用户名: 密码: 验证码:
BMP-2基因修饰的骨髓基质干细胞复合纳米骨促进兔腰椎融合的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     脊柱融合术是脊柱外科最常见的手术之一,但融合失败率较高。目前设计的多种内固定器械完全可以保证脊柱的即刻稳定性,提供植骨融合所需的力学环境,但长期稳定还须依靠骨性融合。脊柱融合术中,自体骨移植通常被认为是“金标准”,但脊柱融合术的植骨需要量较大而自体骨来源有限,并且会对供体造成新的损害,常会伴有供区疼痛、神经损伤、骨折、感染等并发症;异体骨有免疫原性,而且存在传染疾病的潜在危险。影响脊柱骨性融合的因素有很多,许多研究希望通过寻找高效能的自体骨替代材料促进脊柱融合。由支架材料、种子细胞和骨诱导因子复合构建的组织工程骨作为一种理想的自体骨替代物,有希望通过骨引导和骨诱导方式促进脊柱融合,成为目前骨科研究热点之一。
     本实验利用腺病毒载体介导的BMP-2体外基因治疗策略,联合应用骨组织工程技术,将骨形态发生蛋白-2(BMP-2)基因导入兔骨髓基质干细胞(BMSCs),复合胶原基纳米骨(nHAC)体外构建组织工程骨,回植兔腰椎椎体间,观察椎体间融合效果,为探索一种可应用于促进脊柱融合,具有骨诱导生物活性的自体骨替代新材料奠定实验基础。
     方法
     1、腺病毒介导的BMP-2基因转染兔BMSCs及对其增殖、成骨分化的影响
     (1)携带BMP-2基因的重组腺病毒表达载体(Ad-BMP-2)的扩增、鉴定与滴定常规贴壁培养及传代人胚肾细胞(HEK293细胞);通过感染293细胞扩增、提纯Ad-BMP-2;通过PCR检测、基因测序鉴定;通过噬菌斑试验测定病毒滴度。
     (2)Ad-BMP-2体外转染兔BMSCs及转染后BMP-2表达检测全骨髓培养法分离培养兔BMSCs。通过成骨、成脂肪诱导鉴定BMSCs:①Von kossa染色观察矿化结节、钙钴法染色观察碱性磷酸酶(ALP)活性;②油红染色观察脂肪滴。Ad-BMP-2转染BMSCs,同等条件下β-半乳糖酐酶基因的腺病毒表达载体(Ad-Lacz)转染BMSCs,X-gal免疫染色检测转染效率;原位杂交和免疫组化检测转染后BMSCs内BMP-2基因在mRNA和蛋白水平的表达;Western Blot检测BMP-2分泌性蛋白的表达。
     (3)BMP-2基因转染对BMSCs增殖分化的影响通过流式细胞仪观察细胞周期的变化,分析转基因对BMSCs增殖的影响。通过酶标法检测ALP活性;免疫荧光检测骨钙素(OCN)、Ⅰ型胶原表达,分析转基因对BMSCs成骨分化的影响。
     2、BMP-2基因修饰的BMSCs复合nHAC体外构建组织工程骨
     胰酶消化收集Ad-BMP-2转染的BMSCs,均匀接种nHAC支架,复合培养。扫描电镜观察支架材料中细胞粘附、生长情况;同时能量谱仪检测细胞周围钙质沉积情况;Western Blot检测BMP-2表达情况。
     3、BMP-2基因修饰的BMSCs复合nHAC促进兔腰椎椎间融合的实验研究
     (1)实验动物分组新西兰大耳白兔随机分为5组,每组12只:①Ad-BMP-2转染的BMSCs+nHAC支架组(A组);②BMSCs+nHAC支架组(B组);③nHAC支架组(C组);④自体髂骨组(D组);⑤空白组(E组)。各组再均分为4、8、12周观察组。
     (2)建立兔腰椎椎体间融合动物模型及植骨
     (3)观察指标①X线检查分别于术后4、8、12周摄腰椎侧位X线片,观察新骨形成及椎间融合情况。②大体观察手法检测判断植骨融合情况,计算融合率。③生物力学检测第12周取融合节段标本,在生物力学实验机上进行抗压、抗弯、抗伸强度测试,比较各组融合节段生物学性能。④组织形态学观察第4、8、12周各组标本HE染色,光镜下观察各组融合区成骨情况。⑤组织计量学分析各组融合区新骨形成情况取4、8、12周的各组HE染色组织切片,显微镜下电脑摄取图像,图像分析软件统计新生骨在融合区域所占的面积百分比。⑥免疫组化染色观察融合区BMP-2表达、分布情况。⑦统计学方法数据采用SPSS11.5统计软件处理,方差分析比较组间差异,P<0.05为差异有统计学意义。
     实验结果
     1、第一部分结果
     (1)Ad-BMP-2的鉴定通过提取DNA进行PCR扩增,琼脂糖凝胶电泳结果表明仅Ad-BMP-2转染组获得1.2 kb的基因片段,经基因测序证实与BMP-2cDNA序列一致。
     (2)BMSCs的培养观察原代细胞接种24~72h后,圆形细胞贴壁逐渐变化成短梭形和多角形,第7天贴壁细胞呈梭形,增殖活跃,第10天贴壁细胞融合率达80%以上,部分融合成片状,呈旋涡状生长,从整体来看大多数细胞沿胞体长轴呈有序排列。细胞传代后生长更加迅速,大多于传代后12h内贴壁,24h后迅速生长,7~10天后长满瓶底。
     (3)BMSCs的鉴定成骨诱导后细胞仍继续生长繁殖,呈现铺路石样外观,细胞间出现了较多的、散在的致密圆形团块;Von kossa染色显示细胞间出现了黑染的矿化结节;ALP钙钴法染色显示大多数的细胞胞浆呈棕黑色阳性着色。成脂肪诱导后,油红染色,细胞中出现橙红染色的脂肪滴。结果表明,细胞经诱导可向成骨细胞、脂肪细胞分化,具有多向分化潜能,证实培养细胞为BMSCs。
     (4)Ad-BMP-2转染BMSCs及转染后BMP-2表达检测对照Ad-Lacz转染BMSCs,X-gal免疫染色检测显示病毒转染效率达90%以上。BMP-2原位杂交显示,转基因BMSCs的胞浆中有棕黄色颗粒性阳性杂交信号:免疫细胞化学检测显示,转基因BMSCs的胞浆中有棕黄色的阳性信号;细胞培养液Western Blot检测显示仅转染组有BMP-2阳性条带。上述结果表明Ad-BMP-2可高效转染BMSCs,并有BMP-2基因在mRNA和蛋白水平的高表达。
     (5)Ad-BMP-2转染对BMSCs增殖及成骨分化的影响流式细胞仪检测G1期、S期细胞比例与空白对照组无差异,表明细胞DNA的合成以及细胞的增殖未因转染受影响。转基因细胞ALP活性较对照组明显增高;骨钙素、Ⅰ型胶原免疫荧光检测,见胞浆内有大量显绿色荧光的阳性物质,结果表明,转染后BMSCs向成骨细胞分化。
     2、第二部分结果
     扫描电镜结果表明,BMP-2基因修饰的BMSCs与nHAC复合培养,细胞在支架表面和孔隙内粘附、生长良好。能量谱仪检测到细胞部位含钙量较空白处明显增高,表明细胞向成骨方向分化。
     Western Blot检测显示Ad-BMP-2转染组有BMP-2蛋白表达,而Ad-Lacz转染组和未转染组呈阴性,表明BMP-2基因修饰的BMSCs与nHAC复合后,细胞功能未受影响,仍可较高水平表达BMP-2。
     3、第三部分结果
     X线检查,大体观察及组织形态学观察结果显示,12周时E组脊柱未融合,表明造模成功。A、B、D组完全融合,C组融合率为75%。组织计量学分析测量各时相修复性新骨面积,A组显著高于B、C组(P<0.01),与D组无显著性差异(P>0.05),表明A组较快的成骨速度,与自体骨无差异。生物力学检测结果显示,A组各项指标显著优于B、C组(P<0.01),与D组无显著性差异(P>0.05),表明A组良好成骨质量及生物力学性能。
     BMP-2免疫组化检测显示,术后4周A组软骨及骨痂内为强阳性反应,棕黄色颗粒状阳性物质分布于间充质细胞、成软骨细胞、成骨细胞内,成熟骨细胞未见明显的阳性反应。B、C组阳性细胞分布少,表达较弱。结果表明,BMP-2基因修饰的BMSCs在体内仍可持续稳定的表达、分泌BMP-2。
     结论
     1、在重组复制缺陷型腺病毒载体介导下BMP-2基因成功导入BMSCs,基因转染效率及表达水平较高。
     2、BMP-2基因修饰的BMSCs其增殖未因转染受影响,并可持续表达基因产物,诱导其向成骨细胞分化。
     3、nHAC支架具有良好的生物相容性,适于转基因细胞的粘附、生长和增殖;转基因细胞在支架环境中仍继续表达并分泌BMP-2,诱导BMSCs成骨分化。
     4、nHAC具有良好的可降解性、骨键合能力和骨传导性,是优选的骨组织工程支架材料。BMP-2基因修饰的BMSCs在体内保持存活并继续表达外源基因,同时促进植入细胞向成骨细胞转化,参与成骨,促进椎间融合。
     5、BMP-2基因修饰的BMSCs复合nHAC构建的组织工程骨是一种可应用于促进脊柱融合,具有骨诱导生物活性的自体骨替代新材料。
Preface
