用户名: 密码: 验证码:
饮用水组合氯化消毒工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究的目的是完善短时游离氯后转氯胺的顺序氯化消毒工艺,在此基础上研究多点顺序氯化消毒工艺,探索有效控制微生物和消毒副产物的组合消毒工艺。
     通过实验室配置菌悬液进行顺序氯化消毒试验的结果表明:在微生物安全性方面,短时游离氯后转氯胺的顺序氯化消毒工艺对水中常见易灭活的大肠杆菌、较难灭活的金黄色葡萄球菌和铜绿假单胞菌都有协同灭活效果,对游离氯极难灭活的枯草芽孢没有协同灭活效果,这和以前的研究结果是不同的。在消毒副产物控制特性研究方面,研究结果表明顺序氯化消毒工艺在出厂和管网停留时间内,卤代消毒副产物的生成量都远低于游离氯消毒。
     研究结合水厂消毒剂投加经验和短时游离氯后转氯胺的顺序氯化消毒工艺提出了多点顺序氯化消毒工艺。对腐殖酸配水和实际原水进行消毒试验的结果表明,多点顺序氯化消毒工艺可以更加有效地保障饮用水微生物和消毒副产物安全。滤前滤后“两点加氯后转氯胺的顺序氯化消毒工艺”是多点顺序氯化消毒工艺在水厂的实际应用,该工艺在过滤工艺前投加一定量的游离氯,在清水池补投加氯后,立即进行加氨转化。研究通过中试确定了该工艺的使用参数,工艺满足微生物安全性控制、消毒副产物生成量控制和水处理工艺保障三重控制的效果,解决了传统预加氯消毒副产物生成量高,单点顺序氯化加氯点在过滤工艺后,无法保证过滤工艺稳定运行的问题。
     在国内水处理领域,首次采用荧光染色和流式细胞技术进行饮用水中的活菌计数和消毒灭活机理的研究。研究发现,该方法可以准确快捷地检测水中细菌的浓度。对消毒剂灭活机理的研究结果发现氯和氯胺灭活微生物的凋亡过程存在明显差异,游离氯消毒对细胞膜破坏迅速彻底,而氯胺对细胞的破坏是一个缓慢渐进过程。细胞灭活的不同阶段,包括活、死、早期凋亡和晚期凋亡可以通过流式细胞仪的凋亡分析精确区分。
The object of this thesis research is to improve the short-term free chlorine plus chloramines disinfection process, based on this study multi-point sequential chlorination process is established and studied. A combined disinfection process, which is effective to control both microorganisms and disinfection by-product(DBPs), is explored by changing the chlorine and chloramines disinfectant dosing points, the dosage dose, time and other factors.
     It has been found that short-term chlorine disinfection and chloramines disinfection had synergetic effect on microorganism inactivation. This study focused on the difference of synergetic effect with different kinds of microorganism. The inactivation efficiency of sequential chlorination process on E.coli, S. aureus and P. aeruginosa was better than that of free chlorination or monochloramination of same available chlorine dosage individually, which means the existence of synergetic effect on these bacteria. However, this synergetic effect did not exist with the sequential chlorination on the spore of Bacillus subtilis. The investigation of DBPs at the effluent of water plant and the long residence time within the distribution system showed that sequential chlorination process generated far less halo-DBPs than free chlorine disinfection.
     The study of multi-point sequential chlorination process was based on sequential chlorination process and disinfectant dosage experiences of water plants. Experiments carried with both laboratory water and actual water showed that changing disinfectants dosing points and dosage dose could effectively reduce DBPs formation. At the same time, the advantages of sequential chlorination process on microorganisms and DBPs still worked well. These two aspects ensured the multi-point sequential chlorination process be a more safe disinfection.
     Two-points-short-term free chlorine plus chloramines disinfection process was used in conventional treatments of water supply as one of the multi-point sequential chlorination process. The process is adding chlorine at the start of filtration and clear well respectively and immediately adding ammonia to change the chlorine to chloramines in clear well. The point of chlorine dosing move up to the filtration process can decrease disinfection by-product yield and control bio-film growth in filtration process. HPC result also showed advantage in microorganism controlling.
