用户名: 密码: 验证码:
酵母ω-酰胺酶Nit2的酶学机制研究与酵母组蛋白伴侣Hif1的结构与功能探究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Nit蛋白质家族广泛分布于动物、植物、真菌和原核细胞中,是氰水解酶超家族的第十分支。哺乳动物具有两种Nit蛋白,分别为Nitl和Nit2,它们之间具有很高的序列同源性。酵母Nit2是哺乳动物肿瘤抑制因子Nitl的同源蛋白,与Nitl一样,其底物特异性均是未知。近期研究发现,哺乳动物推测的肿瘤抑制因子Nit2是可以特异性水解α-酮戊二酸单酰胺和α-酮基琥珀酰胺的ω-酰胺酶。目前,对哺乳动物Nit2的催化机制了解甚少,而且哺乳动物Nitl的自然底物也是未知的。为此,我们解析了酵母Nit2蛋白分别在其活性中心与α-酮戊二酸和草酰乙酸共价结合的复合体结构。结构分析表明,酵母Nit2通过其Arg173、 Thr196和Thr199这三个氨基酸残基识别并结合α-酮戊二酸和草酰乙酸的α-端官能团,并通过其高度保守的催化三联体CEK结合α-酮戊二酸和草酰乙酸的γ/β-端。另外,酵母Nit2高度保守的Phe195与配体α-端官能团存在一种新型的γ/β型阴离子-π分子识别作用。同时,通过酵母Nit2结构分析发现,其二聚化参与催化反应进程。酵母Nit2的β6/7-发夹可能通过二聚体界面的传递作用而参与这一催化反应进程。酵母Nit2中参与配体相互作用的残基在Nit家族蛋白中具有高度的序列保守性,这暗示了该机制可能为Nit蛋白通用的识别与催化机制。不过,我们发现酵母Nit2与哺乳动物Nit2在结合口袋处也有重要差异,这导致了其以α-酮戊二酸单酰胺作为底物时的ω-酰胺酶活性极低,类似于哺乳动物的Nitl的活性。通过分析酵母Nit2活性口袋的大小,推测其可能结合较大的底物分子。本研究中所解析的酵母Nit2C169S突变体与未知内源性配体结合的复合物结构表明,酵母Nit2的自然底物可能是α-酮戊二酸单酰胺-N-酰胺取代二肽或者类似大小的其他α-酮戊二酸单酰胺-N-酰胺取代衍生物。哺乳动物Nitl在口袋大小方面与酵母Nit2类似,它可能具有非常相似的底物结合特异性。本研究对于酵母Nit2酶活机制的研究加深了我们对哺乳动物Nit2蛋白质酶催化机制的了解,同时为探索哺乳动物Nit1的自然底物进而解释其生物学功能提供了线索。
     酵母Hif1最早是在核内的组蛋白B型乙酰化酶复合体中发现的。虽然它不参与乙酰化酶活性的调控,但参与B型乙酰化酶调节的端粒沉默并能促进核小体装配。现己发现,Hifl作为组蛋白的伴侣分子发挥其生物学功能。它与组蛋白伴侣Asfl在染色质重装配方面具有同等重要的作用,在复制偶联和非复制偶联的的染色质重装配过程中,可能同样起到招募组蛋白结合复合物结合到染色质上发挥相应功能的作用。此外,其人源同源蛋白核自身抗原精子蛋白(NASP)参与诸如细胞增殖等重要的生命调控活动。为此,我们解析了组蛋白伴侣分子Hifl的晶体结构。结构分析表明,Hifl是由一个TPR结构域和一个插入的酸性无规卷曲肽段组成。TPR结构域为Hifl提供基本的结构骨架,插入的肽段结合在TPR结构域上并可能改变TPR结构域的构象。我们发现,Hifl通过结合组蛋白H3/H4而结合核心组蛋白八聚体。在这个结合过程中,Hifl中的插入肽段起到重要的作用。另外,基于三维结构的蛋白质空间特征比对暗示,Hifl中TPR结构域的凹槽可能起到结合肽段的作用。分子对接计算表明,TPR结构域的凹槽可能起到结合组蛋白H3的尾巴的作用,而插入肽段可能起到识别组蛋白H4尾巴的修饰状态的作用。本研究解析的Hifl晶体结构目前是SHNi-TPR家族中第一个被解析的结构,这为了解SHNi-TPR家族蛋白质的基本特征提供重要的结构基础。同时,酵母Hifl晶体结构的解析,为今后深入研究核内组蛋白B型乙酰化酶及其与组蛋白的相互作用提供初步的结构分析模型。
Nit protein family, as the branch10of nitrilase superfamily, is widely distributed in animals, plants, fungi and prokaryotic cells. Mammals have two Nit proteins, namely Nitl and Nit2, which have highly conserved amino acid sequences. Yeast Nit2is a homologue of mammalian tumor-suppressor protein Nitl whose substrate specificity is not yet known. Previous studies have shown that mammalian Nit2, a putative tumor-suppressor, is identical to be an ω-amidase, an enzyme that catalyszes the specific hydrolysis of a-ketoglutaramate and a-ketosuccinamate. However, the enzymatic mechanism of mammalian Nit2is ambiguous while the natural substrates of mammalian Nitl haven't been found out. Here, we solved crystal structures of yeast Nit2in complex with a-ketoglutarate and oxaloacetate, which were thought to be the reaction intermediates of the hydrolysis, respectively. These structures reveal that Arg173, Thr196and Thr199of yeast Nit2could bind the a-moiety of the intermediate and the highly conserved canonical catalytic triad CEK could bind the γ/β-group. In addition, highly conserved Phe195of yeast Nit2interacts with a-moiety via a newly founded η6type anion enhanced π-π interaction. Structural analysis indicates that the dimerization of yeast Nit2is important to the putative catalysis process. β6/7-Hairpin lid may trigger the catalytic process via the dimer interface. The catalytic process should be a general mechanism of Nit proteins because of the highly conserved residues involved in the catalysis and dimerization. However, the active site of yeast Nit2has important differences comparing to mammalian Nit2, resulting in extremely low specific activity towards a-ketoglutaramate, which is similar to mammalian Nitl. The volume of the binding pocket of yeast Nit2is big enough for large molecular binding. We have solved the crystal structure of yeast inactive Nit2C169S mutant protein in complex with an unknown endogenous ligand. The structure reveals that the natural substrate of yeast Nit2may be a kind of dipeptide-N-substituted analogues of a-ketoglutaramate or other similar molecules. Mammalian Nitl may have similar pocket property comparing to yeast Nit2, which means they may have similar substrate specificity. Our study of yeast Nit2would not only expend our knowledge of the catalytic mechanism of mammalian Nit2, but provide a clue for exploring the natural substrate of mammalian Nitl then understanding its biological role in the cell.
