用户名: 密码: 验证码:
耐高温高比表面积活性氧化铝的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活性氧化铝作催化剂载体在国内外被广泛在高温下用作汽车尾气催化剂,石油炼制催化剂,加氢和加氢脱硫催化剂等的载体。氧化铝是化学键力很强的离子键化合物,根据其晶体结构类型有δ-,χ-,κ-,η-,β-,γ-和α-Al2O3等多种同质异晶体,其中主要的,也是在实际工业中得到重要应用的是γ-Al2O3,β-Al2O3和α-Al2O3三种晶型。γ-Al2O3是目前应用最为广泛,扩大表面积效果较好的涂层材料。γ-Al2O3一般通过灼烧氧化铝的水合物(Al2O3·nH2O)而获得。然而,通常构成活化涂层的γ-Al2O3在800℃以上会转变成α-Al2O3,使密度增加,表面积减少,造成孔隙结构坍塌。并且在1200℃以上活化涂层会从载体上脱落,使气体阻力增大,催化活性降低。加入La203能稳定γ-Al2O3晶体结构,使活化涂层在高温下保持稳定,抑制活性损失。本文针对活性氧化铝载体存在的上述问题,对耐高温高比表面积活性氧化铝的制备及性能进行了系统研究。
     在热稳定剂的研究过程中,发现La3+改性效果最佳,Ce4+次之,而Pr3+,Nd3+, Sm3+效果不佳,Er3+,Y3+最差。这次序与添加的稀土元素离子半径大小次序La3+> Ce3+>Pr3+>Nd3+>Sm3+>Er3+>Y3+正好相同,表明离子半径越大稳定作用越好。同时,离子的价态也会影响它的稳定效果,这主要是由于离子半径大和价态高会降低离子的移动性,从而在高温下能够固定在氧化铝的表面以阻止氧化铝的烧结。由于La203的影响较为突出。同时其价格(每公斤30元人民币)相对较低廉,因此应用前景较为看好。本人确定把氧化镧作为氧化铝载体的最佳热稳定剂。
     在活性氧化铝的制备方法中,主要考察了AlCl3,Al2(SO4)3,Al(NO3)3溶胶法与(NH4)Al(SO4)2,(NH4)Al(CO3)2分解法。在其他条件相同的情况下,即热稳定剂为La2O3,扩孔剂分别为PEG,活性炭,EDTA,制备的氧化铝粒子在1200℃煅烧1h。然后从DAT,SEM来分析氧化铝粒子的活性,研究发现AlCl3,Al2(SO4)3与Al(NO3)3由于都采用了溶胶法,所以生产的氧化铝粒子粒度大,比表面积不高;(NH4)Al(CO3)2作为一种新型的无污染原料已经成为近期研究的热点,在(NH4)Al(CO3)2分解法中由于CO32-比SO42-分解温度低,煅烧时虽然能生成小颗粒氧化铝,但不能形成泡沫状氧化铝,所以(NH4)Al(CO3)2分解法形成的高温氧化铝的活性比溶胶法稍高;而(NH4)Al(SO4)2分解法在高温处理过程中形成了泡沫状的氧化铝结构,相比其他制备方法,(NH4)Al(SO4)2分解法制备的高温氧化铝颗粒最小,活性最高,比表面积最大,因此确定硫酸铝铵为最佳制备耐高温高比表面积活性氧化铝的试剂。
     在低温活性氧化铝的制备过程中,添加剂磷酸盐与硅酸盐能有效地提高氧化铝的活性。因此,在制备耐高温高比表面积活性氧化铝的过程中,加入添加剂磷酸盐与硅酸盐,通过DAT, SEM来分析氧化铝粒子的活性。实验结果表明通过加入添加剂磷酸盐和硅酸盐后,虽然提高了氧化铝的比表面积,但提高的幅度很小,没有达到活性氧化铝应有的比表面积。因此,使用添加剂的方法不适用于耐高温活性氧化铝的制备。
     常用的扩孔剂如(NH4) 2CO3, PEG,活性炭,EDTA等,虽然能有效地提高活性氧化铝的活性,但在制备耐高温高比表面积活性氧化铝的过程中,作用不大,最主要原因在于扩孔剂的分解温度太低。本实验通过合成含有[La(EDTA)]的固体为扩孔剂,通过对扩孔硫酸铝铵的实验中,经过DAT, SEM分析得出以下结论:合成出含有[La(EDTA)]的固体的高温扩孔剂,采用固体与固体混合的方法,所有实验样品的大孔结构增加,导致它们在1200℃的高温下同样有着较大的比表面积。扫描电镜显示在高温下氧化铝为具有10-30um大孔径的多孔网状结构。合成出在1200℃煅烧1h四个试样的比表面积都在120m2/g以上,其中x([La(EDTA)]-)=l%的样品的比表面积达150.36 m2/g,与相同的文献资料相比高出很多。
     耐高温高比表面积活性氧化铝的制备采用硫酸铝铵热解的方法。热稳定剂为La2o3,La2O3与A1203的摩尔分数为1:100;扩孔剂为EDTA与热稳定剂合成的化合物H[La(EDTA)]·6H2O晶体,其与热稳定剂的摩尔分数为1:1。
As the catalyst carrier, activity alumina has the characteristic of thermo stability and ant oxidation. In domestic and foreign, it widely serves as the carrier of automobile exhaust catalyst, petroleum refining catalyst, hydrogenation and hydrodesulfurizing catalyst and so on. Alumina is a ionic bond compound with strong chemical bond. It can divide into quality different various crystal such as delta-, chi-, kappa-, eta-, beta-, gamma- and alpha-alumina according to different crystal texture. Gamma-alumina, beta-alumina and alpha-alumina are mainly and obtain the important application in the actual industry.At present the application of gamma-alumina is the most widely as a coating material, and the effect of it to expand the surface is good. Gamma-alumina is often obtained through burning hydrate of alumina. However, gamma-alumina which usually constitutes the activation coating will chang into alpha-alumina in above of 800℃, it can cause density increase, suface area