,75 (2009) 2393-2399.
    [231]Hua G, Reckhow DA, Kim J. Effect of bromide and iodide ions on the formation and speciation of disinfection byproducts during chlorination [J]. Environmental Science & Technology,2006,40(9):3050-3056.
    [232]APHA. Standard Methods for the Examination of Water and Wastewater,20th [M]. Washington DC, USA:American Public Health Association/American Water Works Association/Water Environment Federation,1998.
    [233]U.S. Environmental Protection Agency,2003. Method 552.3:Determination of Haloacetic Acids and Dalapon in Drinking Water by Liquid-Liquid Microextraction, Derivatization, and Gas Chromatography with Electron Capture Detection. EPA815-B-03-002. Revision 1.0.
    [234]陈忠林,徐冰冰,齐虹,等.高效液相色谱测定水中痕量亚硝基二甲胺[J].中国给水排水,2007,23(8):84-87.
    [235]国家环境保护总局《水和废水监测分析方法》编委会.水和废水检测分析 方法[M].4版:增补版.北京:中国环境科学出版社,2002.
    [236]中华人民共和国建设部.CJ/T3028臭氧发生器臭氧浓度、产量、电耗的测量标准.1994:2-94.
    [237]Jang A, Kim S M, Kim S Y, Lee S G, Kim I S. Effect of heavy metals (Cu, Pb, and Ni) on the compositions of EPS in biofilms [J]. Water Science and Technology,2001,43(6):41-48.
    [238]Comte S, Guibaud G, Baudu M. Relations between extraction protocols for activated sludge extracellular polymeric substances (EPS) and complexation properties of Pb and Cd with EPS Part Ⅱ. Consequences of EPS extraction methods on Pb2+ and Cd2+ complexation [J]. Enzyme and Microbial Technology, 2006,38(1-2):246-252.
    [239]Gaudy A F. Colorimetric determination of protein and carbohydrate [J]. Ind Water Wastes,1962,7(4):17-22.
    [240]British Standards Institution, Water quality-Part 1:Detection and enumeration of bacteriophages — Enumeration of F-specific RNA bacteriophages, (2001) BS EN ISO 10705-1.
    [241]Ying-Xue Sun, Qian-Yuan Wu, Hong-Ying Hu, Jie Tian. Effect of bromide on the formation of disinfection by-products during wastewater chlorination, Water research 43 (2009) 2391-2398.
    [242]Jacangelo, J.G., DeMarco, J., Owen, D.M. and Randtke, S.J. (1995). "Selected processes for removing NOM:An overview". J. Am. Water Works Assoc.,87(1), 64-77.
    [243]Benschoten, J.E.V. and Edzwald, J.K. (1990). "Chemical aspects of coagulation using aluminum salts-II. coagulation of fulvic acid using alum and polyaluminum chloride". Water Res.,24(12),1527-1535.
    [244]Gao, B.Y., Abbt-Braun, G. and Frimmel, F. H. (2006). Preparation and evaluation of polyaluminum chloride sulfate (PACS) as a coagulant to remove natural organic matter from water. Acta hydroch. hydrob.,34,491-497.
    [245]Selcuk, H., Vitosoglu, Y, Ozaydin, S. and Bekbolet, M. (2005). Optimization of ozone and coagulation processes for bromate control in Istanbul drinking waters. Desalination,176(1-3),211-217.
    [246]Bolton, D.C., Zee, Y.C., Osebold, J.W.,1982. The biological effects of ozone on representative members of five groups of animal viruses. Environ. Res.27, 476-484.
    [247]Kim, C.K., Gentile, D.M., Sproul, O.J.,1980. Mechanism of ozone inactivation of bacteriophage f2. Appl. Environ. Microbiol.39 (1),210-218.
    [248]Finch, G.R., Fairbaim, N.,1991. Comparative inactivation of poliovirus type 3 and MS2 coliphage in demand-free phosphate buffer by using ozone. Appl. Environ. Microbiol.57,3121-3126.
    [249]Shin, G.A., Sobsey, M.D.,2003. Reduction of norwalk virus, poliovirus 1, and bacteriophage MS2 by ozone disinfection of water. Appl. Environ. Microbiol.69, 3975-3978.