     Fluorescence staining and flow cytometry (FCM) was first used in drinking water disinfection in this study. The cell concentration of microorganisms could be detected easily and accurately by fluorescence staining and FCM. Microorganism inactivation mechanism of chlorine and chloramines was found obviously different in apoptosis testing by FCM. Chlorine completely and rapidly destructed the cell membrane of bacteria, while chloramines’destruction was a slow and gradual process. Different periods of bacteria’s survivals, e.g. live, dead, early apoptosis and late apoptosis, could be detected.
引文
[1]许保玖.给水处理理论.北京:中国建筑工业出版社, 2000: 460-486.
    [2]陈超.短时游离氯后转氯胺的顺序消毒法微生物安全性评价.清华大学博士学位论文. 2005,6.
    [3] Rook, J.J. Formation of Haloforms during Chlorination of Natural Water. WaterTreatment and Examination. 1974.23(2): 234-243.
    [4] White, G.C. Handbook of Chlorination and Alternative Disinfectants. Vol. 3. VanNostrand Reinhold Co. New York, NY. 1992.
    [5] Langlais B., D.A.Rechhow, and D.R. Brink (editors).1991.Ozone in Drinking Water Treatment: Application and Engineering. AWWARF and lewis Punlishers, Boca Raton, FL.
    [6] D. Schoenen. Role of disinfection in suppressing the spread of pathogens with drinking water: possibilities and limitations. Wat Res., 2002, 36: 3874~3888.
    [7]王占生,刘文君.我国给水深度处理应用发展近况与存在问题.见:全国深度处理研究会2004年年会论文集.济南: 2004.
    [8] USEPA, The community water systems survey. American Washington DC: Office of Water, EPA, 1997.
    [9] Chen C, Zhang X J, Zhu L X, et al .Disinfection by-products and their precursors in a water treatment plant in North china: seasonal changes and fraction analysis. Sci Total Environ, 2008, 397(6): 140-147.
    [10]吴一蘩,高乃云,乐林生.饮用水消毒技术.北京:化学工业出版社, 2006: 17-131.
    [11] Chen-yu Chang, Yung-hsu Hsieh, Sheng-Sheng Hsu, Po-yu Hu, and Kuo-hua Wang.The formation of disinfection by-products in water treated with chlorine dioxide.Journal of Hazardous Materials, 2000, 79: 89-102.
    [12]黄君礼,李绍峰,崔崇威.饮用水消毒剂ClO2的研究进展.哈尔滨建筑工业大学学报, 2001, 34(5):39-43.
    [13]邹启光,关小红.二氧化氯替代液氯消毒剂的可行性研究.净水技术, 2002, 21(3):13-16.
    [14] Collivignarelli C, Sorlini S. AOPs with ozone and UV radiation in drinking water: contaminants removal and effects on disinfection byproducts formation. Water Science and Technology, 2004, 49 (4): 51-56.
    [15] Jennifer L. Clancy, Karl G. Linden, and Randi M. McCuin. Cryptosporidium occurrence in wastewaters and control using UV disinfection. IUVA news. 2004, 6(3):10-14.
    [16] G. Elliott Whitby and O. Karl Scheible. The history of UV and wastewater. IUVA news, 2004, 6(3): 15-26.
    [17] Chick H. Investigation of the laws of disinfection. J. Hygiene. 1908, 8:92.
    [18] Watson H E. A note on the variation of the rate of disinfection with change in the concentration of the disinfectant. J.Hygiene, 1908, 8:538.
    [19] James, C. P., Hallam, N. B., et al. Factors which control bulk chlorine decay rates. Wat Res., 2000, 34(1):117-126.
    [20] Hua F. West J R. Barker R A. and Forster C F. Modelling of chlorine decay in municipal water supplies. Wat Res., 1999, 33(12):2735-2746.
    [21] Jadas-He?cart, A., El Moher, A., Stitou, M., Bouillot, P. and Legube, B. The chlorine demand of treated water. Wat Res., 1992, 26(8):1073-1084.
    [22] Nicholas, B.H, Hua, F., West, J. R., et al. Bulk decay of chlorine in water distribution systems. Journal of water resources planning and management, 2003, 129(1):78-81.
    [23]唐峰.给水管网中一氯胺消耗特性的研究.清华大学硕士学位论文. 2006,6.
    [24] Demers L D. and R Renner. Alternative disinfectant technologies for small drinking water systems. AWWARF. Denver, CO. 1992.
    [25] J. J. Rook. Formation of haloforms during chlorination of natural water. Water Treatment and Examination. 1974, 23:234~236.
