用户名: 密码: 验证码:
间歇性无氧游泳训练大鼠血睾酮降低的Leydig细胞胆固醇代谢机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纵观运动性血睾酮降低的动物实验报道,在训练的安排中,多未明确训练属于有氧还是无氧;对于造成的运动性血睾酮降低状态,多未指出其属于生理性还是病理性;在Leydig细胞水平的机制研究中,对LH/CG受体、β2-肾上腺素受体、StAR蛋白、胆固醇侧链裂解酶等环节的改变均有报道,而对睾酮生成的初始原料胆固醇代谢变化的研究所见甚少。本研究针对上述问题开展了如下实验:
     一、确定运动负荷。通过乳酸最小试验,确定4.5%体重的负重是雄性SD大鼠游泳运动时的最大乳酸稳态负荷,对应血乳酸为10.4±2.5mmol/l,提示负重大于4.5%体重的游泳血乳酸将会堆积。
     二、建立间歇性无氧训练下大鼠血睾酮降低模型。大鼠进行5%负重的间歇游泳训练五周(游泳5分钟-休息1分钟,6组/日,6次/周)。末次训练后第24小时、48小时和1周末,分批宰杀训练大鼠与对照大鼠,检测血睾酮(T)、皮质酮(C)、肌酸激酶(CK)、血尿素(BU),观察心、肝、肾等脏器组织形态学的变化。结果显示:五周训练导致血T显著降低,血CK、BU显著升高,心、肝、肾组织出现病理性变化,睾丸组织未出现病理性变化。一周停训后,血T、CK、BU变化以及心、肝、肾组织的病理性变化均未完全回复。
     三、运动性血睾酮降低大鼠Leydig细胞胆固醇代谢变化。大鼠训练、宰杀同前,检测血T、总胆固醇(TC)、高密度脂蛋白胆固醇酯(HDL-CE)、低密度脂蛋白胆固醇酯(LDL-CE),血白细胞的低密度脂蛋白受体(LDL-R)和清道夫受体(SR-BI)、Leydig细胞的HMG-CoA还原酶、LDL-R、SR-BI和StAR基因的mRNA表达。结果显示:五周训练后血T显著降低时, Leydig细胞LDL-R mRNA表达显著增加,SR-BI和HMG-CoA还原酶、StARmRNA表达无明显变化。一周停训后,血T回复但仍处于较低水平,血HDL-CE显著升高,Leydig细胞SR-BI mRNA表达量也显著增加,其余指标均无明显变化。
     四、运动性血睾酮降低发生、发展过程的研究。在运动性血T降低(TA组)的基础上,大鼠停训一周(TC组),大鼠继续训练一周:负荷不变(TD组)、负荷量加倍(5%体重的负重,2组/日,TE组)或强度增加(6%体重的负重,1组/日, TF组),并与同龄血T正常的不训练大鼠(Sc组)或训练一周大鼠(TG组)进行比较。结果显示:TD组,血睾酮进一步降低,Leydig细胞LDL-R mRNA表达出现显著降低;TF组,血T进一步降低,Leydig细胞LDL-R、SR-BI、HMG-CoA还原酶的mRNA表达量出现显著性降低;TE组,血T进一步、显著性降低,Leydig细胞LDL-R、SR-BI、HMG-CoA还原酶以及StAR的mRNA表达量均发生显著性降低。另外,TD、TE、TF组的心、肝、肾和睾丸组织均发生了不同程度的病理性变化。相比之下,TG组只出现了血T降低,影响Leydig细胞胆固醇代谢的关键环节均未出现变化,同时大鼠心、肝、肾、睾丸组织器官均未发生显著的病理性变化。血白细胞的LDL-R mRNA的表达量随运动负荷增加而显著降低, SR-BI mRNA表达量则随运动负荷的增加有升高的趋势。
     结论:(1)间歇性无氧游泳训练1周能导致大鼠血睾酮降低,但心、肝、肾、睾丸组织的形态学不会发生改变;训练5周引起血T持续降低并伴有心、肝、肾重要脏器的病理性变化,此时睾丸组织未发生病理性变化;训练5周后停训一周、血T恢复过程中,重要脏器病理变化亦有所缓解;对运动性低血T大鼠强化训练,重要脏器病理变化加剧,睾丸的组织形态也发生了病理性变化。显然,伴随有重要脏器的病理性变化的运动性血T降低,应属病理性的变化。(2) 1周间歇性无氧游泳训练,Leydig细胞胆固醇代谢的关键步骤不受影响;5周间歇性游泳训练,Leydig细胞首先通过加强LDL-R介导的内吞作用加强自身摄取胞外胆固醇的能力;停训一周后,SR-BI介导的胆固醇选择性摄取途径加强;对运动性低血T大鼠强化训练,将引起Leydig细胞内胆固醇的合成、摄取与转运等关键步骤的抑制。(3) Leydig细胞内胆固醇代谢关键环节的障碍不一定是导致运动性血睾酮降低的起始原因,但细胞内HMG-CoA还原酶、LDL-R、SR-BI、StAR mRNA表达量的降低会加速运动引起的血睾酮降低。(4)在运动性血睾酮降低发生、发展过程中,LDL-R mRNA在Leydig细胞与白细胞的表达量在变化趋势上有相似之处,能否利用白细胞的LDL-R、SR-BI mRNA表达量间接反映Leydig细胞摄取外源性胆固醇的功能状态,尚有待进一步研究。
Making a comprehensive view in experimental reports in rats with lower serum testosterone due to exercise, it was found that there were ambiguous statements on the training character (aerobic or anaerobic). And so was on the state of lower serum testosterone due to exercise (physiological or pathological). In studies of the mechanism of Leydig’s cells there were reports on the changes of such links as the LH/CG receptor,β2-adrenoceptor, StAR protein and cholesterol side change cleavage. As to the study of cholesterol metabolic changes of the incipient substrate for testosterone production there were rare reports. The experiments of this study were carried out in allusion to the above problems.
     1. Selection of training loads. Through lactate maximum tests, the load of the maximal lactate state during swimming was fixed on a load of 4.5% of the male SD rat’s body weight, corresponding to the blood lactate of 10.4±2.5mmol/L. It is indicated that in swimming if the load is greater than 4.5% of the body weight, blood lactate will be accumulated.