     Yeast Hifl was first found to be a nonessential component of nuclear B-type histone acetyltransferase complex (HAT-B). It participates in telomeric silence and promotes the precipitate of nucleosome, although it has no effect on the specific activity of HAT-B complex. In present view, as a histone chaperone protein, Hifl is essential as protein Asfl that recruits histone binding protein to the chromatin in the process of replication-coupled or-independent chromatin reassembly. In addition, nuclear autoantigenic sperm protein (NASP), human homologue of yeast Hifl, involves in many vital important life regulation progress such as cell proliferation. For the importance of Hifl, we solved its crystal structure. The structural analysis of Hifl reveals that it consists of a TPR domain and an interrupted acid loop. The TPR domain consisting of4TPRs constructs the basic structural framework of Hif1, while the interrupted acid loop binds the TPR domain and may change the conformation of the TPR skeleton. In this study, we found that Hifl could bind to histone octamer via binding to H3/H4tetramer. The acid loop is important for this kind of binding. In addition, structure-based alignment of Hifl indicates that the cave shaped by TPR domain may bind with specific peptides. According to the molecular docking experiment, the cave of TPR domain could be inosculated by histone H3tail, while the acid loop may recognize the post-translational modification state of H4tail. The crystal structure of Hifl, the first structure of SHNi-TPR family, provides insight into the structural characterization of SHNi-TPR proteins. Our research of yeast Hifl provides a preliminary structural model for our further study of the interaction between HAT-B complex and histone complex.
引文
Allocati N, Federici L, Masulli M, et al.2009. Glutathione transferases in bacteria. FEBS Journal [J],276:58-75.
    Barglow K T, Cravatt B F 2006. Substrate Mimicry in an Activity-Based Probe That Targets the Nitrilase Family of Enzymes. Angewandte Chemie International Edition [J],45:7408-7411.
    Barglow K T, Saikatendu K S, Bracey M H, et al.2008. Functional Proteomic and Structural Insights into Molecular Recognition in the Nitrilase Family Enzymes. Biochemistry [J],47: 13514-13523.
    Brenner C 2002. Catalysis in the nitrilase superfamily. Current Opinion in Structural Biology [J], 12:775-782.
    Chakravarty S, Sheng Z-Z, Iverson B, et al.2012. "η6"-Type anion-π in biomolecular recognition. FEBS Letters [J],586:4180-4185.
    Chen V B, Arendall W B, Headd J J, et al.2010. MolProbity:all-atom structure validation for macromolecular crystallography. Acta Crystallographica Section D-Biological Crystallography [J],66:12-21.
    Chien C-H, Gao Q-Z, Cooper A J L, et al.2012. Structural Insights into the Catalytic Active Site and Activity of Human Nit2/ω-Amidase. Journal of Biological Chemistry [J],287:25715-25726.
    Cooper A J L, Duffy T E, Meister A 1985. α-Keto acid ω-amidase from rat-liver. Methods in Enzymology [J],113:350-358.
    Cooper A J L, Meister A 1977. Glutamine transaminase-ω-amidase pathway. Critical Reviews in Biochemistry and Molecular Biology[J],4:281-303.
    Dawson R E, Hennig A, Weimann D P, et al.2010. Experimental evidence for the functional relevance of anion-π interactions. Nature Chemistry [J],2:533-538.
    Dumon K R, Ishii H, Vecchione A, et al.2001. Fragile Histidine Triad Expression Delays Tumor Development and Induces Apoptosis in Human Pancreatic Cancer. Cancer Research [J],61: 4827-4836.
    Emsley P, Lohkamp B, Scott W G, et al.2010. Features and development of Coot. Acta Crystallographica Section D-Biological Crystallography [J],66:486-501.
    Fong L Y Y, Fidanza V, Zanesi N, et al.2000. Muir-Torre-like syndrome in Fhit-deficient mice. Proceedings of the National Academy of Sciences [J],97:4742-4747.
    Hersh L B 1971. Rat liver ω-amidase:purification and properties. Biochemistry [J],10:2884-2891.
    Hersh L B 1972. Rat liver ω-amidase-kinetic evidence for an acyl-enzyme intermediate. Biochemistry [J],11:2251-2256.
    Huang Y, Garrison P N, Barnes L D 1995. Cloning of the Schizosaccharomyces pombe gene encoding diadenosine 5',5'"-Pl,P4-tetraphosphate (Ap4A) asymmetrical hydrolase:sequence similarity with the histidine triad (HIT) protein family. Biochemical Journal [J],312 (Pt 3): 925-932.