     Spinal fusion has been one of the most popular procedures performed in spine surgery,however,some clinical investigations have shown a considerable rate of failure to achieve a solid bony union.The most common clinical approach for preventing nonunions has been the use of internal fixation,which provides the initial stability and mechanical environment for bony fusion.Despite the improved mechanical strength of the recent spinal instrumentations,spinal bony fusion is the objective.Traditional spinal fusion procedures use autogenous bone as a graft to provide the osteoinductive and osteoconductive components necessary for the formation of new bone at the operative site.Although autogenous bone graft is though to be a gold standard in the achievement of solid spinal fusion,there is frequently an inadequate supply of autogenous bone graft for performing multilevel spinal arthrodesis.In addition,the morbidity of autogenous bone graft harvest is reported to be as high as 30%,with the most frequent complications including chronic donor site pain,nerve injury,infection,fracture,hematoma,and increased operative time.The healing of a spine fusion is a multifactorial process,the donor site morbidity,limited supply,and imperfect success rate of autogenous bone graft has alerted researchers to search for new suitable alternatives.The ideal autograft alternative is a material that may be used entirely in place of autogenous bone graft to achieve the same or a better fusion success rate.The rationale underlying the use of a matrix/stem cells/growth factor combination as an alternative to autogenous bone is that the osteoconductive and osteoinductive components of such a combination will attract,support,and simulate host osteogenic cells to form new bone tissue.Currently,there has been a considerable clinical interest in the use of matrix/stem cells/growth factor combination for bone regeneration and osseous graft supplementation therapy.
     Accordingly,the current study introduced collagen based composite (nano-hydroxyapatite collagen,nHAC) as a scaffold to carry adenovirus-mediated bone morphogenetic protein-2(BMP-2) transfected rabbit bone marrow stromal cells (BMSCs) in vitro,and evaluated its effect on the relative success of gene therapy by means of a rabbit spinal-fusion experiment.
     Materials and Methods
     1、Adenovirus-mediated bone morphogenetic protein-2(BMP-2) transfected rabbit bone marrow stromal cells(BMSCs) in vitro
     (1) Production of the Adenoviral Vector
     Two different adenoviral constructs were prepared for this study: Adenovirus-Lacz construct(Ad-Lacz) and adenovirus BMP-2 construct(Ad-BMP-2). 293 cells were incubated in Dulbecco's Modified Eagle Medium(DMEM) containing 10%fetal bovine serumand.Ad-BMP-2 were purified and detected by PCR.Titers were determined by standard plaque assay.
     (2) Ad-BMP-2 transfected rabbit BMSCs in vitro
     Rabbit BMSCs were isolated and cultured by the method of complete bone borrow culture.BMSCs were identified by inducting multipotent differentiation.BMSCs differentiated into osteoblasts were assessed by Von Kossa staining to observe the mineralized nodules and standard alkaline phosphatase(ALP) assay.Adipocytes differentiation of BMSCs was assessed by Alizarin Red-S staining.Ad-BMP-2 transfected rabbit BMSCs.mRNA and protein expression of BMSCs was detected by BMP-2 hybridization in situ and immunohistochemical technique.Ad-Lacz transfected rabbit BMSCs in the same way.X-gal staining was used to detect the transfection rate and Western blot analysis was used to determine if BMSCs infected with Ad-BMP-2 produced BMP-2 protein.
     (3) The effect of BMP-2 gene transfection on BMSCs proliferation and differentiation
     The change of BMSCs cell cycle after transfection was observed by flow cytometry.Alkaline phosphatase activity and staining,immunofluorescence analysis of osteocalcin and collagen I were used to analyze the effect of BMP-2 gene transfection on BMSCs proliferation and differentiation.
     2、BMSCs modified by BMP-2 gene was planted into the scaffold of nano-hydroxyapatite collagen(nHAC) to construct tissue engineering bone in vitro
     BMSCs transfected by Ad-BMP-2 were collected after they were trypsinized with trypsin.Then the BMSCs were planted into the scaffold of nHAC equably and were cultured at 37℃in a humidified atmosphere with 5%CO_2.
     The adhesion and growth of cells on the nHAC scaffold were observed by scanning electronic microscopy(SEM).Energy spectrometer was used to detect the secretion of calcium around cells.Western blot analysis was used to determine the expression BMP-2 protein.
     3、BMSCs by Ad-BMP-2 Gene transfer combined nHAC scaffold for a rabbit Lumbar-Fusion Experiment
     (1) Surgical Procedure