     2. Establishment of the rat model with lower serum testosterone due to intermittent anaerobic training. The rats were forced to have their intermittent swimming training (exercising 5 minutes with a rest of 1 minute, 6 groups per day and 6 times a week) for 5 weeks with a load equivalent to 5% of their body weight. At the 24th hour (TA group), the 48th hour (TB group) after the last training and at the end of a week (TC group), the training rats and the sedentary rats were killed in batches to examine the changes of serum testosterone (T), corticosterone (C), creatine kinase (CK) and blood urea (BU) and to observe the histomorphologic changes of the heart, liver, and kidney. The results showed that the training of the five weeks induced a remarkable decrease of serum testosterone, but serum CK and BU increased significantly. There were pathological changes in hearts, livers and kidneys the rats, but there was no in testis. After stopping training for one week, the changes of serum T, CK, BU and the histomorphologic changes of hearts, livers and kidneys were not recovered at all.
     3. Changes of cholesterol metabolism in Leydig’s cells of rats with lower serum testosterone due to exercise. The training mode applied and the methods used to kill the rats were the same as the above mentioned. The serum testosterone (T), total cholesterol (TC), high density lipoprotein- cholesterol (HDL-CE), low density lipoprotein-cholesterol (LDL-CE), the mRNA expression of low density lipoprotein receptor (LDL-R) and scavenger receptor class B type I (SR-BI) in leukocytes of the blood as well as the mRNA expression of
     3-hydroxyl-3-methylglutaryl-coenzyme A reductase(HMG-CoA reductase), LDL-R, SR-BI and steroidgenic acute regulatory (StAR) protein in Leydig’s cells were examined by the real-time fluorescence quantification PCR with the Taq-man probe technique. The results showed that when serum T decreased significantly due to the five-week training, the LDL-R mRNA in Leydig’s cells increased significantly. After one-week recovery, the concentration of serum T was up, but still under the normal level. The serum HDL-CE increased significantly, and the SR-BI mRNA expression in Leydig’s cells increased as well. But there was no change of the rest indexes.
     4. Research on the occurrence and development of lower serum T due to exercise. After the five-week intermittent anaerobic swimming training, a group of the rats (TC group) stopped training for one week, while the other groups were forced to continue training. The TD group trained with the same load. The load of the TE group was doubled, that is bearing a weight of 5% of their body weight and the rats trained 2 times per day. The intensity of the TF group was increased and the rats trained once a day with the load of 6% of their body weight. By comparing with the sedentary rats of the same age (Sc group) or those of the rats trained once a day with the load of 5% of their body weight for one week (TG group), it was found that the level of serum T in TD groups had a further decrease, and the mRNA expression of LDL-R、SR-BI、HMG-CoA reductase in Leydig’s cells decreased remarkably. As for the TE group the level of serum T decreased remarkably, too. And so did the LDL-R、SR-BI、HMG-CoA reductase and mRNA expression of StAR in Leydig’s cells. In addition, in TD, TE and TF groups there were pathological changes to different extent in hearts, livers, kidneys and testis of the rats. In the TG group there was decrease only in serum T, but the key links influencing the cholesterol metabolism in Leydig’s cells were not changed. And there were not remarkable pathological changes in hearts, livers, kidneys and testis of the rats. The mRNA expression of LDL-R in leukocytes of the blood decreased with the increase of the training load. But the mRNA expression of SR-BI tended to increase.
     Conclusion:(1) The one-week intermittent anaerobic swimming training induced lower serum testosterone, but there was no histomorphologic change in the heart, liver, kidney, adrenal gland and testis. The five-week training caused lower serum testosterone, accompanying with pathological changes in the above-mentioned organs except testis. When stopping training for a week after the five-week training, the serum T recovered and pathological changes of the above -mentioned organs were retarded. Pathological changes were aggravated in organs of rats with lower serum testosterone having had their intensive training and so did the morphology of testis. It is obvious that the decrease of serum testosterone due to exercise accompanying with pathological changes in some organs belongs to pathological character. (2) The key processes of cholesterol metabolism in Leydig’s cells were not affected by the one-week intermittent anaerobic training. In 5-week intermittent swimming training the ability of Leydig’s cells to intake their extracellular cholesterol was strengthened firstly by reinforcing the endocytosis mediated by LDL-R. After stopping training for one week the pathway for selective intake of the cholesterol mediated by SR-BI was strengthened. The intensive training in rats with lower serum testosterone due to exercise will inhibit the cholesterol synthesis, intake and transport in Leydig’s cells. (3) The original reason for inducing lower serum testosterone was not always the obstacle of the key links of cholesterol metabolism in Leydig’s cells. Nevertheless, the decrease of mRNA level of HMG-CoA reductase, LDL-R, SR-BI and StAR in Leydig’s cells will accelerate the decrease of serum T due to exercise. (4) In the process of the occurrence and development of lower serum testosterone due to exercise there was similar tendency on the expression of LDL-R in Leydig’s cells and blood leucocytes. But whether the mRNA expressions of LDL-R and SR-BI in blood leucocytes can be used to indirectly reflect the functional state of the intake of exogenous cholesterol in Leydig’s cells remains to be further studied.
引文
[1] Hackney AC, Moore AW, Brownlee KK. Testosterone and endurance exercise: development of the "exercise-hypogonadal male condition". Acta Physiol Hung, 2005,92(2):121-37.
    [2] Bhasin S. The dose-dependent effects of testosterone on sexual function and on muscle mass and function. Mayo Clin Proc JT - Mayo Clinic proceedings. Mayo Clinic, 2000,75 Suppl:S70-5; discussion S75-6.
    [3] 谢敏豪,冯炜权,杨天乐等. 血睾酮与运动. 体育科学, 1999,19(2).
    [4] Tremblay MS, Copeland JL, Van Helder W. Effect of training status and exercise mode on endogenous steroid hormones in men. J Appl Physiol JT - Journal of applied physiology (Bethesda, Md: 1985), 2004,96(2):531-9.
    [5] 徐晓阳. 运动性低血睾酮研究进展. 山东体育科技, 2000,22(2):38-41.
    [6] Hu Y, Asano K, Mizuno K, et al. Serum testosterone responses to continuous and intermittent exercise training in male rats. Int J Sports Med, 1999,20(1):12-6.
    [7] Hackney AC, Sinning WE, Bruot BC. Reproductive hormonal profiles of endurance-trained and untrained males. Med Sci Sports Exerc, 1988,20(1):60-5.
    [8] 尤同建,谢敏豪,方子龙. 运动训练对雄性大鼠垂体-性腺轴功能的影响. 中国运动医学杂志, 1997,16(4):252-256.