    [26] T. A. Bellar, J. J. Lichtenburg, et al. The occurrence of organohalides in chlorinated drinking water. J AWWA. 1974, 66(12): 703~708.
    [27] D. Schoenen. Role of disinfection in suppressing the spread of pathogens with drinking water: possibilities and limitations. Wat Res., 2002, 36: 3874~3888.
    [28] Richardson SD, Thruston AD, Rav-Acha C, Groisman L, Popilevsky I, Juraev O, Glezer V, McKague AB, Plewa MJ, Wagner ED. Tribromopyrrole, brominated acids, and other disinfection byproducts produced by disinfection of drinking water rich in bromide. Environ. Sci. Technol. 2003, 37 (17): 3782~3793.
    [29] Edward G. Means III, Terry Brueck, Alan Manning, Lloyd Dixon, et al. The coming crisis: Water institutions and infrastructure. J AWWA. 2002, 94(1): 45~54.
    [30] Sylvia E. Barret, Stuart W. Krasner, and Gary L. Amy. Natural organic matter and disinfection by-products: characterization and control in drinking water. Am. Chemical Society. Washington D. C. 2000.
    [31] D. A. Reckhow and P. C. Singer. Chlorination By-products in Drinking Waters: From Formation Potentials to Finished Water Concentrations. J AWWA. 1990, 82(4): 173~180.
    [32] Rehan Sadiq and Manuel J. Rodriguez. Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: a review. Sci Total Environ, 2004, 321: 21–46.
    [33] P. Backlund. Mutagenic activity in humic water, and alum flocculated humic water treated with alternative disinfections. Sci Total Environ, 1992, 47:257~264.
    [34] Z.Sally, R.A. Panlay and F. Lisa. Type of disinfectant in drinking water and paterns of mortality. Jour. Env. Health Perspective. 1986, 69:275~279.
    [35] K. T. Linda and E. S. Jane. Approaching DBP toxicity as a mixtures problem. Jour. AWWA. 1995, 87(6): 131~138.
    [36]张晓健,李爽.消毒副产物总致癌风险的首要指标参数——卤乙酸.给水排水, 2000,26(8):1-6.
    [37] Cheng-Nan Chang, Ying-Shih Ma, Fang-Fong Zing. Reducing the formation of disinfection by-products by pre-ozonation. Chemosphere. 2002,46:21-30.
    [38] Winn-Jung Huang, Guor-Cheng Fang, Chun-Chen Wang. The determination and fate of disinfection by-products from ozonation of polluted raw water. Sci Total Environ, 2005, 345:261-272.
    [39] Chen-yu Chang, Yung-hsu Hsieh, Sheng-Sheng Hsu, Po-yu Hu, and Kuo-hua Wang. The formation of disinfection by-products in water treated with chlorine dioxide. Journal of Hazardous Materials. 2000, 79: 89-102.
    [40] D B Jobb, R Hunsinger, O Meresz, V Y Taguchi. A study of the occurrence and inhibition of formation of N-nitrosodimethylamine (NDMA) in the Ohsweken water supply. Proceedings of the Fifth National Conference on Drinking Water. Winnipeg, Manitoba, Canada, 1992.
    [41] J Choi, R L Valentine. Formation of N-nitrosodimethylamine (NDMA) from reaction of monochloramine: a new disinfection by-product. Wat Res., 2002, 36:817-825.
    [42] W A Mitch, D L Sedlak. Formation of N-nitrosodimethylamine (NDMA) from dimethylamine during chlorination. Environ. Sci. Technol. 2002, 36:588-595.
    [43] Susan D. Richardson et al. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research. Mutation Reaearch, 2007, 636: 178-242
    [44] Susan D. Richardson, Disinfection by-products and other emerging contaminants in drinking water, Trends in Analytical Chemistry. 2003,22:666-684.
    [45] Ames B N et al. Method for detecting carcinogens and mutagens with the salmonella typhimurium/reverse mutation test. Mutation Research, 1975, 31: 347- 364.
    [46] Silvano Monarca, Donatella Feretti, Carlo Collivignarelli, et al. The influence of different disinfectants on mutagenicity and toxicity of urban wastewater. Wat Res., 2000, 34:4261-4269.