     Sixty mature New Zealand white rabbits(weight 2.0-2.5kg) were divided into five groups:BMSCs transfected by Ad-BMP-2 with nHAC group(group A),BMSCs not transfected by Ad-BMP-2 with nHAC group(group B),nHAC group(group C), autologous bone group(group D) and control group(group E).Rabbits were anesthetized by abdominal injection of 1.5 ml/kg of 3%sodium pentobabital.After being placed in the prone position in sterile fashion,an anterior approach by posterior peritoneal was made,followed by developing to expose the vertebral body and intervertebral space of L4-5 or L5-6.After removing the nucleus pulposus,cartilage and annulus fibrosus and endplates,graft materials were placed and fixed.Penicillin was intramuscularly injected on postoperative day 3 for antibiosis.
     (2) Radiographic Evaluation
     The L5-L6 spines from each group animals were examined by lateral plain radiographs sequentially at 4,8,and 12 weeks after surgery.Fusion and location of new bone formation were observed.
     (3) Biomechanical Testing
     Biomechanical testing to evaluate the solidity of the L5-L6 fusion site was performed by a three-point flexion-bending test.The biological character of fusion segment was compared and accounted.
     (4) Gross and Histological Analysis
     The specimens of the spinal segments of all the animals were harvested at 4,8,12 weeks postsurgery.They were inspected grossly first,and then sent for light microscopic examination.In the laboratory,they were stained with hematoxylin and eosin(HE stain),and observed under a light microscope to examine for bony fusion. HE-stained specimens were analyzed by computational photogrammetry and the pixels of new form bone were calculated by image-analysis software.Immunohistochemical stain analysis was used to observe the expression of BMP-2.
     (5) Statistical Analysis
     SPSS11.5 for windows was used for statistical analysis.Comparisons in each group were made using one-way analysis of variance.Significance for all tests was defined as P<0.05.
     Results
     1、Part 1
     (1) Determination of Ad-BMP-2
     DNA-PCR analysis showed that 1.2 kb gene segment was observed in Ad-BMP-2 tranfected group,whereas in Ad-Lacz transfected group or 293 cells not transfected group there were none.
     (2) BMSCs culture
     After primary culture was sustained for 24-72 hours,the round cells displayed a polygonal morphology.At day 7-10 of the culture,the rate of proliferation accelerated to form the colony with approximately 80%confluency and at day 14-21,the cells grew circinately and fused to sheets.The cultured cells appeared to grow more rapidly after passages were done.
     (3) Determination of BMSCs
     The cultured cells proliferated with cobblestone-like appearance after mineralized fluid was added into the medium,more dispersed compact round conglomeration could be observed among the cells.Von Kossa staining showed black mineralized nodule among the cells and standard alkaline phosphatase(ALP) assay displayed the positive brown-black stain in plasma.After adipocytes induction,orange-red stained fat globelet was observed by Alizarin Red-S staining.The cultured cells were identified as BMSCs because of the multipotent differentiation to blastocytes and adipocytes.
     (4) BMP-2 expression of BMSCs transfected by Ad-BMP-2
     Positive X-Gal staining was observed in histologic sections with more than 90% of tranfection rate.In the hybridization in situ and immunocytochemical analysis,we observed positive signal in the plasma of transfected BMSCs.In the Western blot analysis,positive signal lane of BMP-2 was observed in transfected group,whereas in the control group no signal was seen.It was proved that Ad-BMP-2 transfected BMSCs efficiently with high expression of mRNA and protein of BMP-2 gene.
     (5) The effect of BMP-2 gene transfection on BMSCs proliferation and differentiation
     Flow cytometry showed there was no difference of cell proportion of G1 phase and S phase between tansfected BMSCs group and the control group,which indicated that the synthesization of cell DNA and proliferation was not effected by transfection. Alkaline phosphatase activity of transfected cells was significantly higher than that in the control group.Positive green flurescent substance in plasma by immunofluorescence analysis of osteocalcin and positive expression of collagenⅠby immunocytochemical analysis indicated that transfected BMSCs differentiated to osteoblasts.