    [9] 谢敏豪. 运动性血睾酮变化及 Leydig 细胞 β2 受体调节机制的研究. 北京体育大学博士研究生学位论文; 1997.
    [10] 王启荣. 游泳训练及益气补肾中药对睾酮合成的几种影响因素的作用和机理初探. 北京体育大学博士研究生学位论文; 2003.
    [11] 武贵新. 运动性低血睾酮与睾酮合成酶及血液中睾酮分布特点. 北京体育大学博士研究生学位论文; 2000.
    [12] Hackney AC, Szczepanowska E, Viru AM. Basal testicular testosterone production in endurance-trained men is suppressed. Eur J Appl Physiol, 2003,89(2):198-201.
    [13] 曾凡星,韦俊文. 运动对睾酮与蛋白质分解代谢的影响. 中国运动医学杂志, 1991,10(2):96-99.
    [14] Steinacker JM, Brkic M, Simsch C, et al. Thyroid hormones, cytokines, physical training and metabolic control. Horm Metab Res, 2005,37(9):538-44.
    [15] Mastorakos G, Pavlatou M. Exercise as a stress model and the interplay between the hypothalamus-pituitary-adrenal and the hypothalamus-pituitary-thyroid axes. Horm Metab Res, 2005,37(9):577-84.
    [16] Angioni S, Petraglia F, Genezzani AR. Immune-neuroendocrine correlations: a new aspect in human physiology. Acta Eur Fertil, 1991,22(3):167-70.
    [17] Rivier C. Neuroendocrine effects of cytokines in the rat. Rev Neurosci, 1993,4(3):223-37.
    [18] Morale MC, Gallo F, Tirolo C, et al. The reproductive system at the neuroendocrine-immune interface: focus on LHRH, estrogens and growth factors in LHRH neuron-glial interactions. Domest Anim Endocrinol, 2003,25(1):21-46.
    [19] Bowen RL, Atwood CS. Living and dying for sex. A theory of aging based on the modulation of cell cycle signaling by reproductive hormones. Gerontology, 2004,50(5):265-90.
    [20] 段相林,李健,张健等. 睾丸间质细胞分泌功能调节因素的研究进展. 解剖科学进展, 2002,8(3).
    [21] 黄诚. 细胞因子对下丘脑-垂体-性腺轴的调控. 国外医学内分泌学分册, 1997,17(1):16-19.
    [22] 柯江维,段荣,张涛等. 细胞因子对下丘脑-垂体-性腺轴(HPG)及下丘脑-垂体-肾上腺轴(HPAA)的调控.江西医学检验, 2002,20(6).
    [23] Rigotti A, Miettinen HE, Krieger M. The role of the high-density lipoprotein receptor SR-BI in the lipid metabolism of endocrine and other tissues. Endocr Rev JT - Endocrine reviews, 2003,24(3):357-87.
    [24] 丁立威,石恩东. 运动与脂代谢研究进展. 山东体育科技, 2000,22(1):49-53.
    [25] 刘萍,张静生. 低密度脂蛋白受体基因表达研究进展. 中医药学刊, 2003,21(1):51-53.
    [26] Le Cras TD, Gherardi E, Bowyer DE. A sensitive RNase protection assay for the quantitation of the mRNAs for the LDL receptor and HMG-CoA reductase in human total RNA. Effects of treatments on cells in culture designed to up- and down-regulate expression of the LDL receptor. Atherosclerosis, 1991,90(1):81-90.
    [27] Rudenko G, Deisenhofer J. The low-density lipoprotein receptor: ligands, debates and lore. Curr Opin Struct Biol, 2003,13(6):683-9.
    [28] 赵斐,张娜,张勇. 有氧运动改善高脂血症分子机理的研究 IV.有氧运动上调饮食性高脂血症大鼠肝脏LDL-R 基因表达. 中国运动医学杂志, 2002,21(2).
    [29] Yan Y, Zhang Y, Yang X, et al. [Effects of aerobic exercise on regulation of activities of hepatic low density lipoprotein receptor in hypercholesterolemic rats]. Zhongguo Ying Yong Sheng Li Xue Za Zhi, 1997,13(1):18-20.
    [30] 张勇,颜宜,杨锡让等. 单纯肥胖症脂质代谢紊乱的运动防治――Ⅱ .有氧运动对饮食诱导肥胖大鼠肝脏低密度脂蛋白受体活性调节的影响. 中国运动医学杂志, 1998,17(4).
    [31] Brown MS, Goldstein JL. Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu Rev Biochem, 1983,52:223-61.
    [32] Silver DL, Tall AR. The cellular biology of scavenger receptor class B type I. Curr Opin Lipidol, 2001,12(5):497-504.
    [33] Krieger M. Charting the fate of the "good cholesterol": identification and characterization of the high-density lipoprotein receptor SR-BI. Annu Rev Biochem JT - Annual review of biochemistry, 1999,68:523-58.
    [34] Cao G, Garcia CK, Wyne KL, et al. Structure and localization of the human gene encoding SR-BI/CLA-1. Evidence for transcriptional control by steroidogenic factor 1. J Biol Chem JT - The Journal of biological chemistry, 1997,272(52):33068-76.
    [35] Krieger M. Scavenger receptor class B type I is a multiligand HDL receptor that influences diverse physiologic systems. J Clin Invest, 2001,108(6):793-7.
    [36] Murao K, Terpstra V, Green SR, et al. Characterization of CLA-1, a human homologue of rodent scavenger receptor BI, as a receptor for high density lipoprotein and apoptotic thymocytes. J Biol Chem JT - The Journal of biological chemistry, 1997,272(28):17551-7.
    [37] Acton S, Rigotti A, Landschulz KT, et al. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science, 1996,271(5248):518-20.
    [38] Febbraio M, Hajjar DP, Silverstein RL. CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Invest, 2001,108(6):785-91.
    [39] 田德峰. 人高密度脂蛋白受体(CLA-1)在昆虫细胞的表达、激动剂筛选模型的建立及其应用研究. 中国协和医科大学博士研究生学位论文; 2004.
    [40] Lopez D, McLean MP. Sterol regulatory element-binding protein-1a binds to cis elements in the promoter of the rat high density lipoprotein receptor SR-BI gene. Endocrinology JT - Endocrinology, 1999,140(12):5669-81.
    [41] Ng DS, Francone OL, Forte TM, et al. Disruption of the murine lecithin:cholesterol acyltransferase gene causes impairment of adrenal lipid delivery and up-regulation of scavenger receptor class B type I. J Biol Chem JT - The Journal of biological chemistry, 1997,272(25):15777-81.