reduced and pore structure collapsed. And in above of 1200℃, the activation coating will expoliated from the vector, and will caused gas resistance and activity decreased. Adds lanthanum can stabilize the crystal structure of alumina, causes the activation coating keep stable under high temperature, and suppresses the active lost.In this paper, for the above-mentioned the existence of activated alumina problem, research of preparation for high temperature high surface area activated alumina was system carry on.
     In the course of heat stabilizer he study, La3+ was found that have the best the modified effect, Ce4+ lies the second, and, Pr3+, Nd3+, Sm3+ perform poor and performance of Er3+, Y3+is the worst. This order is the same to the added the size order of ionic radius of rare earth elements La3+> Ce3+> Pr3+> Nd3+> Sm3+>Er3+> Y3+, which indicating that the greater of ionic radius, the better the stability. At the same time, valence of ions also have affect on the stability results, this was mainly due to large ionic radius and the valence state would reduce ion mobility, which can prevent the sintering of alumina at the surface of alumina at a fixed high temperature.As a prominent impact of La2O3, at the same time, its price are relatively low (30 yuan per kg), so the application prospects will be more promising. The author confirm that the lanthanum carrier as the best heat oxide alumina stabilizer.
     As to the preparation methods of activated alumina, study mainly on the AICl3, A12(SO4)3, Al(NO3)3 sol method and (NH4)Al(SO4)2,(NH4)Al(CO3)2 decomposition method. Under the same conditions, that is,heat stabilizer for La2O3,pore-expanding agent were PEG, activated carbon,EDTA,the preparation of alumina particles calcined at 1200℃for 1 hour. And then use DAT, SEM to analyze the activity of alumina particles, the study found that using the sol method with AICl3, Al2(SO4)3 and Al(NO3)3,the size, pore volume,pore size and surface area of production alumina particle is more or less the same; as a new type of pollution-free raw materials (NH4)Al(CO3)2 has become a recent research hotspot,in the (NH4)Al(CO3)2 decomposition method, as a result of low decomposition temperature of CO32+ than SO42-,although small particles of alumina generate in calcined, but bubble-like alumina could not generated,so high-temperature decomposition of the activity of alumina the formation by the (NH4)Al(CO3)2 decomposition method is of slightly higher than the sol method;and during (NH4)Al(SO4)2 decomposition process at high temperature formed a bubble-like structure of the alumina,compared with other preparation methods,the high-temperature alumina prepared by (NH4)Al(SO4)2 decomposition method has the smallest particles size,the highest activity, the largest surface area,so to determine ammonium aluminum sulfate as the best preparation agents of high temperature high surface area activated alumina.