    Huebner K, Saldivar J C, Sun J, et al.2011. Hits, Fhits and Nits:Beyond enzymatic function. Advances in Enzyme Regulation [J],51:208-217.
    Jaisson S, Veiga-da-Cunha M, Van Schaftingen E 2009. Molecular identification of omega-amidase, the enzyme that is functionally coupled with glutamine transaminases, as the putative tumor suppressor Nit2. Biochimie [J],91:1066-1071.
    Ji L, Fang B, Yen N, et al.1999. Induction of apoptosis and inhibition of tumorigenicity and tumor growth by adenovirus vector-mediated fragile histidine triad (FHIT) gene overexpression. Cancer Research [J],59:3333-3339.
    Kantardjieff K A, Rupp B 2003. Matthews coefficient probabilities:Improved estimates for unit cell contents of proteins, DNA, and protein-nucleic acid complex crystals. Protein Science [J], 12:1865-1871.
    Krasnikov B F, Chien C H, Nostramo R, et al.2009a. Identification of the putative tumor suppressor Nit2 as omega-amidase, an enzyme metabolically linked to glutamine and asparagine transamination. Biochimie [J],91:1072-1080.
    Krasnikov B F, Nostramo R, Pinto J T, et al.2009b. Assay and purification of omega-amidase/Nit2, a ubiquitously expressed putative tumor suppressor, that catalyzes the deamidation of the alpha-keto acid analogues of glutamine and asparagine. Analytical Biochemistry [J],391:144-150.
    Krissinel E, Henrick K 2007. Inference of macromolecular assemblies from crystalline state. Journal of Molecular Biology [J],372:774-797.
    Kumaran D, Eswaramoorthy S, Gerchman S E, et al.2003. Crystal structure of a putative CN hydrolase from yeast. Proteins:Structure, Function, and Bioinformatics [J],52:283-291.
    Levitt M, Chothia C 1976. Structural patterns in globular proteins. Nature [J],261:552-558.
    Lin C-H, Chung M-Y, Chen W-B, et al.2007. Growth inhibitory effect of the human NIT2 gene and its allelic imbalance in cancers. FEBS Journal [J],274:2946-2956.
    Liu H, Gao Y, Zhang M, et al.2013. Structures of enzyme-intermediate complexes of yeast Nit2: insights into its catalytic mechanism and different substrate specificity compared with mammalian Nit2. Acta Crystallographica Section D [J],69:1470-1481.
    Lovell S C, Davis I W, Arendall W B, et al.2003. Structure validation by Ca geometry:Φ,ψand Cβ deviation. Proteins:Structure, Function, and Bioinformatics [J],50:437-450.
    McCoy A J, Grosse-Kunstleve R W, Adams P D, et al.2007. Phaser crystallographic software. Journal of Applied Crystallography [J],40:658-674.
    Meister A 1953. Preparation and enzymatic reactions of the keto analogues of asparagine and glutamine. Journal of Biological Chemistry [J],200:571-589.
    Meister A 1954. Studies on the mechanism and specificity of the glutamine-a-keto acid transamination-deamidation reaction. Journal of Biological Chemistry [J],210:17-35.
    Meister A, Levintow L, Greenfield R E, et al.1955. Hydrolysis and transfer reactions catalyzed by co-amidase preparations. Journal of Biological Chemistry [J],215:441-460.
    Meister A, Sober H A, Tice S V, et al.1952. Transamination and associated deamidation of asparagine and glutamine. Journal of Biological Chemistry [J],197:319-330.
    Murshudov G N, Vagin A A, Dodson E J 1997. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallographica Section D [J],53:240-255.
    Nishida K, Mine S, Utsunomiya T, et al.2005. Global analysis of altered gene expressions during the process of esophageal squamous cell carcinogenesis in the rat:a study combined with a laser microdissection and a cdna microarray. Cancer Research [J],65:401-409.
    O'Reilly C, Turner P D 2003. The nitrilase family of CN hydrolysing enzymes-a comparative study. Journal of Applied Microbiology [J],95:1161-1174.
    Otani T T, Meister A 1957. co-Amide and co-amino acid derivatives of a-ketoglutaric and oxalacetic acids. Journal of Biological Chemistry [J],224:137-148.
    Otwinowski Z, Minor W 1997. Processing of X-ray diffraction data collected in oscillation mode [M]//CHARLES W. CARTER, JR., Methods in Enzymology. Academic Press:307-326.
    Pace H, Brenner C 2001. The nitrilase superfamily:classification, structure and function. Genome Biology [J],2:reviews0001.0001-reviews0001.0009.
    Pace H C, Garrison P N, Robinson A K, et al.1998. Genetic, biochemical, and crystallographic characterization of Fhit-substrate complexes as the active signaling form of Fhit. Proceedings of National Acadamy of Sciences U S A [J],95:5484-5489.
    Pace H C, Hodawadekar S C, Draganescu A, et al.2000. Crystal structure of the worm NitFhit Rosetta Stone protein reveals a Nit tetramer binding two Fhit dimers. Current Biology [J],10: 907-917.
    Pekarsky Y, Campiglio M, Siprashvili Z, et al.1998. Nitrilase and Fhit homologs are encoded as fusion proteins in Drosophila melanogaster and Caenorhabditis elegans. Proceedings of National Acadamy of Sciences U S A [J],95:8744-8749.
    Pichiorri F, Okumura H, Nakamura T, et al.2009. Correlation of fragile histidine triad (FHIT) protein structural features with effector interactions and biological functions. Journal of Biological Chemistry [J],284:1040-1049.