     2、Part 2
     BMSCs transfected by Ad-BMP-2 adhered to the surface and hole of the nHAC scaffold and grow well by scanning electronic microscopy(SEM) observation.Energy spectrometer detection showed that higher calcium content than that in the control.
     Positive expression BMP-2 protein were detected by Western blot analysis in Ad-BMP-2 transfected BMSCs group while negative in Ad-Lacz transfected BMSCs group and non-transfected BMSCs group,indicating that BMSCs transfected by Ad-BMP-2 was not effected by the nHAC.
     3、Part 3
     Radiographic evaluation,gross and histological analysis showed that all specimens were graded as nonunion in group E,complete fusion in group A,B,D and partial fusion(75%) in group C at 12 weeks.
     Computational photogrammetry demonstrated that the area of new formation bone in group A was obviously higher than that in group B,C.There was no difference on the area of new formation bone between group A and E,which indicated that bone fusion of group A is the same as the autografts.Biomechanical testing was performed to compare the stiffness of the specimens.The results showed that they were not significantly different between group A and E.
     Immunohistochemical analysis of BMP-2 showed strong positive reaction in group A and brown-yellow granule distributed in mesenchymal cells,chondrocytes, osteoblasts and bone cells,while weak positive reaction was observed in group B and C. It indicated that BMSCs transfected by Ad-BMP-2 could express BMP-2 persist and stably.
     Conclusions
     1、Adenovirus-mediated BMP-2 gene could be transfect to rabbit bone marrow stromal cells with high level transfection rate and expression.
     2、The proliferation of BMSCs transfected by Ad-BMP-2 was not effected by transfection,BMSCs could express gene products and differentiate to blastocytes.
     3、nHAC scaffold could facilitate bony ingrowth and biocompatible,which was in favor of the adhesion,growth and proliferation of trans-gene cells.Trans-gene cells could express BMP-2 and induct the differentiation to blastocytes of BMSCs.
     4、BMSCs transfected by Ad-BMP-2 could express extrinsic gene and promote the differentiation to blastocytes of planted BMCSs and bony fusion in rabbit.
     5、BMSCs transfected by adenovirus-mediated BMP-2 Gene combined collagen based composite(nHAC) scaffold was a new substitute of autografts with bioactivity of blastocytes induction.
引文
1 Zdeblick TA.A prospective,randomized study of lumbar fusion:Preliminary results.Spine,1993,18:983-991
    2 Hibbs RA,Albee FH.An operation for progressive spinal deformities.NY State J Med,1911,93:1013-1020
    3 Suh DY,Boden SD,Louis-Ugbo J,et al.Delivery of recombinant human bone morphogenetic protein-2 using a compression-resistant matrix in posterolateral spine fusion in the rabbit and in the non-human primate.Spine,2002,27(4):353-360
    4 Patel VY,Zhao L,Wong P,et al.An in vitro and in vivo analysis of fibrin glue use to control bone morphogenetic protein diffusion and bone morphogenetic protein-stimulated bone growth.Spine,2006,6(4):397-403
    5 Minamide A,Yoshida M,Kawakami M,et al.The use of cultured bone marrow cells in type Ⅰ collagen gel and porous hydroxyapatite for posterolateral lumbar spine fusion.Spine,2005,30(10):1134-1138
    6 刘劲松,曾才铭,王宏邦,等.骨髓基质细胞培养和体外成骨研究.中国修复重建外科杂志,1997,11:238-241
    7 Yamaguchi A,Ishizuya T,Kintou N,et al.Effects of BMP-2,BMP-4,and BMP-6 on osteoblastic differentiation of bone marrow-derived stromal cell lines,ST2 and MC3T3-G2/PA6.Biochem Biophys Res Commun,1996,220:366-371
    8 Boden SD,Schimandle JH.Biologic enhancement of spinal fusion.Spine,1995,20:113-125
    9 Boden SD,Zdeblick TA,Sandhu HS.The use of rhBMP-2 in interbody fusion cages:Definitive evidence of osteoinduction in human.Spine,2000,25:376-385
    10 Boden SD,Grob D,Damien C.Ne2-steo bone growth factor for posterolateral lumbar spine fusion:results from a nonhuman primate study and a prospective human clinical pillot study.Spine,2004,29(5):504-514
    11 Camper Y.Bone grafts and substitutes.Orthop Network,1995,6:7-9.
    12 吴宗键,王继芳,卢世璧.诱导成骨的局部基因治疗.中华骨科杂志, 2001, 21(12):760-762
    