    [47] Licia Guzzella, Silvano Monarca, Claudia Zani, et al. In vitro potential genotoxic effects of surface drinking water treated with chlorine and altermative disinfectants. Mutation Res. 2004, 564:179-193.
    [48] Silvano Monarca, Alberto Zanardini, Donatella Feretti, et al. Mutagenicity extracts of lake drinking water treated with different disinfectants in bacterial and plant tests. Wat Res., 1998, 32:2689-2695.
    [49]何文杰等编.安全饮用水保障技术.北京:中国建筑工业出版社, 2006.
    [50] USEPA. Alternative disinfectants and oxidants guidance manual (815-R-99-014). 1999.
    [51] Jacangelo J G, N L Patania, K M Reagan, et al. Impact of ozonation on the formation and control of disinfection byproducts in drinking water. J AWWA. 1989, 81:74.
    [52] MWDSC and JMM (Metropolitan Water District of Southern California and James M Montgomery Consulting Engineers). Disinfection byproducts in United Stated drinking water. Volume I. EPA and Association of Metropolitan Water Agencies. OH and Washington, D. C. 1989.
    [53] LeLacheur R M, P C Singer, and M J Charles. Disinfection byproducts in New Jersey drinking waters. Conference proceedings, AWWA Annual Conference. Philadelphia, PA.1991.
    [54] Berenbaum, C.M. Criteria for analyzing interactions between biologically active agents. Adv. Cancer Res., 1981, 35: 269-335
    [55] Berenbaum, C.M. The expected effect of a combination of agents: the general solution. J. theor. Biol., 1985, 114-413
    [56] Li, Hanbin, et al. Sequential inactivation of cryptosporidium parvum using ozone and chlorine. Wat Res., 2001, 35(18): 4339-4348
    [57] Gyürék L. L., Finch G. R. and Belosevic M. Modeling chlorine inactivation requirements of Cryptosporidium parvum oocysts. J. Environ. Eng., 1997, 123(9): 865-875
    [58] Finch G R. Control of Cryptosporidium through chemical disinfection: current State-of-the-art. AWWARF Technology Transfer Conference. Portland, Oregon. 1997.
    [59]鲁巍.给水管网生物稳定性研究.清华大学博士学位论文. 2005.
    [60]鲁巍,唐峰,张晓健.研究供水管壁生物膜的模拟系统.中国给水排水, 2005,21(1):22-24.
    [61] White, G.C. Handbook of Chlorination and Alternative Disinfectants. Van Nostrand Reinhold, New York. 1992.
    [62] AWWA and ASCE (American Society of Civil Engineers). Water Treatment Plant Design, second edition. McGraw-Hill, Inc. New York. 1990.
    [63] Mariko Tachikawa, Takashi Aburada, Masakatsu Tezuka, et al. Occurrence and production of chloramines in the chlorination of creatinine in aqueous solution. Wat Res., 2005, 39: 371-379.
    [64] Hong Anh Duong, Michael Berg, Minh Hang Hoang, et al. Trihalomethane formation by chlorination of ammonium- and bromide-containing groundwater in water supplies of Hanoi, Vietnam. Wat Res., 2003, 37: 3242-3252.
    [65]中华人民共和国卫生部.消毒技术规范. 2002.
    [66]俞毓馨,吴国庆,孟宪庭主编.《环境工程微生物检验手册》.中国环境科学出版社, 1990年.
    [67]陈天寿.《微生物培养基的制造与应用》.中国农业出版社, 1995年.
    [68] SHANG C., ERNEST R. BLATCHLEY III, Chlorintion of pure bacterial cultures in aqueous solution. Wat Res., 2001, 35(1):244-254.
    [69] Abia L, Armesto XL, Garcia MV et al, Oxidation of aliphatic amines by aqueous chlorine. Tetrahedron, 1998, 54:521-530.
    [70] Armesto XL, Canle M, Garcia MV, et al, N reactivity vs. O reactivity in aqueous chlorination. Int J Chem Kinet, 1994, 26:1135-1141.
    [71] Isaac R.A., Morris. J.C., Transfer of active chlorine from chloramine to nitrogeous organic compounds. Environ. Sci. Technol., 1983, 17:738-742.
    [72] Palin, A. A study of the chloro derivatives of ammonia. Water and Water Engineering. 1974, 54:248-258.
    [73] Haas C.N., et al. The effect of water quality on disinfection kinetics. J AWWA. 1996, 88(3): 95-103.