    [42] Rigotti A, Edelman ER, Seifert P, et al. Regulation by adrenocorticotropic hormone of the in vivo expression ofscavenger receptor class B type I (SR-BI), a high density lipoprotein receptor, in steroidogenic cells of the murine adrenal gland. J Biol Chem JT - The Journal of biological chemistry, 1996,271(52):33545-9.
    [43] Wang N, Weng W, Breslow JL, et al. Scavenger receptor BI (SR-BI) is up-regulated in adrenal gland in apolipoprotein A-I and hepatic lipase knock-out mice as a response to depletion of cholesterol stores. In vivo evidence that SR-BI is a functional high density lipoprotein receptor under feedback control. J Biol Chem JT - The Journal of biological chemistry, 1996,271(35):21001-4.
    [44] Landschulz KT, Pathak RK, Rigotti A, et al. Regulation of scavenger receptor, class B, type I, a high density lipoprotein receptor, in liver and steroidogenic tissues of the rat. J Clin Invest JT - The Journal of clinical investigation, 1996,98(4):984-95.
    [45] Rajapaksha WR, McBride M, Robertson L, et al. Sequence of the bovine HDL-receptor (SR-BI) cDNA and changes in receptor mRNA expression during granulosa cell luteinization in vivo and in vitro. Mol Cell Endocrinol JT - Molecular and cellular endocrinology, 1997,134(1):59-67.
    [46] Liu J, Voutilainen R, Heikkila P, et al. Ribonucleic acid expression of the CLA-1 gene, a human homolog to mouse high density lipoprotein receptor SR-BI, in human adrenal tumors and cultured adrenal cells. J Clin Endocrinol Metab JT - The Journal of clinical endocrinology and metabolism, 1997,82(8):2522-7.
    [47] Johnson MS, Svensson PA, Helou K, et al. Characterization and chromosomal localization of rat scavenger receptor class B type I, a high density lipoprotein receptor with a putative leucine zipper domain and peroxisomal targeting sequence. Endocrinology JT - Endocrinology, 1998,139(1):72-80.
    [48] Towns R, Azhar S, Peegel H, et al. LH/hCG-stimulated androgen production and selective HDL-cholesterol transport are inhibited by a dominant-negative CREB construct in primary cultures of rat theca-interstitial cells. Endocrine JT - Endocrine, 2005,27(3):269-77.
    [49] Nakagawa A, Nagaosa K, Hirose T, et al. Expression and function of class B scavenger receptor type I on both apical and basolateral sides of the plasma membrane of polarized testicular Sertoli cells of the rat. Dev Growth Differ JT - Development, growth & differentiation, 2004,46(3):283-98.
    [50] Reaven E, Leers-Sucheta S, Nomoto A, et al. Expression of scavenger receptor class B type 1 (SR-BI) promotes microvillar channel formation and selective cholesteryl ester transport in a heterologous reconstituted system. Proc Natl Acad Sci U S A JT - Proceedings of the National Academy of Sciences of the United States of America, 2001,98(4):1613-8.
    [51] Graf GA, Roswell KL, Smart EJ. 17beta-Estradiol promotes the up-regulation of SR-BII in HepG2 cells and in rat livers. J Lipid Res JT - Journal of lipid research, 2001,42(9):1444-9.
    [52] 贾弘褆主编. 生物化学. 3 版. 北京:北京大学医学出版社,2005.
    [53] Temel RE, Trigatti B, DeMattos RB, et al. Scavenger receptor class B, type I (SR-BI) is the major route for the delivery of high density lipoprotein cholesterol to the steroidogenic pathway in cultured mouse adrenocortical cells. Proc Natl Acad Sci U S A JT - Proceedings of the National Academy of Sciences of the United States of America, 1997,94(25):13600-5.
    [54] Reaven E, Zhan L, Nomoto A, et al. Expression and microvillar localization of scavenger receptor class B, type I (SR-BI) and selective cholesteryl ester uptake in Leydig`s cells from rat testis. J Lipid Res JT - Journal of lipid research, 2000,41(3):343-56.
    [55] Graf GA, Matveev SV, Smart EJ. Class B scavenger receptors, caveolae and cholesterol homeostasis. Trends Cardiovasc Med JT - Trends in cardiovascular medicine, 1999,9(8):221-5.
    [56] Rigotti A, Trigatti BL, Penman M, et al. A targeted mutation in the murine gene encoding the high density lipoprotein (HDL) receptor scavenger receptor class B type I reveals its key role in HDL metabolism. Proc Natl Acad Sci U S A JT - Proceedings of the National Academy of Sciences of the United States of America, 1997,94(23):12610-5.
    [57] Kozarsky KF, Donahee MH, Rigotti A, et al. Overexpression of the HDL receptor SR-BI alters plasma HDL and bile cholesterol levels. Nature JT - Nature, 1997,387(6631):414-7.
    [58] Gu X, Lawrence R, Krieger M. Dissociation of the high density lipoprotein and low density lipoprotein binding activities of murine scavenger receptor class B type I (mSR-BI) using retrovirus library-based activity dissection. J Biol Chem JT - The Journal of biological chemistry, 2000,275(13):9120-30.
    [59] Trigatti B, Rigotti A, Krieger M. The role of the high-density lipoprotein receptor SR-BI in cholesterol metabolism. Curr Opin Lipidol, 2000,11(2):123-31.
    [60] Arai T, Wang N, Bezouevski M, et al. Decreased atherosclerosis in heterozygous low density lipoprotein receptor-deficient mice expressing the scavenger receptor BI transgene. J Biol Chem JT - The Journal of biological chemistry, 1999,274(4):2366-71.
    [61] Ueda Y, Royer L, Gong E, et al. Lower plasma levels and accelerated clearance of high density lipoprotein (HDL) and non-HDL cholesterol in scavenger receptor class B type I transgenic mice. J Biol Chem JT - The Journal of biological chemistry, 1999,274(11):7165-71.
    [62] Stangl H, Cao G, Wyne KL, et al. Scavenger receptor, class B, type I-dependent stimulation of cholesterol esterification by high density lipoproteins, low density lipoproteins, and nonlipoprotein cholesterol. J Biol Chem JT - The Journal of biological chemistry, 1998,273(47):31002-8.
    [63] 李则一. 胆固醇的逆向转运与高密度脂蛋白受体. 中国运动医学杂志, 2000,19(1):71-73.