     During the preparation process of activity alumina at low temperatures,phosphate and silicate additives can effectively improve the activity of alumina.Therefore,in the preparation process of high temperature of high surface area activated alumina,adding phosphate and silicate additives through DAT,SEM to analyze the activity of alumina particles.The experimental results show that after the adding of phosphate and silicate additives,although increased alumina surface area, but the level of increase is very small, did not meet the specific surface area activated alumina it should have.Therefore,the method of use of additives does not suit for preparation process of high temperature activated alumina.
     Although commonly used pore-expanding agent such as (NH4)2CO3,PEG,activated carbon,EDTA,etc.can effectively raise the activity of activated alumina,but have very little influence on the process of preparation the high temperature high surface area activated alumina,which mainly because that most pore-expanding agent's decomposition temperature is too low.Through this experiment the synthesis solid contains [La(EDTA)]- used as the pore-expanding agent,by reaming ammonium aluminum sulfate experiment and the following DAT,SEM analysis,we draw such conclusions:synthesis containing high-temperature solid containing [La(EDTA)]-pore-expanding agent,using a method of solids-solid mixture,the large pore structure of all the experimental samples increase,resulting in the same larger specific surface area a high temperature of 1200℃. Scanning electron microscopy showed that under high temperature alumina has a large diameter 10-30nm porous network structure.,the four samples synthesized which calcined at 1200℃for 1h have 120m2/g or more specific surface area, in which the sample of x([La(EDTA)]-)=1% have surface area of 150.36 m2/g, much higher compared to the literature information under same condition.
     Method for preparation for activated alumina with high specific surface area. Heat stabilizer is La2O3 and molar ratio of La2O3 and Al2O3 is 1:100; pore-expanding agent is H[La(EDTA)]·16H2O crystals which synthesis by EDTA and heat stabilizer with the molar ratio of 1:1.
引文
1.朱洪法.催化剂载体[M].北京:化学工业出版社,1980.56-60.
    2.张卫东.我国汽车排气催化净化器的现状与发展趋势[J].化学研究与应用,1998,32(3):316-319.
    3.彭天右,杜平武,胡斌等.氧化铝的合成与性能[J].无机材料学,2000,15(6):1097-1101.
    4.李东红,王庆伟,王舟.汽车尾气净化器用活性氧化铝的研制[J].中国稀土学报,2003.21(专辑):94-97.
    5.曾佩兰,黄可龙,刘素琴,等.汽车尾气净化催化剂载体-纳米氧化铝模板的自组织行为研究[J].贵州化工,2002,27(6):16-19.
    6.翁端,吴晓东,徐鲁华.我国稀土汽车尾气净化器应用现状及发展趋势[J].稀土,2001.22(2):72-74.
    7.罗宁,姚金华,刘治中.稀土催化剂在汽车尾气净化方面的应用[J]重庆环境科,1998,20(3):34-37.
    8.俞守耕.贵金属催化净化汽车尾气中稀土氧化物的助催化和稳定化[J].贵金属,2002,23(2):65-70.
    9.蔡凤田,谢素华,王建昕,等.汽车排放污染物控制实用技术[M].北京:人民交通出版社,1999,39-39.
    10.刘勇,陈晓银.氧化铝热稳定性的研究进展[J].化学通报,2001,2:65-70.
    11.王桂茹.催化剂成型条件对催化剂性能的影响[J].辽宁化工,1990,(2):6-9.
    12.王海彦.采用催化裂化轻汽油醚化技术生产清洁汽油[J].炼油设计,2000,30(10):23-26.