    [74] Finch G.R., et al. Design criteria for inactivation of Cryptosporidium by ozone in drinking water. Ozone Sci Eng., 2001, 23(4): 259-284.
    [75] Kruawal, et al. Chemical water quality in Thailand and its impacts on the drinking water production in Thailand. Sci Total Environ, 2005, 340(1-3): 57-70.
    [76]薛广波.实用消毒学.北京:人民军医出版社, 1986.
    [77] Jason L. Rennecker, Amy M. Driedger, Sara A. Rubin, et al. Synergy in sequential inactivation of Cryptosporidium parvum with ozone/free chlorine and ozone/chloramine. Wat Res., 2000, 34(17): 4121-4130.
    [78] Chen C, Zhang X J, He W J, et al. Study on Simultaneous Control of Microorganisms, Disinfection By-products by Sequential Chlorination. Biomedical and Environmental Science. 2007, 20:119-125.
    [79] Zhang X J, Chen C, Wang Y. Synergetic inactivation of microorganisms by short-term free chlorination and subsequent monochloramination in drinking water disinfection. Biomedical and Environmental Science. 2007, 20:373-380.
    [80]王云.短时游离氯后转氯胺的顺序消毒法微生物安全性评价.清华大学硕士学位论文. 2005.
    [81]王占生,刘文君.微污染水源饮用水处理.北京:中国建工出版社, 1999, 10.
    [82]王迪,刘文君等.可同化有机碳及氯浓度对给水管网中生物膜生长的影响.给水排水, 2008,34(2):19-22.
    [83]孟晓静等.水中几种指示微生物对氯消毒抵抗力的比较.中国公共卫生, 1998, 14(5):302~304.
    [84] Alicia C.Diehl, Gerald E.Speitel Jr., James M. Symons, et al. Cordelia J.Hwang and Sylvia E. Barrett. DBP formation during chloramination. J AWWA. 2000, 92(6): 76-90.
    [85] Standard methods for the examination of water and wastewater. 19th edition. Am. Pub. Health Assoc., Washington DC, USA. 1995.
    [86]俞毓馨等.环境工程微生物检验手册.北京:中国环境科学出版社, 1990: 136-144.
    [87] R.E.布坎南, N. E.吉本斯等编.伯杰士细菌手册.科学出版社. 1984.
    [88] KouameY, Haas C N. Inactivation of E.coli by combined action of free chlorine and monochloramine. Wat. Res., 1991, 25(9):1027-1032.
    [89] Matthew A. Larson, Benito J. marinas. Inactivation of Basillus subtilis spores with ozone and monochloramine, Wat Res., 2003, 37:833-844.
    [90] Finch, G.R. Control of Cryptosporidium through chemical disinfection: current State-of-the-art. AWWARF Technology Transfer Conference. Portland, Oregon. 1997.
    [91] Driedger A Mn, Rennecker J L. Sequential inactivation of Cryptosporidium parvum oocysts with ozone and free chlorine, Wat. Res.,2000,34(14):3591-3597
    [92] Renate Borgmann-Strahsen. Comparative assessment of different biocides in swimming pool water, International Biodeterioration & Biodegadation. 2003,51:291-297.
    [93]刁慧芳.低压直流式电化学消毒机理与适用性研究.清华大学博士论文. 2004.
    [94] G.比顿著.王小平,乔佩文,张润译.环境病毒学导论.北京:中国环境科学出版社, 1986.12,第一版.
    [95] R. E. Christman, et al. Identity and yields of major halogenated products of aquatic fulvic acid chlorination. Environ. Sci. Technol. 1983, 17(10): 625.
    [96]深圳水务(集团)有限公司.国际水质标准汇编.北京:中国建筑工业出版社, 2004.
    [97]周鸿.饮用水消毒副产物、内分泌干扰物及其前体物特性研究.清华大学博士学位论文. 2004, 4.
    [98] Yuefeng Xie, et al. Acidic methanol methylation for HAA analysis: Limitations and possible solutions. J AWWA. 2002, 94(11).
    [99] Yuefeng Xie. Analyzing haloacetic acids using gas chromatography/mass spectrometry. Wat Res., 2001, 35 (6):1599-1602.
    [100]贺北平,秦竹,王占生.气相色谱法测定给水中三卤甲烷的方法.中国环境监测, 1997, 13(4):18-20.