    [64] Holm TM, Braun A, Trigatti BL, et al. Failure of red blood cell maturation in mice with defects in the high-density lipoprotein receptor SR-BI. Blood JT - Blood, 2002,99(5):1817-24.
    [65] Trigatti B, Rayburn H, Vinals M, et al. Influence of the high density lipoprotein receptor SR-BI on reproductive and cardiovascular pathophysiology. Proc Natl Acad Sci U S A, 1999,96(16):9322-7.
    [66] Kwiterovich PO Jr. The antiatherogenic role of high-density lipoprotein cholesterol. Am J Cardiol, 1998,82(9A):13Q-21Q.
    [67] 李则一. 有氧运动对ApoE基因缺陷小鼠高密度脂蛋白 受体SR-BI基因表达的影响. 中国运动医学杂志, 2000,19(04).
    [68] 陈近利,陈吉棣. 有氧运动和膳食脂肪对 ApoE 基因缺陷小鼠动脉粥样硬化斑块形成过程中 SR-B1 基因及蛋白表达的影响. 中国运动医学杂志, 2002,21(1).
    [69] 赵斐,张娜,张勇. 有氧运动改善高脂血症分子机理的研究 V:有氧运动上调饮食性高脂血症大鼠肝脏SR-BI 基因表达. 中国运动医学杂志, 2003,22(1).
    [70] 丁立威,石恩东. 运动与脂代谢研究进展. 山东体育科技, 2000,22(1).
    [71] 李辉,李可基,张宝慧. 有氧运动训练与脂代谢关系研究的进展. 心血管康复医学杂志, 2003,12(2).
    [72] 陈近利. B 族 I 型清道夫受体研究进展. 国外医学.生理、病理学与临床分册, 2000,20(6):451-454.
    [73] Marinangeli CP, Varady KA, Jones PJ. Plant sterols combined with exercise for the treatment of hypercholesterolemia: overview of independent and synergistic mechanisms of action. J Nutr Biochem, 2005.
    [74] Marshall DA, Vernalis MN, Remaley AT, et al. The role of exercise in modulating the impact of an ultralow-fat diet on serum lipids and apolipoproteins in patients with or at risk for coronary artery disease. Am Heart J, 2006,151(2):484-91.
    [75] 赵水平,李向平,王钟林. 内源性睾酮对血浆脂质、脂蛋白和载脂蛋白水平的影响. 湖南医科大学学报, 1998,23(3):299-301.
    [76] 闫智宏,赵铁军,梁庆智. 男性冠心病患者脂蛋白(a)与性激素的关系. 中国老年学杂志, 2005,25(1).
    [77] 杨华,胡肇衡,文发魁 YANG Hua HU Zhao-heng WEN Fa-kui. 老年男性血清睾酮、雌二醇对脂代谢影响的研究. 广西医学, 2005,27(1).
    [78] De Gennes JL, Dairou F, Gardette J, et al. [Sex hormones and metabolism of lipoproteins]. Ann Endocrinol (Paris), 1983,44(1):59-65.
    [79] Isidori AM, Giannetta E, Greco EA, et al. Effects of testosterone on body composition, bone metabolism and serum lipid profile in middle-aged men: a meta-analysis. Clin Endocrinol (Oxf), 2005,63(3):280-93.
    [80] Schleich F, Legros JJ. Effects of androgen substitution on lipid profile in the adult and aging hypogonadal male. Eur J Endocrinol, 2004,151(4):415-24.
    [81] Jones RD, Nettleship JE, Kapoor D, et al. Testosterone and atherosclerosis in aging men: purported association and clinical implications. Am J Cardiovasc Drugs, 2005,5(3):141-54.
    [82] Wranicz JK, Rosiak M, Cygankiewicz I, et al. [Testosterone and coronary artery disease in men]. Pol Arch Med Wewn, 2005,113(1):92-6.
    [83] 武强,李小鹰,胥学伟. 外源性睾酮对去睾丸家兔性激素以及血脂和载脂蛋白水平的影响. 中国应用生理学杂志, 2003,19(3).
    [84] 胥学伟,李小鹰. 睾酮、氧化低密度脂蛋白对内皮细胞分泌肾上腺髓质素的影响. 中国应用生理学杂志, 2005,21(1).
    [85] Handa K, Ishii H, Kono S, et al. Behavioral correlates of plasma sex hormones and their relationships with plasma lipids and lipoproteins in Japanese men. Atherosclerosis JT - Atherosclerosis, 1997,130(1-2):37-44.
    [86] Langer C, Gansz B, Goepfert C, et al. Testosterone up-regulates scavenger receptor BI and stimulates cholesterol efflux from macrophages. Biochem Biophys Res Commun JT - Biochemical and biophysical research communications, 2002,296(5):1051-7.
    [87] 徐惠芬,郑宏超,刘晓红等. 男性冠状动脉病变和脂蛋白(a)及性激素的关系. 上海第二医科大学学报, 2003,23(2).
    [88] Blair SN, Kampert JB, Kohl HW 3rd, et al. Influences of cardiorespiratory fitness and other precursors on cardiovascular disease and all-cause mortality in men and women. JAMA, 1996,276(3):205-10.
    [89] von Eckardstein A, Kliesch S, Nieschlag E, et al. Suppression of endogenous testosterone in young men increases serum levels of high density lipoprotein subclass lipoprotein A-I and lipoprotein(a). J Clin Endocrinol Metab, 1997,82(10):3367-72.
    [90] 顾明标,秦永文. 外源性睾酮对雄性高脂血症大鼠早期动脉粥样硬化形成的影响. 中国动脉硬化杂志, 1999,7(4):336-338.
    [91] 顾明标,丁鸿钧,秦永文. 内源性睾酮对雄性高脂血症大鼠早期动脉粥样硬化形成的影响. 中国病理生理杂志, 1999,15(1):965-968.
    [92] Quinn PG, Dombrausky LJ, Chen YD, et al. Serum lipoproteins increase testosterone production in hCG-desensitized Leydig`s cells. Endocrinology, 1981,109(5):1790-2.
    [93] Schumacher M, Schwarz M, Leidenberger F. Desensitization of mouse Leydig`s cells in vivo: evidence for the depletion of cellular cholesterol. Biol Reprod, 1985,33(2):335-45.
    [94] Travert C, Fofana M, Carreau S, et al. Rat Leydig`s cells use apolipoprotein E depleted high density lipoprotein to regulate testosterone production. Mol Cell Biochem, 2000,213(1-2):51-9.