    13.张令芬等.活性氧化铝作催化剂的特点[J].广西化工,1987.12(4):49-50.
    14.赵琰.氧化铝(拟薄水铝石)的孔结构研究[J].工业催化,2002.10(1):55-63.
    15.王全荣.汽车尾气净化技术的发展趋势及建议[J].石油炼制与化工,1994,25(5):58-62.
    16.沈迪新.我国机动车排放所面临的问题.99全国稀土催化剂暨汽车尾气净化器研讨会,包头,1999.
    17.沈迪新,陈宏德,田群.我国汽车尾气污染,污染控制与对策[J].环境科学进展,1997,5(6):23-33.
    18. Manfred, Nonnenmann. Metal Suports for Exhaust Catalysts[J]. SAE Transactions 850131,1985, 4(5):1814-1821.
    19.Emig G,Gmehling B,Popovska N,et al.Microfiber knits for catalytic converters [J].SAE Transactions,1997,106:182-192.
    20.王务林,赵航,王继先.汽车催化转化器系统概论[M].北京:人民交通出版社,1999.52-56.
    21.朱洪法.催化剂载体[M].北京:化学工业出版社,1980.319-347.
    22.Manfred,Nonnenmann.Metal Suports for Exhaust Catalysts[J].SAE Transactions.1985, 94:1814-1821.
    23.Kimiyoshi,Nishizawa,Kohji,et al.Development of Improved Metal Supported Catalyst [J]. SAE Transactions,1989,149-156.
    24.Kirk P B,Pilliar R M.The Deformation response of Sol-gel-de-rived zirconia thin films on 316Lstaionless steel substrates using a substrate straining test[J].Materials science,2000,35:3967-3975.
    25.宁桂玲,林源,秉玲.氧化铝的研究进展[J].大连理工大学学报,1997,20(3):269-274.
    26.郑宝贤,刘之舟.活性氧化铝的研究[J].无机盐工业,1991,22(5):10-15.
    27.Masuda K, Sano T,Mizukami F,et al. Effect of the type of support preparation on the thermostability and the oxidation activity of CeOx/BaO/Al2O3-supported catalysts[J].Appl Catal A,1995,133:59-65.
    28.Bett man M,Chase R E,Otto K,etal.Dispersion studies on the system La2O3/γAl2O3 [J].J Catal,1989,117:447-454.
    29.雷翠月,陈霄榕,张敏卿,等.溶胶凝胶法制氧化铝负载铜基超细粒子催化剂的研究[J].分子催化,1998,12(5):375-380.
    30.李志平,赵瑞红,郭奋.高比表面积有序介孔氧化铝的制备与表征[J].高等学校化学学报,2008,1.13-17.
    31.王海彦,陈文艺,马骏,等.催化裂化C5轻汽汕组分醚化新型催化剂的性能研究[J].炼油设计,2001,31(2):26-29.
    32.王海彦.采用轻汽油醚化技术提高催化裂化汽油质量[J].石油化工高等学校学报,1997,10(2):15-17.
    33.Emmerich K. The use of rapidly solidified in automotive exhaust gas catalyst substrates[J]. Materials Science and Engineering,1991, A 134(4):1016-1020.
    34.朱洪法.催化剂载体[M].北京:化学工业出版社,1980.32-35.
    35.王富民,辛峰,李绍芬.多孔球形催化剂颗粒的随机网络模型[J].化工学报,1999,50(3):310-316.
    36.张永刚,闫裴.活性氧化铝载体的孔结构[J].工业催化,2000.8(6):14-17.
    37.赫崇衡,张文敏.稀土修饰Al203的表面积热稳定性[J].物理化学学报,1996.12(11):971-975.
    38.王敬先,刘勇,何阿弟,陈晓银.不同制备方法镧改性对γ-A12O3的高温热稳定作用研究[J].复旦学报,2000,39(4):450-454.
    39.常振勇,崔连起.钙钛矿金属氧化物催化剂的研究与应用综述[J].精细石油化工,2002.5(3):49-53.