    Semba S, Han S Y, Qin H R, et al.2006. Biological functions of mammalian NIT1, the counterpart of the invertebrate NitFhit Rosetta Stone protein, a possible tumor suppressor. Journal of Biological Chemistry [J],281:28244-28253.
    Siprashvili Z, Sozzi G, Barnes L D, et al.1997. Replacement of Fhit in cancer cells suppresses tumorigenicity. Proceedings of National Acadamy of Sciences U S A [J],94:13771-13776.
    Sun J, Liu J, Pan X L, et al.2011. Effect of zinc supplementation on N-nitrosomethylbenzylamine-induced forestomach tumor development and progression in tumor suppressor-deficient mouse strains. Carcinogenesis [J],32:351-358.
    Sun J, Okumura H, Yearsley M, et al.2009. Nitl and fhit tumor suppressor activities are additive. Journal of Cellular Biochemistry [J],107:1097-1106.
    Vagin A, Teplyakov A 1997. MOLREP:an automated program for molecular replacement. Journal of Applied Crystallography [J],30:1022-1025.
    Werner N S, Siprashvili Z, Fong L Y, et al.2000. Differential susceptibility of renal carcinoma cell lines to tumor suppression by exogenous Fhit expression. Cancer Res [J],60:2780-2785.
    Winn M D, Ballard C C, Cowtan K D, et al.2011. Overview of the CCP4 suite and current developments. Acta Crystallographica Section D-Biological Crystallography [J],67:235-242.
    Zanesi N, Fidanza V, Fong L Y, et al.2001. The tumor spectrum in FHIT-deficient mice. Proceedings of the National Academy of Sciences U S A [J],98:10250-10255.
    Zechmann B, Liou L C, Koffler B E, et al.2011. Subcellular distribution of glutathione and its dynamic changes under oxidative stress in the yeast Saccharomyces cerevisiae. Fems Yeast Research [J],11:631-642.
    Zhang H B, Hou Y J, Han S Y, et al.2009. Mammalian nitrilase 1 homologue Nitl is a negative regulator in T cells. International Immunology [J],21:691-703.
    Adams P D, Afonine P V, Bunkoczi G, et al.2010. PHENIX:a comprehensive Python-based system for macromolecular structure solution. Acta Crystallographica Section D [J],66:213-221.
    Ai X, Parthun M R 2004. The Nuclear Hatlp/Hat2p Complex:A Molecular Link between Type B Histone Acetyltransferases and Chromatin Assembly. Molecular Cell [J],14:195-205.
    Alekseev O M, Bencic D C, Richardson R T, et al.2003. Overexpression of the linker histone-binding protein tNASP affects progression through the cell cycle. Journal of Biological Chemistry [J],278:8846-8852.
    Alekseev O M, Richardson R T, Alekseev O, et al.2009a. Analysis of gene expression profiles in HeLa cells in response to overexpression or siRNA-mediated depletion of NASP. Reproductive Biology and Endocrinology [J],7.
    Alekseev O M, Richardson R T, O'Rand M G 2009b. Linker Histones Stimulate HSPA2 ATPase Activity Through NASP Binding and Inhibit CDC2/Cyclin B1 Complex Formation During Meiosis in the Mouse. Biology of Reproduction [J],81:739-748.
    Alekseev O M, Richardson R T, Pope M R, et al.2005a. Mass Spectrometry identification of NASP binding partners in HeLa cells. Proteins-Structure Function and Bioinformatics [J],61: 1-5.
    Alekseev O M, Richardson R T, Tsuruta J K, et al.2011. Depletion of the histone chaperone tNASP inhibits proliferation and induces apoptosis in prostate cancer PC-3 cells. Reproductive Biology and Endocrinology [J],9.
    Alekseev O M, Widgren E E, Richardson R T, et al.2005b. Association of NASP with HSP90 in mouse spermatogenic cells-Stimulation of ATPase activity and transport of linker histones into nuclei. Journal of Biological Chemistry [J],280:2904-2911.
    Allfrey V G, Faulkner R, Mirsky A E 1964. Acetylation and Methylation of Histones and Their Possible Role in Regulation of RNA Synthesis. Proceedings of the National Academy of Sciences U S A [J],51:786-&.
    Angus-Hill M L, Dutnall R N, Tafrov S T, et al.1999. Crystal structure of the histone acetyltransferase Hpa2:A tetrameric member of the Gcn5-related N-acetyltransferase superfamily. Journal of Molecular Biology [J],294:1311-1325.
    Aparicio O M, Billington B L, Gottschling D E 1991. Modifiers of Position Effect Are Shared between Telomeric and Silent Mating-Type Loci in Saccharomyces-Cerevisiae. Cell [J],66: 1279-1287.
    Baker N A, Sept D, Joseph S, et al.2001. Electrostatics of nanosystems:Application to microtubules and the ribosome. Proceedings of the National Academy of Sciences U S A [J], 98:10037-10041.
    Barthelery M, Jaishankar A, Salli U, et al.2009.2-D DIGE identification of differentially expressed heterogeneous nuclear ribonucleoproteins and transcription factors during neural differentiation of human embryonic stem cells. Proteomics Clinical Applications [J],3:505-514.
    Berndsen C E, Tsubota T, Lindner S E, et al.2008. Molecular functions of the histone acetyltransferase chaperone complex Rtt109-Vps75. Nature Structural & Molecular Biology [J],15:948-956.
    Bird A W, Yu D Y, Pray-Grant M G, et al.2002. Acetylation of histone H4 by Esal is required for DNA double-strand break repair. Nature [J],419:411-415.
    Blatch G L, Lassle M 1999. The tetratricopeptide repeat:a structural motif mediating protein-protein interactions. Bioessays [J],21:932-939.