    [95] Meikle AW, Cardoso de Sousa JC, Hanzalova J, et al. Oleic acid inhibits cholesteryl esterase and cholesterol utilization for testosterone synthesis in mouse Leydig`s cells. Metabolism, 1996,45(3):293-9.
    [96] Balasubramaniam S, Goldstein JL, Faust JR, et al. Lipoprotein-mediated regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and cholesteryl ester metabolism in the adrenal gland of the rat. J Biol Chem, 1977,252(5):1771-9.
    [97] Charreau EH, Calvo JC, Nozu K, et al. Hormonal modulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in gonadotropin-stimulated and -desensitized testicular Leydig`s cells. J Biol Chem, 1981,256(24):12719-24.
    [98] Shiratsuchi A, Kawasaki Y, Ikemoto M, et al. Role of class B scavenger receptor type I in phagocytosis of apoptotic rat spermatogenic cells by Sertoli cells. J Biol Chem JT - The Journal of biological chemistry,1999,274(9):5901-8.
    [99] Wu Q, Sucheta S, Azhar S, et al. Lipoprotein enhancement of ovarian theca-interstitial cell steroidogenesis: relative contribution of scavenger receptor class B (type I) and adenosine 5'-triphosphate- binding cassette (type A1) transporter in high-density lipoprotein-cholesterol transport and androgen synthesis. Endocrinology JT - Endocrinology, 2003,144(6):2437-45.
    [100] Stangl H, Hyatt M, Hobbs HH. Transport of lipids from high and low density lipoproteins via scavenger receptor-BI. J Biol Chem JT - The Journal of biological chemistry, 1999,274(46):32692-8.
    [101] Travia D, Tosi F, Negri C, et al. Sustained therapy with 3-hydroxy-3-methylglutaryl-coenzyme-A reductase inhibitors does not impair steroidogenesis by adrenals and gonads. J Clin Endocrinol Metab, 1995,80(3):836-40.
    [102] 实时荧光定量 PCR 技术原理与应用. 东胜创新技术通讯, 2004.
    [103] Lie YS, Petropoulos CJ. Advances in quantitative PCR technology: 5' nuclease assays. Curr Opin Biotechnol, 1998,9(1):43-8.
    [104] Tyagi S, Bratu DP, Kramer FR. Multicolor molecular beacons for allele discrimination. Nat Biotechnol, 1998,16(1):49-53.
    [105] Yin JL, Shackel NA, Zekry A, et al. Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) for measurement of cytokine and growth factor mRNA expression with fluorogenic probes or SYBR Green I. Immunol Cell Biol, 2001,79(3):213-21.
    [106] 王茹. 生理状态下外周血中部分细胞因子基因表达的荧光定量 PCR 检测. 上海体育学院硕士研究生学位论文; 2005.
    [107] Walker NJ. Real-time and quantitative PCR: applications to mechanism-based toxicology. J Biochem Mol Toxicol, 2001,15(3):121-7.
    [108] 李丽. 不同类型运动性贫血行进时动态检测红系细胞变化的研究. 北京体育大学博士研究生学位论文; 2004.
    [109] 洪平. 低氧训练对大鼠运动能力和海马神经元的影响及其机制研究. 北京体育大学博士研究生学位论文; 2005.
    [110] Tegtbur U, Busse MW, Braumann KM. Estimation of an individual equilibrium between lactate production and catabolism during exercise. Med Sci Sports Exerc, 1993,25(5):620-7.
    [111] Voltarelli FA, Gobatto CA, de Mello MA. Determination of anaerobic threshold in rats using the lactate minimum test. Braz J Med Biol Res, 2002,35(11):1389-94.
    [112] Bacon L, Kern M. Evaluating a test protocol for predicting maximum lactate steady state. J Sports Med Phys Fitness, 1999,39(4):300-8.
    [113] Carter H, Jones AM, Doust JH. Effect of 6 weeks of endurance training on the lactate minimum speed. J Sports Sci, 1999,17(12):957-67.
    [114] Carter H, Jones AM, Doust JH. Effect of incremental test protocol on the lactate minimum speed. Med Sci Sports Exerc, 1999,31(6):837-45.
    [115] Jones AM, Doust JH. The validity of the lactate minimum test for determination of the maximal lactate steady state. Med Sci Sports Exerc, 1998,30(8):1304-13.
    [116] Simoes HG, Grubert Campbell CS, Kokubun E, et al. Blood glucose responses in humans mirror lactate responses for individual anaerobic threshold and for lactate minimum in track tests. Eur J Appl Physiol Occup Physiol, 1999,80(1):34-40.
    [117] Carter H, Jones AM, Doust JH. Changes in blood lactate and pyruvate concentrations and the lactate-to-pyruvate ratio during the lactate minimum speed test. J Sports Sci, 2000,18(3):213-25.
    [118] Tegtbur U, Machold H, Meyer H, et al. [Determining the extent of intensive physical performance in patientswith coronary heart disease]. Z Kardiol, 2001,90(9):637-45.
    [119] Snyder AC, Woulfe T, Welsh R, et al. A simplified approach to estimating the maximal lactate steady state. Int J Sports Med, 1994,15(1):27-31.
    [120] Beneke R, Hutler M, Leithauser RM. Maximal lactate-steady-state independent of performance. Med Sci Sports Exerc, 2000,32(6):1135-9.
    [121] Gollnick PD, Bayly WM, Hodgson DR. Exercise intensity, training, diet, and lactate concentration in muscle and blood. Med Sci Sports Exerc, 1986,18(3):334-40.
    [122] Ribeiro LF, Malachias PC, Junior PB, et al. Lactate and glucose minimum speeds and running performance. J Sci Med Sport, 2004,7(1):123-7.
    [123] MacIntosh BR, Esau S, Svedahl K. The lactate minimum test for cycling: estimation of the maximal lactate steady state. Can J Appl Physiol, 2002,27(3):232-49.
    [124] Gobatto CA, de Mello MA, Sibuya CY, et al. Maximal lactate steady state in rats submitted to swimming exercise. Comp Biochem Physiol A Mol Integr Physiol, 2001,130(1):21-7.
    [125] Medbo JI, Tabata I. Anaerobic energy release in working muscle during 30 s to 3 min of exhausting bicycling. J Appl Physiol, 1993,75(4):1654-60.