    13 Khan SN? Hidaka C. Sandhu HS, et al. Gene therapy for spine Fusion. Orthop Clin Nor Am, 2000, 31(3):473-481
    
    14 Service RF. Tissue engineers build new bone. Science, 2000, 289(5384):1498-1500
    
    15 Franceschi RT, Yang S, Rutherford RB, et al. Gene therapy approaches for bone regeneration. Cells Tissues Organs, 2004, 176(1-3): 95-108
    
    16 Betz OB, Betz VM, Nazarian A, et al. Direct percutaneous gene delivery to enhance healing of segmental bone defects. J Bone Joint Surg Am, 2006, 88(2): 355-365
    
    17 Evans CH , Robbins PD . Genetically augmented tissue engineering of the musculoskeletal system. Clin Ortho Relat Res, 1999, 367(Supp 1): 410-418
    
    18 Winn SR, Hu Y, Sfeir C, et al. Gene therapy approaches for modulating bone regeneration. Adv Drug Deliv Rev, 2000, 42: 121-12
    
    19 Bao JJ, Zhang WW, Kou MT, et al. Adenoviral delivery recombinant DNA transgenic mice bearing hepatocellular carcinomas. Hum Gene Ther, 1996, 7: 355-365
    
    20 Musgrave DS, Bosch P, Lee JY, et al. Ex vivo gene therapy to produce bone using different cell types. Clin Orthop Relat Res, 2000, 378: 290-305
    
    21 Mills BG, Singer FR, Weiner LP, et al. Long-term culture of cells bone effected by paget's disease. Calcif Tissue Int, 1979, 29: 79-87
    
    22 Robey PG. Collagenase-treated trabecular bone fragments: a reproducible source of cells in the osteoblastic lineage. Calcif Tissue Int, 1995, 56: sll-sl2
    
    23 GallaySH, MiuraY, CommissoCN, et al. Relationship of bonor site to chondrogenic potential of periosteum in vitro. J Orthop Res, 1994, 12: 515-525
    
    24 Paul HK, Keni GU, Renny TF, et al. Gene therapy-directed osteogenesis:BMP-7-transduced human fibroblasts from bone in vivo. Human gene therapy, 2000,11: 1201-1210
    
    25 Owen ME. Lineage of osteogenic cells and their relaionship to the stromal system. In: peel WA, eds. Bone and Mineral Research, Amsterdam: Elsevier, 1984, 1-25
    26 Friedenstein AJ.Stromal mechanisms of bone marrow:cloning in vitro and retransplantation in vivo.Hamatol Bluttransfus,1980,25(1):19-29
    27 杨志明,余希杰,解慧琪,等.不同来源成骨细胞生物学特性的比较研究.中华创伤杂志,2001,17:10-13
    28 Chen D,Zhao M,Mundy GR.Bone morphogenetic proteins.Growth Factors,2004,22(4):233-241
    29 De Biase P,Capanna R.Clinical applications of BMPs.Injury,2005,36(Suppl 3):s43-s46
    30 张永刚,卢世璧,王继芳.骨引导与骨诱导.中华创伤杂志,1996,12:332-333
    31 Sandhu H.Spinal fusion using bone morphogenetic proteins.Orthopedics,2004,27(7):717-718
    32 Wozney JM,Rosen V.Bone morphogenetic protein and bone morphogenetic protein gene family in bone formation and repair.Clin Orthop ReIat Res,1998,346(1):26-37
    33 Edward HR,Joseph W,Marshball RU,et al.Bone Morphogenetic Protein-2 and Applications.Clin Orthop Relat Res,1996,324:39-46
    34 Patel VV,Zhao L.Wong P,et al.An in vitro and in vivo analysis of fibrin glue use to control bone morphogenetic protein diffusion and bone morphogenetic protein-stimulated bone growth.Spine,2006,6(4):397-4033
    5 Falla N,Van Vlasselaer,Bierkens J,et al.Characterization of a 5-fluorouracilenriched osteoprogemitor population of the murine bone marrow.Blood,1993,82(7):3580-3591
    36 Rodriguez JP,Rios S,Gonzalez M.Modulation of the proliferation and differentiation of human mesenchymal stem cells by copper.J Cell Biochem,2002,85(1):92-100
    37 Rawadi G,Yayssiere B,Dunn F,et al.BMP-2 controls alkaline phosphatase expression and osteoblast mineralization by a Wnt autocrine loop.J Bone Miner Res, 2003, 18(10): 1842-1853
    