    Bradbury E M 1992. Reversible Histone Modifications and the Chromosome Cell-Cycle. Bioessays [J],14:9-16.
    Braunstein M, Rose A B, Holmes S G, et al.1993. Transcriptional Silencing in Yeast Is Associated with Reduced Nucleosome Acetylation. Genes & Development [J],7:592-604.
    Braunstein M, Sobel R E, Allis C D, et al.1996. Efficient transcriptional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern. Molecular and Cellular Biology [J],16:4349-4356.
    Brownell J E, Allis C D 1996. Special HATs for special occasions:Linking histone acetylation to chromatin assembly and gene activation. Current Opinion in Genetics & Development [J],6: 176-184.
    Brownell J E, Zhou J X, Ranalli T, et al.1996. Tetrahymena histone acetyltransferase A:A homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell [J],84:843-851.
    Brunner A M, Tweedie-Cullen R Y, Mansuy I M 2012. Epigenetic modifications of the neuroproteome. Proteomics [J],12:2404-2420.
    Burgess R J, Zhou H, Han J H, et al.2010. A Role for Gcn5 in Replication-Coupled Nucleosome Assembly. Molecular Cell [J],37:469-480.
    Campos E I, Fillingham J, Li G H, et al.2010. The program for processing newly synthesized histones H3.1 and H4. Nature Structural & Molecular Biology [J],17:1343-U1201.
    Campos E I, Reinberg D 2009. Histones:Annotating Chromatin. Annual Review of Genetics [J], 43:559-599.
    Chai B, Huang J, Cairns B R, et al.2005. Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair. Genes & Development [J],19: 1656-1661.
    Chen C C, Carson J J, Feser J, et al.2008. Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals for the completion of repair. Cell [J],134:231-243.
    Chen V B, Arendall W B, Headd J J, et al.2010. MolProbity:all-atom structure validation for macromolecular crystallography. Acta Crystallographica Section D [J],66:12-21.
    Cheung W L, Turner F B, Krishnamoorthy T, et al.2005. Phosphorylation of histone H4 serine 1 during DNA damage requires casein kinase II in S-cerevisiae. Current Biology [J],15:656-660.
    Chicoine L G, Schulman I G, Richman R, et al.1986. Nonrandom Utilization of Acetylation Sites in Histones Isolated from Tetrahymena-Evidence for Functionally Distinct H-4 Acetylation Sites. Journal of Biological Chemistry [J],261:1071-1076.
    Cook A J L, Gurard-Levin Z A, Vassias I, et al.2011. A Specific Function for the Histone Chaperone NASP to Fine-Tune a Reservoir of Soluble H3-H4 in the Histone Supply Chain. Molecular Cell [J],44:918-927.
    Das A K, Cohen P T W, Barford D 1998. The structure of the tetratricopeptide repeats of protein phosphatase 5:implications for TPR-mediated protein-protein interactions. Embo Journal [J], 17:1192-1199.
    Downs J A, Allard S, Jobin-Robitaille O, et al.2004. Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Molecular Cell [J],16:979-990.
    Driscoll R, Hudson A, Jackson S P 2007. Yeast Rtt109 promotes genome stability by acetylating histone H3 on lysine 56. Science [J],315:649-652.
    Dunleavy E M, Pidoux A L, Monet M, et al.2007. A NASP (N1/N2)-related protein, Sim3, binds CENP-A and is required for its deposition at fission yeast Centromeres. Molecular Cell [J],28: 1029-1044.
    Dyer P N, Edayathumangalam R S, White C L, et al.2003. Reconstitution of Nucleosome Core Particles from Recombinant Histones and DNA [M]//C. D. ALLIS, W. CARL, Methods in Enzymology. Academic Press:23-44.
    Eberharter A, Lechner T, GoralikSchramel M, et al.1996. Purification and characterization of the cytoplasmic histone acetyltransferase B of maize embryos. FEBS Letters [J],386:75-81.
    Edmondson D G, Smith M M, Roth S Y 1996. Repression domain of the yeast global repressor Tupl interacts directly with histones H3 and H4. Genes & Development [J],10:1247-1259.
    Emsley P, Lohkamp B, Scott W G, et al.2010. Features and development of Coot. Acta Crystallographica Section D [J],66:486-501.
    Finn R M, Browne K, Hodgson K C, et al.2008. sNASP, a histone H1-specific eukaryotic chaperone dimer that facilitates chromatin assembly. Biophysical Journal [J],95:1314-1325.
    Finn R M, Ellard K, Eirin-Lopez J M, et al.2012. Vertebrate nucleoplasmin and NASP:egg histone storage proteins with multiple chaperone activities. The FASEB Journal [J],26:4788-4804.
    Gaspar-Maia A, Alajem A, Meshorer E, et al.2011. Open chromatin in pluripotency and reprogramming. Nature Reviews Molecular Cell Biology [J],12:36-47.
    Ge Z Q, Wang H Y, Parthun M R 2011. Nuclear Hatlp Complex (NuB4) Components Participate in DNA Repair-linked Chromatin Reassembly. Journal of Biological Chemistry [J],286: 16790-16799.
    Gottschling D E, Aparicio O M, Billington B L, et al.1990. Position Effect at Saccharomyces Cerevisiae Telomeres:Reversible Repression of Pol-Ⅱ Transcription. Cell [J],63:751-762.
    Green E M, Antczak A J, Bailey A O, et al.2005. Replication-independent histone deposition by the HIR complex and Asfl. Current Biology [J],15:2044-2049.
    Grunstein M 1997. Histone acetylation in chromatin structure and transcription. Nature [J],389: 349-352.