    [126] Stockhausen W, Grathwohl D, Burklin C, et al. Stage duration and increase of work load in incremental testing on a cycle ergometer. Eur J Appl Physiol Occup Physiol, 1997,76(4):295-301.
    [127] Ribeiro L, Balikian P, Malachias P, et al. Stage length, spline function and lactate minimum swimming speed. J Sports Med Phys Fitness, 2003,43(3):312-8.
    [128] Swensen TC, Harnish CR, Beitman L, et al. Noninvasive estimation of the maximal lactate steady state in trained cyclists. Med Sci Sports Exerc, 1999,31(5):742-6.
    [129] Jenkins DG, Quigley BM. Blood lactate in trained cyclists during cycle ergometry at critical power. Eur J Appl Physiol Occup Physiol, 1990,61(3-4):278-83.
    [130] Dawson CA, Horvath SM. Swimming in small laboratory animals. Med Sci Sports, 1970,2(2):51-78.
    [131] Harkonen M, Naveri H, Kuoppasalmi K, et al. Pituitary and gonadal function during physical exercise in the male rat. J Steroid Biochem, 1990,35(1):127-32.
    [132] 谢敏豪,杨天乐. 小鼠流动水游泳水槽. 中国运动医学杂志, 1988,7(1):38-39.
    [133] 杨声. 运动对大鼠睾丸间质细胞 β2 肾上腺素受体基因表达影响的研究. 北京体育大学; 2000.
    [134] 徐晓阳. 运动性低血睾酮与肾阳虚对大鼠肾脏功能及代谢的影响. 体育学刊, 2000(4).
    [135] 谢敏豪,曹建民,冯美云等. 运动性下丘脑-垂体-性腺功能模型的建立及药物纠正. 体育学刊, 2001,8(04).
    [136] 浦钧宗. 游泳方法建立大鼠模拟过度训练模型. 中国运动医学杂志, 1998,17(2).
    [137] 毛杰. 大白鼠游泳训练的实验方法和运动模型. 武汉体育学院学报, 2004,38(3).
    [138] 田野主编. 运动生理学高级教程. 第一版版. 北京:高等教育出版社,2003. 225.
    [139] Lin H, Wang SW, Wang RY, et al. Stimulatory effect of lactate on testosterone production by rat Leydig`s cells. J Cell Biochem, 2001,83(1):147-54.
    [140] Lu SS, Lau CP, Tung YF, et al. Lactate and the effects of exercise on testosterone secretion: evidence for the involvement of a cAMP-mediated mechanism. Med Sci Sports Exerc, 1997,29(8):1048-54.
    [141] Bosquet L, Leger L, Legros P. Blood lactate response to overtraining in male endurance athletes. Eur J Appl Physiol, 2001,84(1-2):107-14.
    [142] Urhausen A, Kindermann W. Diagnosis of overtraining: what tools do we have?. Sports Med, 2002,32(2):95-102.
    [143] 张志胜. 过度负荷对大鼠部分生化指标及心肌组织结构的影响. 中国体育科技, 1999,35(11).
    [144] 周薇,王远金,殷劲. 大鼠疲劳模型的建立及疲劳对肝脏结构和功能的影响. 成都体育学院学报,1998,24(3):81-86.
    [145] 刘无逸,陆耀飞,江伯明. 连续力竭性运动后大鼠血乳酸的持续升高. 上海体育学院学报, 1997,21(1):33-36.
    [146] 冯炜权;冯美云. 乳酸与运动能力 一、运动时乳酸生成和肌肉、血液乳酸. 中国运动医学杂志, 1987,6(3):157-161.
    [147] Hu Y, Asano K, Mizuno K, et al. Comparisons of serum testosterone and corticosterone between exercise training during normoxia and hypobaric hypoxia in rats. Eur J Appl Physiol Occup Physiol, 1998,78(5):417-21.
    [148] Hu Y, Asano K, Kim S, et al. Relationship between serum testosterone and activities of testicular enzymes after continuous and intermittent training in male rats. Int J Sports Med, 2004,25(2):99-102.
    [149] 冯连世,冯美云,冯炜权. 优秀运动员身体机能评定方法. 第一版版. 北京:人民体育出版社,2003.
    [150] 熊正英,刘小杰,石磊等. 过度训练对大鼠血清 CK、LDH、SOD、SDH 活性及 UMb 含量影响的研究. 中国运动医学杂志, 2000,19(01).
    [151] 郑陆,隋波,潘力平等. 过度训练动物模型的建立. 中国运动医学杂志, 2000,19(2):179-181.
    [152] Azhar S, Leers-Sucheta S, Reaven E. Cholesterol uptake in adrenal and gonadal tissues: the SR-BI and 'selective' pathway connection. Front Biosci, 2003,8:s998-1029.
    [153] Reaven E, Zhan L, Nomoto A, et al. Expression and microvillar localization of scavenger receptor class B, type I (SR-BI) and selective cholesteryl ester uptake in Leydig`s cells from rat testis. J Lipid Res, 2000,41(3):343-56.
    [154] Landschulz KT, Pathak RK, Rigotti A, et al. Regulation of scavenger receptor, class B, type I, a high density lipoprotein receptor, in liver and steroidogenic tissues of the rat. J Clin Invest, 1996,98(4):984-95.
    [155] Azhar S, Menon KM. Receptor mediated gonadotropin action in gonadal tissues: relationship between blood cholesterol levels and gonadotropin stimulated steroidogenesis in isolated rat Leydig and luteal cells. J Steroid Biochem, 1982,16(2):175-84.
    [156] Benahmed M, Reventos J, Saez JM. [Role of plasma lipoproteins in the function of steroidogenic tissues]. Ann Endocrinol (Paris), 1983,44(1):43-50.
    [157] Benahmed M, Reventos J, Saez JM. Steroidogenesis of cultured purified pig Leydig`s cells: effects of lipoproteins and human chorionic gonadotropin. Endocrinology, 1983,112(6):1952-7.
    [158] Hou JW, Collins DC, Schleicher RL. Sources of cholesterol for testosterone biosynthesis in murine Leydig`s cells. Endocrinology, 1990,127(5):2047-55.
    [159] 蔡蕾. 运动和山楂对大鼠高脂血症的治疗作用及其机理的研究. 中国运动医学杂志, 2000,19(01).
    [160] Ramachandran S, Penumetcha M, Merchant NK, et al. Exercise reduces preexisting atherosclerotic lesions in LDL receptor knock out mice. Atherosclerosis, 2005,178(1):33-8.