    [250]Yavich, A. A. and Masten, S. J. (2003). Use of ozonation and FBT to control THM precursors. J. Am. Water Works Assoc.,95(4),159-171.
    [251]U.V. Gunten. Ozonation of drinkingwater:Part Ⅱ. Disinfection and by-product formation in presence of bromide, iodide or chlorine, Water Research 37 (2003) 1469-1487.
    [252]Symons, J. M.; Krasner, S. W.; Simms, L. A.; Sclimenti, M. Measurement of THM and precursor concentrations revisited:the effect of bromide ion. J.sAm. Water Works Assoc.1993,85,51-62.
    [253]Bichsel, Y.; von Gunten, U. Formation of iodo-trihalomethanes during disinfection and oxidation of iodide-containing waters. Environ. Sci. Technol. 2000,34,2784-2791.
    [254]Richardson, S.D., Thruston, A.D., Rav-Acha, C., Groisman, L., Popilevsky, I. and Juraev, O.:2003, Tribromopyrrole, brominated acids, and other disinfection byproducts produced by disinfection of drinking water rich in bromide, Environmental Science & Technology 37,3782-3793.
    [255]Uyguner, C.S., Bekbolet, M. and Selcuk, H. (2007). "A comparative approach to the application of a physico-chemical and advanced oxidation combined system to natural water samples". Sep. Sci. Technol.,42(7),1405-1419.
    [256]Camel, V. and Bermond, A. (1998). The use of ozone and associated oxidation processes in drinking water treatment. Water Res.,32(11),3208-3222.
    [257]Becker, W.C. and O'Melia, C.R. (1996). Ozone, oxalic acid, and organic matter molecular weight—Effects on coagulation. Ozone Sci. Eng.,18,311-324.
    [258]Rueter, J. and Johnson, R. (1995). The use of ozone to improve solids removal during disinfection. Aquacult. Eng.,14(2),123-141.
    [259]Odegaard, H., Brattebo, H., Eikebrokk, B. and Thorsen, T. (1986). Advanced techniques for the removal of humic substances in potable water. Water Supply,4, 129-158.
    [260]Jammes, C., Hochereau, C. and Bruchet, A. (1994). Occurence and behaviour of some disinfection by-products during drinking water treatment processes including an ozonation step. In Proceedings of the first International Research Symposium on Water Treatment By-Products, Poitiers, France,29-30 September, Vol. 1,pp.10.1-10.17.
    [261]De Laat, J., DoreA, M. and Mallevialle, J. (1991). Effects of preozonation on the adsorbability and the biodegradability of aquatic humic substances and on the performance of granular activated carbon filters. Water Res.,25(2),151-164.
    [262]R. Aronino, C. Dlugy, E. Arkhangelsky, S. Shandalov, G. Oron, A. Brenner, V. Gitis, Removal of viruses from surface water and secondary effluents by sand filtration, Water Res.43 (2009) 87-96.
    [263]WHO, Water and Sanitation:Facts and Figures (On-line). Available from: http://www.who.int/water_sanitation_health/General/factsandfigures.htm,2002.
    [264]W.R. Mackenzie, N.J. Hoxie, M.E. Proctor, M.S. Gradus, K.A. Blair, A Massive outbreak in milwaukee of cryptosporidium infection transmitted through the public water-supply, New Eng. J. Med.331 (1994) 161-167.
    [265]Tropical Disease News. Posted online on November 26,2008, http://www.medindia.net/news/Cholera-Deaths-in-Zimbabwe-Rises-to-53-UN-44488-1.htm.
    [266]U.D. Parashar, J.S. Bresee, J.R. Gentsch, R.I. Glass, Rotavirus, Emerg. Infect. Dis.4(1998)561-570.
    [267]S. Skraber, B. Gassiolloud, L. Schwartzbrod, C. Gantzer, Survival of infectious Poliovirus-1 in river water compared to the persistence of somatic coliphages, thermotolerant coliforms and Poliovirus-1 genome, Water Res.38 (2004) 2927-2933.
    [268]A.C. Espinosa, R. Espinosa, L. Maruri-Avidal, E. Mendez, M. Mazari-Hiriart, C.F. Arias, Infectivity and genome persistence of rotavirus and astro virus in drinking and irrigation water. Water Res.42 (2008) 2618-2628.