    38 Hosoi T. Bone and bone related biochemical examinations. Bone and collagen related metabolites. Structure and metabolisms of collagen. Clin Calcium, 2006,16(6):971- 977
    
    39 Hosoda K, Eguchi H, Nakamoto T, et al. Sandoich immunoassay for intact human osteocalcin. Clin Chem, 1992, 38(11): 2233-2238
    
    40 Kao PC, Riggs BL, Schryver PG. Development and evaluation of an osteocalcin chemiluminoimmunoassay. Clin Chem, 1993, 39(7): 1369-1374
    
    41 Ebara S, Nakayama K. Mechanism for the action of bone morphogenetic proteins and regulation of their activity. Spine, 2002, 27(16suppl 1): s10-s15
    
    42 Glassman SD, Dimar JR, Carreon LY, et al. Initial fusion rates with recombinant human bone morphogenetic protein-2/compression resistant matrix and a hydroxyapatite and tricalcium phosphate/collagen carrier in posterolateral spinal fusion. Spine, 2005, 30(15): 1694-1698
    
    43 Prokop A. Bioartificial organs in the twenty-first century. . Ann New York Acad Sci, 2001, 944: 472-490
    
    44 Du C, Cui FZ, Zhang W, et al. Formation of calcium phosphate/collagen composites through mineralization of collagen matrix. J Biomed Mater Res, 2000, 50(4):518-527
    
    45 Wang RZ, Cui FZ, Lu HB, et al. Synthesis of nanophase hydroxyapatite collagen composite. J Mater Sci Lett, 1995, 14: 490-492
    
    46 Weiner S , Wagne HD . The material bone : structure-mechanical function relations. Annu Rev Mater Sci, 1998, 28: 271-298
    
    47 Wang M, Joseph R, Bonfield W. Hydroxyapatite-polyethylene composites for bone substitution: effects of ceramic size and morphology. Biomaterials, 1998, 19:2357-2366
    