    40.冯丽娟,赵宇靖,陈涌英.氧化铝的合成与性能[J].石油化工,1991,20(9):633-639.
    41.陈忠,杨松青,蒋汉碱.氧化铝粉末的制备[J].无机盐工业,1997,27(4):10-12.
    42.曾文明,陈念胎,归林华等.新型氧化铝的研究[J].功能材料,1998,13(6):887-892.
    43.张永刚,闫裴.纳米氧化铝的制备[J].无机盐工业,2001,30(3):19-22.
    44.D. L. Evens, G. R. Fischer et. al.Thernral expansions and chemical modifications of cordierite [J]. Am. Ceram. Soc,1980.63(12):629-634.
    45.Wirwald, P. W. Thennal expansion fo anhydrous Mg—cordierite between 25 and 95090[J]. Phys. Chem. Minerals,1981.(7):268-270.
    46.Kolb W B, Papadimitriou A A, et al. The ins and outs of coating monolithic structures[J]. Chem Engng Process,1993,2:61-67.
    47.Cooper B J, Evans W D, Harrison B. Aspects of automotive catalyst preparation, performance and durability [M].Catalysis and Automotive Pollution Control,1987:117-141.
    48.汪忠清,梁顺琴,李斯琴,等.大孔容拟薄水铝石的研制及工业应用[J].石油化工,2001,30(3):220-223.
    49. Masuda K, Sano T, Mizukami F, etal.Effect of the type of support preparation on the thermostability and the oxidation activity of CeOx/BaO/Al2O3 supported catalysts[J]. Appl.catal A, 1995,133(5):59-65.
    50.Kimiyoshi, Nishizawa, Kohji, etal. Development of Improved Metal Supported Catalyst[J]. SAE Transactions,1989,6(3):149-156.
    51.Mssubiro, Fukaya. Material Properties of Fe Cr Al alloy foil for metal support[J]. SAE Transactions,1997,106(59):729-799.
    52.W D Kingery,H K Bowen, etal. Introduct to Ceramics[J]. Elsevier Science Publication,20nd Ed, 1976,461-477.
    53.黄培云.粉末冶金原理[M].北京:冶金工业出版社,1982,401-402.
    54.张志馄,崔作林.钠米技术与钠米材料[M].北京:国防工业出版社,2000:73-76.
    55.Ozaki Y. Advanced Ceramics(S.Sait,editor). Oxford University Press,1988:27-44.
    56.吴雄.碳酸铝铵的分析报告[J].仪表材料,1990,21(2):79-83.
    57.Campaniello J,Berthet p,Yvoire F,Revcolevschi A.Preparation of textured alumina films by the solgel route [J].Mater.Res,1995,10(2):297-301.
    58.Gamal IM, KhidrTT, Ghuiba F M. Nitrogen-based copolymers as wax dispersants for paraffinic gas oils[J]. Fuel,1998,77(5):375-385
    59.龚茂初,文梅,章洁,等.耐高温高表面积氧化铝的制备及性质[J].催化学报,2000,21(5):404-408.
    60.Masui T, Ozaki T, Machida K, et al. Preparation of ce-ria-zirconia sub-catalysts for automotive exhaust cleaning[J]. Joural of Alloys and Compounds,2000,304:49-55.
    61.Bett man M,Chase R E,Otto K,etal.Dispersion studies on the system La2O3/γAl2O3 [J]. J Catal,1989,117:447-454.
    62.Masuda K,Sano T,Mizukami F,etal.Effect of the type of support preparation on the thermostability and the oxidation activity of CeOx/BaO/Al2O3 supported catalysts [J].Applcatal A,1995,133:59-65.
    63.曾佩兰,黄可龙,刘素琴,等.汽车尾气净化催化剂的研究现状及其进展[J].材料导报,2003,17(3):48-51.
    64.Schaper H,Amesz D J,Doesburg E B M et al.Synthesis of thermostable Nickel-Alumina catalysts by deposition-precipitation[J].Appled.Catalysis,1984,9(1):129-132.