    [161] Xie C, Richardson JA, Turley SD, et al. Cholesterol substrate pools and steroid hormone levels are normal in the face of mutational inactivation of NPC1 protein. J Lipid Res, 2006.
    [162] Langer C, Gansz B, Goepfert C, et al. Testosterone up-regulates scavenger receptor BI and stimulates cholesterol efflux from macrophages. Biochem Biophys Res Commun, 2002,296(5):1051-7.
    [163] Clark BJ, Wells J, King SR, et al. The purification, cloning, and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-10 mouse Leydig tumor cells. Characterization of the steroidogenic acute regulatory protein (StAR). J Biol Chem, 1994,269(45):28314-22.
    [164] Lin D, Sugawara T, Strauss JF 3rd, et al. Role of steroidogenic acute regulatory protein in adrenal and gonadal steroidogenesis. Science, 1995,267(5205):1828-31.
    [165] Heemers H, Vanderhoydonc F, Roskams T, et al. Androgens stimulate coordinated lipogenic gene expression in normal target tissues in vivo. Mol Cell Endocrinol, 2003,205(1-2):21-31.
    [166] Dobs AS, Schrott H, Davidson MH, et al. Effects of high-dose simvastatin on adrenal and gonadal steroidogenesis in men with hypercholesterolemia. Metabolism, 2000,49(9):1234-8.
    [167] Dobs AS, Miller S, Neri G, et al. Effects of simvastatin and pravastatin on gonadal function in male hypercholesterolemic patients. Metabolism, 2000,49(1):115-21.
    [168] Santini SA, Carrozza C, Lulli P, et al. Atorvastatin treatment does not affect gonadal and adrenal hormones in type 2 diabetes patients with mild to moderate hypercholesterolemia. J Atheroscler Thromb, 2003,10(3):160-4.
    [169] Adah F, Benghuzzi H, Tucci M, et al. Evaluation of the male reproductive organs after treatment with continuous sustained delivery of statin for fracture healing. Biomed Sci Instrum, 2005,41:54-61.
    [170] de Graaf L, Brouwers AH, Diemont WL. Is decreased libido associated with the use of HMG-CoA-reductase inhibitors?. Br J Clin Pharmacol, 2004,58(3):326-8.
    [171] Hunter MG, Cooke BA. The functional activity of adult mouse Leydig`s cells in monolayer culture: effect of lipoproteins, pregnenolone and cholera-toxin. Mol Cell Endocrinol, 1985,39(3):217-28.
    [172] Klinefelter GR, Ewing LL. Optimizing testosterone production by purified adult rat Leydig`s cells in vitro. In Vitro Cell Dev Biol, 1988,24(6):545-9.
    [173] 郭华. StAR —— 类固醇激素合成急性调节蛋白. 国外医学内分泌学分册, 2001,21(5):266-268.
    [174] 马新庭,田振军. 运动与线粒体关系的研究进展. 延安大学学报(自然科学版), 2004,23(3).
    [175] Diemer T, Allen JA, Hales KH, et al. Reactive oxygen disrupts mitochondria in MA-10 tumor Leydig`s cells and inhibits steroidogenic acute regulatory (StAR) protein and steroidogenesis. Endocrinology, 2003,144(7):2882-91.
    [176] Hales DB. Testicular macrophage modulation of Leydig cell steroidogenesis. J Reprod Immunol, 2002,57(1-2):3-18.
    [177] Hales DB, Allen JA, Shankara T, et al. Mitochondrial function in leydig cell steroidogenesis. Ann N Y Acad Sci, 2005,1061:120-34.
    [178] Mendis-Handagama SM, Siril Ariyaratne HB. Leydig`s cells, thyroid hormones and steroidogenesis. Indian J Exp Biol, 2005,43(11):939-62.
    [179] Mendis-Handagama SM, Ariyaratne HB. Effects of thyroid hormones on Leydig`s cells in the postnatal testis. Histol Histopathol, 2004,19(3):985-97.
    [180] Luo L, Chen H, Stocco DM, et al. Leydig cell protein synthesis and steroidogenesis in response to acute stimulation by luteinizing hormone in rats. Biol Reprod, 1998,59(2):263-70.
    [181] 王鲜忠,吴建云,孙燕等 WANG Xianzhong WU Jianyun SUN Yan PAN Hongmei ZHANG Jiahua. 睾酮可通过抑制 StAR 蛋白的表达调节自身的分泌. 科学技术与工程, 2005,5(9).
    [182] Millena AC, Reddy SC, Bowling GH, et al. Autocrine regulation of steroidogenic function of Leydig`s cells by transforming growth factor-alpha. Mol Cell Endocrinol, 2004,224(1-2):29-39.
    [183] Hauet T, Liu J, Li H, et al. PBR, StAR, and PKA: partners in cholesterol transport in steroidogenic cells. Endocr Res, 2002,28(4):395-401.
    [184] 田振军,熊正英,郭进等. 大鼠游泳过度训练模型的建立及心室构型改建的研究. 陕西师范大学学报(自然科学版), 1996,24(3):104-109.
    [185] 林华,吕国枫,宫德正. 衰竭运动小鼠肝损伤的实验性研究. 天津体育学院学报, 1994,9(4):9-11.
    [186] 苏全生,徐明. 运动对肾脏的影响. 现代康复, 2001,5(1):14-15.
    [187] Woody CJ, Weber SL, Laubach HE, et al. The effects of chronic exercise on metabolic and reproductive functions in male rats. Life Sci, 1998,62(4):327-32.
    [188] Manna I, Jana K, Samanta PK. Effect of different intensities of swimming exercise on testicular oxidative stress and reproductive dysfunction in mature male albino Wistar rats. Indian J Exp Biol, 2004,42(8):816-22.
    [189] Manna I, Jana K, Samanta PK. Intensive swimming exercise-induced oxidative stress and reproductive dysfunction in male wistar rats: protective role of alpha-tocopherol succinate. Can J Appl Physiol, 2004,29(2):172-85.
    [190] Manna I, Jana K, Samanta PK. Effect of intensive exercise-induced testicular gametogenic and steroidogenic disorders in mature male Wistar strain rats: a correlative approach to oxidative stress. Acta Physiol Scand, 2003,178(1):33-40.
    [191] Andreis PG, Cavallini L, Mazzocchi G, et al. Effects of prolonged administration of lovastatin, an inhibitor of cholesterol synthesis, on the morphology and function of rat Leydig`s cells. Exp Clin Endocrinol, 1990,96(1):15-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700