    48 Du C, Cui FZ, Feng QL, et al. Tissue response to nano-hydroxyapatite/collagen composite implants in marrow cacvity. J Biomed Mater Res, 1998, 42(4):540-548
    49 冯庆玲,崔福斋,张伟.纳米羟基磷灰石/胶原骨修复材料.中国医学科学院学报,2002,24(2):124-128
    50 廖素三,崔福斋,张伟.组织工程中胶原基纳米骨复合材料的研制.中国医学科学院学报,2003,25(1):36-38
    51 Anselme K.Osteoblast adhesion biomaterials.Biomaterials,2000,21(7):667-681
    52 nynes RO.Integrins:verastility,modulation and signaling in cell adhesion.Cell,1992,69(1):11-25
    53 Geissler U,nempel U,Wolf C,et al.Collagen type I-coating of Ti6A14V promotes adhesion of osteoblasts.J Biomed Mater Res,2000,51(4):752-760
    54 Mizuno M,Kuboki Y.Osteoblast-related gene expression of bone marrow cells during the osteoblastic differentiation induced by type Ⅰ collagen.J Biochem,2001,129(1):133-142
    55 Webster TJ,Ergun C,Doremus RH,et al.Enhanced functions of osteoblasts on nanophase ceramics.Biomaterials,2000,21(17):1803-1810.
    56 Sun TS,Guan K,Shi SS,et al.Effect of nano-hydroxyapatite/collagen composite and bone morphogenetic protein-2 on lumbar intertransverse fusion in rabbits.Chin J Traumatol,2004,7(1):18-24
    57 Tan KK,Tan GH,Shamsul BS,et al.Bone graft substitute using hydroxyapatite scaffold seeded with tissue engineered autologous osteoprogenitor cells in spinal fusion:early result in a sheep model.Med J Malaysia,2005,60(Suppl C):53-58
    58 Grauer JN,Vaccaro AR,Kato M,et al.Development of a New Zealand white rabbit model of spinal pseudarthrosis repair and evaluation of the potential role of OP-1 to overcome pseudarthrosis.Spine,2004,29(13):1405-1412
    59 Chen Y,Luk KD,Cheung KM,et al.Combination of adeno-associated virus and adenovirus vectors expressing bone morphogenetic protein-2 produces enhanced osteogenic activity in immunocompetent rats.Biochem Biophys Res Commun,2004,317(3):675-681
    60 Muschik M,Schlenzka D,Ritslia V,et al.Experimental anterior spine fusion using bovine bone morphogenetic protein:a study in rabbits.J Orthop Sci,2000,5(2):165-170
    61 Sandhu HS,Toth JM,Diwan AD,et al.Histologic evaluation of the efficacy of rhBMP-2 compared with autograft bone in sheep spinal anterior interbody fusion.Spine,2002,27(6):567-575
    62 Boden SD,Martin GJ,Horton WC,et al.Laparoscopic anterior spinal arthrodesis with rhBMP-2 in a titanium interbody threaded cage.J Spinal Disord,1998,11(2):95-101
    63 Erbe EM,Marx JG,Clineff TD,et al.Potentital of an ultroporous beta-tricalcium phosphate synthetic cancellous bone void filler and bone mattow aspirate composite graft.Eur Spine J,2001,10(suppl 2):141-146
    64 凌翔,陶学金,陈卫民,等.胶原/纳米磷酸三钙复合人工骨修复骨缺损的实验研究.临床口腔医学杂志,2003,19(2):74-76
    65 姚晖,杜旭,杨韶华,等.纳米羟晶/胶原仿生骨修复兔颅颌骨缺损的实验研究.透析与人工器官,2000,11(2):5-8
    66 Du C,Cui FZ,FengQL,et al.Tissue response to nano- hydroxyapatite/collagen composite implants in marrow cavity.J Biomed Mater Res,1998,42(4):540- 548.
    67 Christiansen DL,Silver FH.Mineralization of an axially aligned collagenous matrix:a morphological study.CellsMater,1993,3(3):177-188
    68 Bellincampi LD,Closkey RF,Prasad R,et al.Viability of fibroblast-seeded ligament analogs after autogenous implantation.J Orthop Res,1998,16(4):414-420.
    69 Rutherford RB,Moalli M,Franceschi RT,et al.Bone morphogenetic proteingtransduced human fibroblasts convert to osteoblasts and form bone in vivo.Tissue Engineering,2002,8:441-448
    70 Wozney J M,Rosen V.Bone morphogenetic protein and bone morphogenetic protein gene family in bone formation and repair.Clin Orthop,1998,346:26-37
    71 Uludag H.Osteoinductive alternatives to bone grafts.Cur Opin Orthop,1998, 9:31-37
    72 Giannobile WV.Periodontal tissue engineering by growth factors.Bone,1996,19(Suppl 1):23-27
    73 张子军,卢世壁,王继芳,等.骨缺损中内源性BMP的分布及其作用.中华外科杂志,1996,34.596-598
    74 Bonadio J,Smiley E,Patil P,et al.Localized,direct plasmid gene delivery in vivo:prolonged therapy results in reproducible tissue regeneration.Nature Med,1999,5(7):753-759
    75 Chang SC,Chuang HL,Chen YR,et al.Ex vivo gene therapy in autologous bone marrow stromal stem cells for tissue-engineered maxillofacial bone regeneration.Gene Ther,2003,10(24):2013-2019
    76 Riew K,Wright N,Cheng S,et al.Induction of bone formation using a recombinant adenoviral vector carrying the human BMP-2 gene in a rabbit spinal fusion model.Calcif Tissue Int,1998,63(4):357-360
    77 Wang JC,Kanim LE,Yoo S,et al.Effect of regional gene therapy with bone morphogenetic protein-2-producing bone marrow cells on spinal fusion in rats.J Bone Joint SurgAm,2003,85(5):905-911
    78 Kang R,Ghivizzani SC,Muzzonigro TS,et al.Orthopaedic applications of gene therapy.Clin Orthop,2000,375:324-327
    79 Olmsted-DavisEA,Gugala Z,Gannon FH,et al.Use of a chimeric adenovirus vector enhances BMP-2 production and bone formation.Hum Gene Ther,2002,13(11):1337-1347
    80 Gelse K,Von der Mark K,Aigner T,et al.Articular cartilage repair by gene therapy using factor- producing mesenchymal cells.Arthritis Rhem,2003,48(2):430-441
    81 Dumont RJ,Dayoub H,Li JZ,et al.Ex vivo bone morphogenetic protein-9 gene therapy using human mesenchymal stem cells induces spinal fusion in rodents.Neurosurger,2002,51(5):1239-1245
    1 Zdeblick TA.A prospective,randomized study of lumbar fusion:Preliminary results.Spine,1993,18:983-991
    2 Hibbs RA,Albee FH.An operation for progressive spinal deformities.NY State J Med,1911,93:1013-1020
    3 Boden SD,Schimandle JH.Biologic enhancement of spinal fusion.Spine,1995,20:113-125
    4 Bono CM,Lee CK.Critical analysis of trends in fusion for degenerative disc disease over the past 20 years:influence of technique on fusion rate and clinical outcome.Spine,2004,29(4):455-463
    5 Urist MR,Iwata H,Ceccotti PL,et al.Bone morphogenesis in implant of insoluble bone gelatin.Pro Nat Acad Sci,1973,70:3511-3520
    6 Reddi AH.Initiation of fracture repair by bone morphogenetic protein.Clin Orthop,1998,355(Suppl):s66-s72
    7 Boden SD,Zdeblick TA,Sandhu HS.The use of rhBMP-2 in interbody fusion cages:Definitive evidence of osteoinduction in human.Spine,2000,25:376-387
    8 Boden SD,Grob D,Damien C.Ne2-steo bone growth factor for posterolateral lumbar spine fusion:results from a nonhuman primate study and a prospective human clinical pillot study.Spine,2004,29(5):504-514
    9 Camper Y.Bone grafts and substitutes.Orthop Network,1995,6:7-9
    10 吴宗键,王继芳,卢世璧.诱导成骨的局部基因治疗.中华骨科杂志,2001,21(12):760-762
    11 孟国林,胡蕴玉.基因治疗在骨科疾病治疗中的探索性应用.中华矫形外科杂志,2000,7(10):1005-1007
    12 Boden SD,Hair GA,Viggeswarapu M,et al.Gene therapy for spine fusion.Clin Orthop,2000,379(Supp 1):S225-S233
    13 Hannallah D,Peterson B,Lieberman JR,et al.Gene therapy in orthopaedic surgery.J Bone Joint Surg Am,2002,84:1046-1061
    14 Viggeswarapu M,Boden SD,Liu Y,et al.Adenoviral delivery of LIM mineralization protein-i induces new bone formation in vitro and in vivo.J Bone Joint Surg Am,2001,83:364-376
    15 Boden SD,Liu Y,Hair GA,et al.LMP-1,a LIM-domain protein,mediates,BMP-6effects on bone formation.Endocrinology,1998,139:5125-5134
    16 Boden SD,Titus L,Hair G,et al.Lumbar spine fusion by local gene therapy with a cDNA encoding a novel osteoinductive protein(LMP-1).Spine,1998,23:2486-2492
    17 熊伟.骨形态发生蛋白研究新进展.中国矫形外科杂志,2000:7(1):68-71
    18 王欣璐,刘淼.人骨形态发生蛋白-4(2b)成熟区cDNA的克隆和序列分析.中华骨科杂志,2000,20(9):529-532
    19 Winn SR,Hu Y,Sfeir C,et al.Gene therapy approaches for modulating bone regeneration.Adv Drug Deliv Rev,2000,42(1-2):121-138
    20 Kang Q,Sun MH,Cheng H,et al.Characterization of the distinec orthotopic bone-forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery.Gene Ther,2004,11(17):1312-1320
    21 Bao JJ,Zhang WW,Kou MT,et al.Adenoviral delivery recombinant DNA transgenic mice bearing hepatocellular carcinomas.Hum Gene Ther,1996:7:355-365
    22 Hannallah D,Peterson B,Lieberman JR,et al.Gene therapy in orthopaedic surgery.Instr Course Lect,2003,52:753-768
    23 Okubo Y.Osteoinduction by bone morphogenetic protein-2 via adenoviral vector under transient immunosuppression.Biochem Biophys Res Commun,2000,(267):382-387
    24 Morsy MA,Gu M,Motzel S,et al.An adenoviral vector deleted for all viral coding Cequences results in enhanced safety and extended expression of a leptin transgene.Proe Natl Acad Sci USA,1998,95:7866-7875
    25 Alden TD,Varady P,Kallemes DF,et al.Bone morphogenetic protein gene therapy.Spine,2002,27(16 suppl 1):s87-s93
    26 Fisher KJ,Jooss K,Alston J,et al.Recombinant adeno-associated virus for muscle directed gene therapy. Nat Med, 1997, 3: 306-312
    