    65.Oudet F,Courtine P,Vejux A.Thennal stabilization of transition Alumina by structural coherence
    with La2O3,Pr2O3,Nd2O3[J].Journal of Catalysis,1988,114(1):112-120. 66. Matsuda S,Yamashita H.Shoukubai(Catalyst) et al.Preparation of Lanthanum Beta-Alumina with high surface-area by coprecipitation[J]. Journal of the American Ceramic Society,1987,70(7):157-159.
    67.Haack L P,deVries J E,Otto K et al.Characterization of Lanthanum-Modified Gamma-Alumina by X-ray photoelectron-spectroscopy and Carbon-Dioxide absorption[J].Appled catalysis A-general,1992,82(2):199-214.
    68.Haack L P,Peters C R,deVries J E et al.Characterization of high-temperature calcined
    Lanthanum-Modified Alumina by X-ray photoelectron-spectroscopy and X-ray-diffraction[J]. Applied Catalysis A-general,1992,87(1):103-114.
    69. Francois Oudet.Thermal stabilization of transition Alumina by structural coherence with La2O3,Pr2O3,Nd2O3[J]. Journal of Catalysis,1988,114(1):112-120.
    70.Machida M, Eguchi K, Arai H.Effect of additives on the surface-area of oxide supports for catalytic combustion.Journal of Catalysis[J],1987,103(2):385-393.
    71.胡成南.我国汽车排气三效催化净化器产业分析.2000中国汽车,摩托车排放污染综合治理技术研讨会,天津,2000.
    72.赫崇衡,汪仁.汽车排气污染与治理的发展和动向[J].环境污染与防治,1996,18(3):35-37.
    73.Akama H, Matsushia K. Recents lean NOxcatalyst technologies for automobile exhaust control[J]. Cataly-sis Surveys from Japan,1999(3):139-146.
    74.Mssubiro, Fukaya.Material Properties of Fe Cr Al alloy foil for metal support[J]. SAE Transactions,1997,106:729-799.
    75.Mauri Mattanen,Timoavikaine.Metallic catalytic converter cross axis strength considerations [J]. SAE Transactions,1995,104:920-929.
    76.Manfred Nonnenmann.Metal Suports for Exhaust Catalysts[J].SAE Transactions.1985,94 :1814-1821.
    77.Kimiyoshi,Nishizawa,Kohji,et al.Development of Improved Metal Supported Catalyst [J]. SAE Transactions,1989,149-156.
    78.潘履让.固体催化剂的设计与制备[M].天津:南开大学出版社,1993.93-96.
    79.谈世韶,汪仁.镧对氧化铝载体性能的影响[J].稀土,1988,2:19-25.
    80.黄肖容,吕杨效,黄仲涛.熔烧温度对氧化铝膜孔性能的影响[J].无机材料学报,1999.14(5):751-756.
    81.Toida Tsutomu,Maeda Makoto,Okita Kyotaka,etal.Structure for supporting catalyst compostition and catalyst using the same [P].JP 08-299806(Pubilcation Number),1996.
    82. V Borner,Emmerich K,Frolich K,et al.High temperature oxidation behaviour of rapidly solidified Fe Cr Al ribbons [J].Materials science and engineering,1991,A134:1062-1064.
    83.Bettman M, Chase R E, Otto K,et al.Dispersion studies on the system La2O3/γ-Al2O3 [J].JCatal,1989,117:447-454.
    84.Jeffrey S, Church, Noel W C. Stabilisation of aluminas by rare earth and alkaline earth ions[J].Appl Catal A,1993,101:105-116.
    85.刘诤,王建昕.汽车发动机原理教程[M].北京:清华大学出版社,2001.55-60.
    86.龚茂初,文梅,章洁,等.高温高表面氧化铝新材料的制备化学研究-La, Ba共添加对氧化铝热稳定性的影响[J].无机化学学报,2001,17(1):50-54.
    87.林河成.稀土在治理汽车尾气中的应用及发展[J].世界有色金属,2002.2:40-41.
    88.Wells A F.Structural Inorganic Chemistry[M],London:Oxford Press,1962.33-40.