    Grunstein M 1998. Yeast heterochromatin:Regulation of its assembly and inheritance by histones. Cell [J],93:325-328.
    Hubner M R, Spector D L 2010. Chromatin Dynamics. Annual Review of Biophysics [J],39: 471-489.
    Han J H, Zhou H, Horazdovsky B, et al.2007a. Rtt109 acetylates histone H3 lysine 56 and functions in DNA replication. Science [J],315:653-655.
    Han J H, Zhou H, Li Z H, et al.2007b. Acetylation of lysine 56 of histone H3 catalyzed by RTT109 and regulated by ASF1 is required for replisome integrity. Journal of Biological Chemistry [J],282:28587-28596.
    Han J H, Zhou H, Li Z Z, et al.2007c. The Rtt109-Vps75 histone acetyltransferase complex acetylates non-nucleosomal histone H3. Journal of Biological Chemistry [J],282:14158-14164.
    Hanson B L, Alexander C, Harp J M, et al.2003. Preparation and Crystallization of Nucleosome Core Particle [M]//C. D. ALLIS, W. CARL, Methods in Enzymology. Academic Press:44-62.
    Hassig C A, Fleischer T C, Billin A N, et al.1997. Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell [J],89:341-347.
    Hecht A, Laroche T, Strahlbolsinger S, et al.1995. Histone H3 and H4 N-Termini Interact with Sir3 and Sir4 Proteins-a Molecular-Model for the Formation of Heterochromatin in Yeast. Cell [J],80:583-592.
    Hendzel M J, Kruhlak M J, Bazett-Jones D P 1998. Organization of highly acetylated chromatin around sites of heterogeneous nuclear RNA accumulation. Molecular Biology of the Cell [J],9: 2491-2507.
    Holm L, Rosenstrom P 2010. Dali server:conservation mapping in 3D. Nucleic Acids Research [J],38:W545-W549.
    Ikura T, Ogryzko V V, Grigoriev M, et al.2000. Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell [J],102:463-473.
    Imhof A, Wolffe A P 1999. Purification and properties of the Xenopus Hatl acetyltransferase: Association with the 14-3-3 proteins in the oocyte nucleus. Biochemistry [J],38:13085-13093.
    Kantardjieff K A, Rupp B 2003. Matthews coefficient probabilities:Improved estimates for unit cell contents of proteins, DNA, and protein-nucleic acid complex crystals. Protein Science [J], 12:1865-1871.
    Kelly T J, Qin S, Gottschling D E, et al.2000. Type B Histone Acetyltransferase Hatlp Participates in Telomeric Silencing. Molecular and Cellular Biology [J],20:7051-7058.
    Kleff S, Andrulis E D, Anderson C W, et al.1995. Identification of a Gene Encoding a Yeast Histone H4 Acetyltransferase. Journal of Biological Chemistry [J],270:24674-24677.
    Kolonko E M, Albaugh B N, Lindner S E, et al.2010. Catalytic activation of histone acetyltransferase Rtt109 by a histone chaperone. Proceedings of the National Academy of Sciences U S A [J],107:20275-20280.
    Kornberg R D 1977. Structure of Chromatin. Annual Review of Biochemistry [J],46:931-954.
    Kouzarides T 2007. Chromatin modifications and their function. Cell [J],128:693-705.
    Kozakov D, Hall D R, Beglov D, et al.2010. Achieving reliability and high accuracy in automated protein docking:ClusPro, PIPER, SOU, and stability analysis in CAPRI rounds 13-19. Proteins-Structure Function and Bioinformatics [J],78:3124-3130.
    Kunert N, Brehm A 2009. Novel Mi-2 related ATP-dependent chromatin remodelers. Epigenetics [J],4:209-211.
    Kuo M H, Brownell J E, Sobel R E, et al.1996. Transcription-linked acetylation by Gcn5p of histones H3 and H4 at specific lysines. Nature [J],383:269-272.
    Kusch T, Florens L, MacDonald W H, et al.2004. Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions. Science [J],306:2084-2087.
    Lapouge K, Smith S J M, Walker P A, et al.2000. Structure of the TPR Domain of p67phox in Complex with Rac-GTP. Molecular Cell [J],6:899-907.
    Laskey R A, Honda B M, Mills A D, et al.1978. Nucleosomes Are Assembled by an Acidic Protein Which Binds Histones and Transfers Them to DNA. Nature [J],275:416-420.
    Laskey R A, Honda B M, Mills A D, et al.1977. Chromatin Assembly and Transcription in Eggs and Oocytes of Xenopus-Laevis. Cold Spring Harbor Symposia on Quantitative Biology [J],42: 171-178.
    Laskey R A, Kearsey S E, Mechali M, et al.1985. Chromosome-Replication in Early Xenopus Embryos. Cold Spring Harbor Symposia on Quantitative Biology [J],50:657-663.
    Li M, Liu G H, Belmonte J C I 2012. Navigating the epigenetic landscape of pluripotent stem cells. Nature Reviews Molecular Cell Biology [J],13:524-535.
    Linding R, Russell R B, Neduva V, et al.2003. GlobPlot:exploring protein sequences for globularity and disorder. Nucleic Acids Research [J],31:3701-3708.
    Lorch Y, Beve J, Gustafsson C M, et al.2000. Mediator-nucleosome interaction. Molecular Cell [J],6:197-201.
    Lovell S C, Davis I W, Arendall W B, et al.2003. Structure validation by Ca geometry:Φ,ψ and Cp deviation. Proteins:Structure, Function, and Bioinformatics [J],50:437-450.
    Luger K, Mader A W, Richmond R K, et al.1997a. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature [J],389:251-260.