    27 Labhasetwar V, Bonadio J, Goldstein SA, et al . Gene transfection using biodegradable nanospheres: results in tissue culture and a rat osteotomy model. Colloids and Surfaces B: Biointerfaces, 1999, 16: 281-290
    
    28 Musgrave SD, Bosch P, Lee JY, et al. Ex vivo gene therapy to produce bone using different cell types. Clin Orthop, 2000, 378: 290-305
    
    29 Hidaka C, Goshi K, Rawlins B, et al. Enhancement of spine fusion using combined gene therapy and tissue engineering BMP-7-expressing bone marrow cells and allograft bone. Spine, 2003, 28(18):2049-2057
    
    30 Peterson B, Iglesias R, Zhang J, et al. Genetically modified human derived bone marrow cells for posterolateral lumbar spine fusion in athymic rats: beyond conventional autologous bone grafting. Spine, 2005, 30(3):283-289
    
    31 RiewK, Wright N, Cheng S, et al. Induction of bone formation using a recombinant denoviral vector carrying the human BMP-2 gene in a rabbit spinal fusion model. Calcif Tissue Int, 1998, 63(4): 357-360
    
    32 Wang C, Jeffrey E, Linda EA, et al. Effect of regional gene therapy with bone morphogenetic protein-2 producing bone marrow cells on spinal fusion in rats. J Bone Joint Surg(Am), 2003, 85(5): 905-911
    
    33 Alden TD, Pittman DD, Beres EJ, et al. Percutaneous spinal fusion using bone morphogenetic protein-2 gene therapy. J Neurosurg, 1999, 90: 109-114
    
    34 Dumont RJ, Dayoub H, Li JZ, et al. Ex vivo bone morphogenetic protein-9 gene therapy using human mesenchymal stem cells induces spinal fusion in rodents. Neurosurgery, 2002, 51(5): 1239-1244

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700