    89. Soled S,Gamma-AI2O3 viewed as a defect oxyhydroxide[J] Journal of Catal.,1983,81(1): 252-257.
    90.Burtin P,Brunelle J P,Pijolat M etal.Influence of surface-area and additives on the thermal-stability of transition Alumina catalyst supports.1.kinetic data.Applied Catalysis,1987,34(1):225-238.
    91.Burtin P,Brunelle J P,Pijolat M etal.Influence of surface-area and additives on the thermal-stability of transition Alumina catalyst supports.2.kinetic-model and interpretation. Applied Catalysis,1987,34(1):239-254.
    92. Johnson M F L.Surface-area stability of Aluminas[J].Journal of Catalysis,1990,123(1):245-259.
    93. Pijolat et al.Ceramics Today-Tomorrow's Ceramics[M],Amsterdam:Elsevier,1991:1357-1360.
    94.王尚弟,孙俊全.催化剂工程导论[M].北京:化学工业出版社,2001.141-143.
    95.薛屏,沈岳年,孙燕华La0.8Sr0.2MnO3和La0.8Sr0.2CoO3在A1203上的载体效应[J].分子催化,1998,12(6):424-428.
    96.Masalki J,Gluszed J,Zabrzeski J,Nitsch K,Gluszek P.Improvement incorrosion resistance of the stainless steel by means of AI2O3 coatings deposited by the sol gel method [J].Thin solid films,1999,349:186-190.
    97.Miao X,Nissan Ben B.Microstructure and properties of zirconia alumina nanolamonate sol gel coatings[J].Journal of Materials science,2000,35::497-502.
    98.Adomaitis John R,Galligan Michae I P,Kubsh Joseph E,et al.Metal converter technology using procoated metal foil [J].SAE Transactions,1996,105:2099-2108.
    99.仇振琢,魏旭华,陈莉.大孔容拟薄水铝石及其制取[J].化学工业与工程技术,1998.19(3):5-7.
    100.余忠清,赵秦生,张启修.一种氧化铝粉末的研究报告[J].无机材料学报,1994,9(4):475-479.
    101.潘泽林.无定形铝胶的研制及其应用[J].轻金属,1991,12(3):5-8.
    102.施惠娟.趋细氧化铝的制备和现状[J].轻金属.1990.7(2);10-14.
    103.周忠清,金国山.金超.微粒子催化剂的新进展[J].现代化工,1999,19(12):19-21.
    104.刘粤惠,苏雪筠,陈楷.喷雾热解法制备高纯细氧化铝[J].中国陶瓷,1996,32(4):7-9.
    105.潘泽琳.高纯超微粉A1203实验与应用[J].中国粉体技术,2000,(6):246-249.
    106.彭天右,杜平武,胡斌,等.共沸蒸馏法制备超细氧化铝粉体及表征[J].无机材料学报,2002,(6):1097-1101.
    107.余忠清,赵秦和.溶胶-凝胶法制备超细球形氧化铝粉末[J].无机化学学报,1994,(4):475-479.
    108.周恩绚,胡学寅.用相转移分离法制备α-氧化铝超细粒子[J].化学通报,1997,(4):38-40.
    109.甘礼华,岳天仪.微乳液法制备Y-氧化铝超细粉及其特征[J]同济大学学报,1996,24(2):194-197.
    110.Li Y, Cheng G S, et al.Ordered semiconductor ZnOnanowire arrays and their photoluminescence properties[J]. Appl Phys Letters,2000,76(15):251-255.
    111.姚楠,熊国兴,盛世善,等.溶胶凝胶法制备中孔分布集中的氧化铝催化材料[J].燃料化学学报(增刊),2001,29(8):80-82.
    112.罗玉长.氢氧化铝粉体煅烧过程的物理化学性质变化[J].无机盐工业,2001,33(3):3-5.
    113.刘勇,陈晓银,牛国兴,等.凝胶对氧化钡改性的氧化铝热稳定性的作用[J].催化学报,1999,20(6):664-666.
    114.Shelef M W, McCabe R.Twenty-five years after introduction of automotive catalysts:What next[J].Catalysis Today,2000,62:35-50.