    Luger K, Rechsteiner T, Richmond T 1999. Expression and Purification of Recombinant Histones and Nucleosome Reconstitution [M] //P. BECKER, Chromatin Protocols. Humana Press:1-16.
    Luger K, Rechsteiner T J, Flaus A J, et al.1997b. Characterization of nucleosome core particles containing histone proteins made in bacteria. Journal of Molecular Biology [J],272:301-311.
    MacDonald N, Welburn J P I, Noble M E M, et al.2005. Molecular basis for the recognition of phosphorylated and phosphoacetylated histone H3 by 14-3-3. Molecular Cell [J],20:199-211.
    Mardian J K W, Isenberg I 1978. Yeast inner histones and the evolutionary conservation of histone-histone interactions. Biochemistry [J],17:3825-3833.
    Martinez-Balbas M A, Tsukiyama T, Gdula D, et al.1998. Drosophila NURF-55, a WD repeat protein involved in histone metabolism. Proceedings of the National Academy of Sciences U S A [J],95:132-137.
    McCoy A J, Grosse-Kunstleve R W, Adams P D, et al.2007. Phaser crystallographic software. Journal of Applied Crystallography [J],40:658-674.
    Mizzen C A, Yang X J, Kokubo T, et al.1996. The TAF(II)250 subunit of TFIID has histone acetyltransferase activity. Cell [J],87:1261-1270.
    Morrison A J, Highland J, Krogan N J, et al.2004. INO80 and gamma-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell [J],119:767-775.
    Munakata T, Adachi N, Yokoyama N, et al.2000. A human homologue of yeast anti-silencing factor has histone chaperone activity. Genes to Cells [J],5:221-233.
    Murshudov G N, Vagin A A, Dodson E J 1997. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallographica Section D [J],53:240-255.
    Murzina N V, Pei X Y, Zhang W, et al.2008. Structural basis for the recognition of histone H4 by the histone-chaperone RbAp46. Structure [J],16:1077-1085.
    Osakabe A, Tachiwana H, Matsunaga T, et al.2010. Nucleosome Formation Activity of Human Somatic Nuclear Autoantigenic Sperm Protein (sNASP). Journal of Biological Chemistry [J], 285:11913-11921.
    Otwinowski Z, Minor W 1997. Processing of X-ray diffraction data collected in oscillation mode [M]//CHARLES W. CARTER, JR., Methods in Enzymology. Academic Press:307-326.
    Parthun M R 2012. Histone acetyltransferase 1:More than just an enzyme? Biochimica Et Biophysica Acta-Gene Regulatory Mechanisms [J],1819:256-263.
    Parthun M R, Widom J, Gottschling D E 1996. The Major Cytoplasmic Histone Acetyltransferase in Yeast:Links to Chromatin Replication and Histone Metabolism. Cell [J],87:85-94.
    Peterson C L, Cote J 2004. Cellular machineries for chromosomal DNA repair. Genes & Development [J],18:602-616.
    Poveda A, Pamblanco M, Tafrov S, et al.2004. Hifl Is a Component of Yeast Histone Acetyltransferase B, a Complex Mainly Localized in the Nucleus. Journal of Biological Chemistry [J],279:16033-16043.
    Poveda A, Sendra R 2008. Site specificity of yeast histone acetyltransferase B complex in vivo. FEBS Journal [J],275:2122-2136.
    Qin S, Parthun M R 2002. Histone H3 and the histone acetyltransferase Hatlp contribute to DNA double-strand break repair. Molecular and Cellular Biology [J],22:8353-8365.
    Qin S, Parthun M R 2006. Recruitment of the type B histone acetyltransferase Hatlp to chromatin is linked to DNA double-strand breaks. Molecular and Cellular Biology [J],26:3649-3658.
    Richardson R I, Alekseev O, Alekseev O M, et al.2006a. Characterization of the NASP promoter in 3T3 fibroblasts and mouse spermatogenic cells. Gene [J],371:52-58.
    Richardson R T, Alekseev O M, Grossman G, et al.2006b. Nuclear autoantigenic sperm protein (NASP), a linker histone chaperone that is required for cell proliferation. Journal of Biological Chemistry [J],281:21526-21534.
    Richardson R T, Batova IN, Widgren E E, et al.2000. Characterization of the histone H1-binding protein, NASP, as a cell cycle-regulated somatic protein. Journal of Biological Chemistry [J], 275:30378-30386.
    Richardson R T, Bencic D C, O'Rand M G 2001. Comparison of mouse and human NASP genes and expression in human transformed and tumor cell lines. Gene [J],274:67-75.
    Roth S Y, Allis C D 1996. Histone acetylation and chromatin assembly:A single escort, multiple dances? Cell [J],87:5-8.
    Ruizcarrillo A, Wangh L J, Allfrey V G 1975. Processing of Newly Synthesized Histone Molecules. Science [J],190:117-128.
    Sajan S A, Hawkins R D 2012. Methods for Identifying Higher-Order Chromatin Structure. Annual Review of Genomics and Human Genetics [J],13:59-82.
    Schneider J, Bajwa P, Johnson F C, et al.2006. Rtt109 is required for proper H3K56 acetylation-A Chromatin mark associated with the elongating RNA polymerase Ⅱ. Journal of Biological Chemistry [J],281:37270-37274.
    Selth L A, Lorch Y, Ocampo-Hafalla M T, et al.2009. An Rtt109-Independent Role for Vps75 in Transcription-Associated Nucleosome Dynamics. Molecular and Cellular Biology [J],29: 4220-4234.
    Sen T Z, Cheng H T, Kloczkowski A, et al.2006. A consensus data mining secondary structure prediction by combining GOR V and fragment database mining. Protein Science [J],15:2499-2506.