    [269]H. Leclerc, S. Edberg, V. Pierzo, Delattre JM. Bacteriophages as indicators of enteric viruses and public health risk in groundwaters, J. Appl. Microbiol.88 (2000)5-21.
    [270]N. Buras, Y. Kott, Bacteriophage as an indicator for the estimation of water pollution, Israel Journal of Medical Science 2 (1966) 660.
    [271]Y. Kott, N. Roze, S. Sperber, N. Betzer, Bacteriophages as viral pollution indicators, Water Res.8 (1974) 165-171.
    [272]M.M. Elabagy, B.J. Dutka, M. Kamel, Incidence of coliphage in potable water supplies, Appl. Environ. Microb.54 (1988) 1632-1633.
    [273]P. Gehringer, H. Eschweiler, H. Leth, W. Pribil, S. Pfleger, A. Cabaj, T. Haider, R. Sommer, Bacteriophages as viral indicators for radiation processing of water:a chemical approach, Appl. Radiat. Isot.58 (2003) 651-656.
    [274]J.J. Rook, Formation of haloforms during chlorination of natural water, Water Treatment Examination 23 (1974) 234-243.
    [275]R.E. Rathbun, Disinfection Byproduct Yields from the Chlorination of Natural Waters, Arch. Environ. Contam. Toxicol.31(1996) 420-425.
    [276]S.D. Richardson, Disinfection by-products and other emerging contaminants in drinking water, Trends Anal. Chem.22 (2003) 666-684.
    [277]H.H. Chang, H.H. Tung, C.C. Chao, G.S. Wang, Occurrence of haloacetic acids (HAAs) and trihalomethanes (THMs) in drinking water of Taiwan, Environ. Monit. Assess.162 (2010) 237-250.
    [278]W.D. King, L.D. Marrett, Case-control study of bladder cancer and chlorination by-products in treated water (Ontario, Canada), Cancer Causes Control 7 (1996) 596-604.
    [279]K. Waller, S.H. Swan, G. DeLorenze, B. Hopkins, Trihalomethanes in drinking water and spontaneous abortion, Epidemiology 9 (1998) 134-140.
    [280]S. Rehan, J.R. Manuel, Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence:a review, Sci. Total Environ.321 (2004) 21-46.
    [281]Singer, P.C., Chang. S.D., Correlations between trihalomethanes and total organic halides formed during water treatment, J. Am. Water Works Assoc.81 (1989),61-65.
    [282]U. Iriarte-Velasco, J.I. Alvarez-Uriarte and J.R. Gonzalez-Velasco, Enhanced coagulation under changing alkalinity-hardness conditions and its implications on trihalomethane precursors removal and relationship with UV absorbance, Sep. Purif. Technol.,55 (2007) 368-380.
    [283]D.A. Reckhow, P.C. Singer and R.L. Malcolm, Chlorination of humic materials-by-product formation and chemical interpretations, Environ. Sci. Technol.,24 (1990) 1655-1664.
    [284]Singer P.C., Humic substances as precursors for potentially harmful disinfection by-products, Water Sci. Technol.,40 (1999) 25-30.
    [285]H.H. Chang, H.H. Tung, C.C. Chao and GS. Wang, Occurrence of haloacetic acids (HAAs) and trihalomethanes (THMs) in drinking water of Taiwan, Environ. Monit. Assess.,162 (2010) 237-250.
    [286]M.J. Plewa, E.D. Wagner, S.D. Richardson, A.D. Thruston, Y. Woo and A.B. McKague, Chemical and biological characterization of newly discovered iodoacid drinking water disinfection byproducts, Environ. Sci. Technol.,38 (2004)4713-4722.
    [287]J. Reungoat, M. Macova, B.I. Escher, S. Carswell, J.F. Mueller and J. Keller, Removal of micropollutants and reduction of biological activity in a full scale reclamation plant using ozonation and activated carbon filtration, Water Res.,44 (2010) 625-637.
    [288]V. Gitis, R.C. Haught, R.M. Clark and K.E. Radha, Depressed filtration ripening enhances removal of Cryptosporidium parvum, Water Sci. Technol.:Water Supp., 2(2002) 159-168.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700