    [101]国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法(第三版).北京:中国环境科学出版社. 1989.
    [102]彭清涛,张光友.毛细管顶空气相色谱法测定饮用水中三氯甲烷浓度的测量不确定度评定.现代仪器, 2007, 2: 21-22.
    [103] P.C. Singer. Humic substances as precursors for potentially harmful disinfection by-products. Water Science and Technology. 1999, 40 (9): 25-30.
    [104] D.Reckhow, P. C. Singer and R. Malcolm. Chlorination of humic materials: by-product formation and chemical interpretations. Environ. Sci. Technol. 1990, 24(11): 1655.
    [105]王小文,张晓健,陈超等.芳香类有机物生成氯化消毒副产物特性及其与化学结构的关系.环境科学, 2006,27(8):1603-1607.
    [106] Block, J.C., Deguin, A., Fontvieille, D., et al. Biodegradable organic matter in drinking water distribution systems (Chapter 4), In Biodegradable organic matter in drinking water, Prevost M and J.C. Joret. Lewis Press Publishers, 1997.
    [107] Johnson, J. D. and Jensen, J. N. THM and TOX formation: Routes, rates, and precursors. J.AWWA. 1986, 78(4):156~162.
    [108] Koch B, Krasner S W. Predicting the formation of DBPs by the simulated distribution system. J AWWA. 1991, 83(10):62-70.
    [109] Nieminski E C, Chaudhuri S. The occurrence of DBPs in Utah Drinking Waters. J AWWA. 1993, 85(9):98-105
    [110] Martina M. Donnermair, Ernest R. Blatchley III, Disinfection efficacy of organic chloramines. Wat Res., 2003, 37:1557-1570.
    [111] Daniel M. White, D. Sarah Garland, Jasprit Narr, and Craig R. Woolard. Natural organic matter and DBP formation potential in Alaskan water supplies. Wat Res., 2003, 37: 939-947.
    [112]刘文君.饮用水中可生物降解有机物和消毒副产物特性研究.清华大学博士学位论文. 1999,7.
    [113]王丽花,周鸿,王占生,张晓健.水源水中有机物特性及其氯化活性研究.环境科学学报, 2001,21(5):573-576.
    [114] Summers, R.S., G. Solarik, V.A.Hatcher, et.al. Analyzing the impacts of predisinfection through jar testing. Conference proceedings, AWWA water quality technology conference, Denver, CO. 1997.
    [115]严煦世,范瑾初.给水工程.北京:中国建筑工业出版社, 1999:57-64.
    [116] Maria Saavedra, Victor Perea, Maria Fontes, et.al. Phylogenetic identification of Aeromonas strains isolated from carcasses of pig as new members of the species Aeromonas allosaccharophila. Antonie van Leeuwenhoek. 2007, 91(2):159-167.
    [117]杨东霞,曲险峰,杨暑伏.气单胞菌分类及检测技术的研究进展.中国卫生检验杂志, 2003, 13(2):247-249.
    [118]胡静仪编译.气单胞菌属分类与鉴定方法.国外医学临床生物化学与检验学分册, 2004, 25(5):478-479.
    [119]曲芬.气单胞菌感染的研究进展.传染病信息, 2006, 19(1):22-23.
    [120] M.J. Figueras, A. Suarez-Franquet, M.R. Chacon, et.al. First record of rare species Aeromonas culicicola from a drinking water supply. Applied and Environmental Microbiology. 2005, 71(1):538-541.
    [121] AWWA. Guidance manual for compliance with the filtration and disinfection requirements for public works systems using surface water sources. 1991.
    [122] F. Hammes, M. Berney, M. Vital, et.al. A protocol for the determination of total cell concentration of natural microbial communities in drinking water with FCM. Techneau. 2007.
    [123] M. Vital, F. Hammes, M. Berney, et.al. Assessing the feasibility of total virus detection with flow cytometry in drinking. Techneau. 2007.
    [124] M.H. Phe, M. Dossot, H. Guilloteau, et.al. Nucleic adid fluorochromes and flow cytometry prove useful in assessing the effect of chlorination on drinking water bacteria. Wat Res., 2005, 39:3618-3628.
    [125]中华人民共和国卫生部.生活饮用水卫生规范. 2001.
    [126]中华人民共和国建设部.城镇供水行业水质标准. 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700