    Sen T Z, Jernigan R L, Gamier J, et al.2005. GOR V server for protein secondary structure prediction. Bioinformatics [J],21:2787-2788.
    Shen X T, Mizuguchi G, Hamiche A, et al.2000. A chromatin remodelling complex involved in transcription and DNA processing. Nature [J],406:541-544.
    Shore D 1994. Rap1:a Protean Regulator in Yeast. Trends in Genetics [J],10:408-412.
    Shroff R, Arbel-Eden A, Pilch D, et al.2004. Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break. Current Biology [J],14:1703-1711.
    Sidoli S, Cheng L, Jensen O N 2012. Proteomics in chromatin biology and epigenetics: Elucidation of post-translational modifications of histone proteins by mass spectrometry. Journal of Proteomics [J],75:3419-3433.
    Smith E R, Eisen A, Gu W G, et al.1998. ESA1 is a histone acetyltransferase that is essential for growth in yeast. Proceedings of the National Academy of Sciences U S A [J],95:3561-3565.
    Sobel R E, Cook R G, Perry C A, et al.1995. Conservation of Deposition-Related Acetylation Sites in Newly Synthesized Histones H3 and H4. Proceedings of the National Academy of Sciences U S A [J],92:1237-1241.
    Sugawara N, Wang X, Haber J E 2003. In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination. Molecular Cell [J],12:209-219.
    Sutton A, Shia W J, Band D, et al.2003. Sas4 and Sas4 are required for the histone acetyltransferase activity of Sas2 in the SAS complex. Journal of Biological Chemistry [J],278: 16887-16892.
    Tagami H, Ray-Gallet D, Almouzni G, et al.2004. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell [J],116:51-61.
    Takechi S, Nakayama T 1999. Sas3 is a histone acetyltransferase and requires a zinc finger motif. Biochemical and Biophysical Research Communications [J],266:405-410.
    Talbert P B, Henikoff S 2010. Histone variants-ancient wrap artists of the epigenome. Nature Reviews Molecular Cell Biology [J],11:264-275.
    Tamburini B A, Tyler J K 2005. Localized histone acetylation and deacetylation triggered by the homologous recombination pathway of double-strand DNA repair. Molecular and Cellular Biology [J],25:4903-4913.
    Tanaka Y, Tawaramoto-Sasanuma M, Kawaguchi S, et al.2004. Expression and purification of recombinant human histones. Methods [J],33:3-11.
    Thierry-Mieg D, Thierry-Mieg J 2006. Ace View:a comprehensive cDNA-supported gene and transcripts annotation. Genome Biology [J],7.
    Thompson J S, Ling X F, Grunstein M 1994. Histone H3 Amino-Terminus Is Required for Telomeric and Silent Mating Locus Repression in Yeast. Nature [J],369:245-247.
    Tse C, Sera T, Wolffe A P, et al.1998. Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III. Molecular and Cellular Biology [J],18:4629-4638.
    Tsubota T, Berndsen C E, Erkmann J A, et al.2007. Histone H3-K56 acetylation is catalyzed by histone chaperone-dependent complexes. Molecular Cell [J],25:703-712.
    Turner B M, Oneill L P 1995. Histone Acetylation in Chromatin and Chromosomes. Seminars in Cell Biology [J],6:229-236.
    Tyler J K, Collins K A, Prasad-Sinha J, et al.2001. Interaction between the Drosophila CAF-1 and ASF1 chromatin assembly factors. Molecular and Cellular Biology [J],21:6574-6584.
    van Attikum H, Fritsch O, Hohn B, et al.2004. Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair. Cell [J],119:777-788.
    Verreault A, Kaufman P D, Kobayashi R, et al.1996. Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell [J],87:95-104.
    Verreault A, Kaufman P D, Kobayashi R, et al.1997. Nucleosomal DNA regulates the core-histone-binding subunit of the human Hatl acetyltransferase. Current Biology [J],8:96-108.
    Wang H Y, Ge Z Q, Walsh S T R, et al.2012. The human histone chaperone sNASP interacts with linker and core histones through distinct mechanisms. Nucleic Acids Research [J],40:660-669.
    Wang H Y, Walsh S T R, Parthun M R 2008. Expanded binding specificity of the human histone chaperone NASP. Nucleic Acids Research [J],36:5763-5772.
    Wang X, Haber J E 2004. Role of Saccharomyces single-stranded DNA-binding protein RPA in the strand invasion step of double-strand break repair. Plos Biology [J],2:104-112.
    White C L, Suto R K, Luger K 2001. Structure of the yeast nucleosome core particle reveals fundamental changes in internucleosome interactions. EMBO Journal [J],20:5207-5218.
    Winn M D, Ballard C C, Cowtan K D, et al.2011. Overview of the CCP4 suite and current developments. Acta Crystallographica Section D [J],67:235-242.
    Wittschieben B O, Otero G, de Bizemont T, et al.1999. A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase Ⅱ holoenzyme. Molecular Cell [J],4:123-128.
    Wolner B, van Komen S, Sung P, et al.2003. Recruitment of the recombinational repair machinery to a DNA double-strand break in yeast. Molecular Cell [J],12:221-232.
    Xu C, Min J R 2011. Structure and function of WD40 domain proteins. Protein & Cell [J],2:202-214.
    Yang Z R, Thomson R, McNeil P, et al.2005. RONN:the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins. Bioinformatics [J], 21:3369-3376.
    Yocum A K, Gratsch T E, Leff N, et al.2008. Coupled global and targeted proteomics of human embryonic stem cells during induced differentiation. Molecular & Cellular Proteomics [J],7: 750-767.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700