    115.Muraki H, ZHANG Geng. Design of automotive exhaust catalysts[J].Catalysis Today,2000,63: 337-345.
    116.Juan R, Gonzalez-Velasco M, Gutierrez A. TWC behaviour of platinum supported on high and low surface area cerium/zirconium mixed oxides[J].Topics in Catalysis,2001,16/17(1-4):101-106.
    117.Roesch S, Sermon PA, Wallum A,et al. Sol-gel Pd exhaust catalysts and hydrocarbon speciation[J].Topics in Catalysis,2001,16/17(1-4):115-118.
    118.倪文,陈娜娜.荃青石矿物学研究进展[J].矿物岩石,1997.(17)6:110-119
    119.M. D. Karkhanavala, F. A. Hummel. The polymorphism of cordi-erite[J]. Am. Ceram. Soc,1953. (36)12:389-392.
    120.Parvulescu V I,Grange P,Delmon B.Catalytic re-moval of NO[J].Catalysis Today,1998,46: 233-316.
    121.Matsumoto S, Ikeda Y, Suzuki H, et al. NOxstorage-reduction catalyst for automotive exhaust with improvedtolerance against sulfur poisoning[J]. Applied Catalysis B:Environmental,2000, 25(3):115-124.
    122.刘勇,陈晓银,杨竹仙,等.制备方法对锶改性氧化铝高温热稳定性的影响[J].催化学报,2000,21(2):121-124.
    123.Burtin P, Brunelle J P, Pijolat M,et al.Influence of surface area and additives on the thermal stability of tran-sition alumina catalyst supports[J].Appl Catal,1987,34:225-238.
    124.牛国兴,何坚铭,陈晓银,等.不同添加物和制备方式对A1203热稳定性影响[J].催化学报,1999,20(5):535-540.
    125.Cooper B J, Evans W D, Harrison B. Aspects of automotivecatalyst preparation, performance and durability [M].Catalysis and Automotive Pollution Control,1987:117-141.
    126.孙素华,王纲,王永林.不同扩孔方法对氧化铝物化性质的影响[J].工业催化,2001,9(1):62-64.
    127.周成光.Hβ型分子筛挤出成型条件对其强度的影响[J].实验与研究,2001,(6):252-253.
    128.丁春华.添加扩孔剂对p沸石催化性能的影响[J].北京服装学院院报,2002,22(2):25-28.
    129.王海彦.催化裂化轻汽油醚化技术进展[J].炼油设计,1997,27(6):18-21.
    130.柯扬船,皮特.斯壮.聚合物-无机纳米复合材料[M].北京:化学工业出版社,2003.500-501.
    131.商连弟.“干燥器法”测定氧化铝载体比表面积[J].化学世界,1986,27(4):164-167.
    132.Emmerich K.The use of rapidly solidified in automotive exhaust gas catalyst substrates[J].Materials Science and Engineering,1991,A 134:1016-1020.
    133.Campaniello J,Berthet P,Yvoire F,Revcolevschi A.Preparation of textured alumina films by the solgel route [J].Mater.Res,1995,10(2):297-301.
    134.Okabe S,Kohno M.Ishii K,et al. Oxidation resistance of rapidly soliditied Fe Cr Al ribbons at high temperature [J].Materials science and engineering.1994,A181/A182:1104-1108.
    135.Boitiaux J P, Deveo J M, et al. Catalytic Naphtha Reform-ing[M].New York:Marcel Dekker, 1994,79-84.
    136.康小洪,宋安离.双重孔氧化铝载体的研制[J].石油炼制与化工,1997,28(1):44-47.
    137.一嗽升,尾崎义治,贺集诚一郎著.超微颗粒导论[D].武汉:武汉工业大学出版社,1991,1-27.
    138.中国科学院.2001科学发展报告[M].北京:科学出版社,2001,24-29.
    139.杨咏来,宁桂玲,林源等.碳酸铝铵的研制[J].材料研究学报,1999,13(3):269-274.
    140.Trimm D L,Stainslaus A. The control of pore size in alu-mina catalyst supports:A review[J].Appl Catal,1986,21:215-238.
    141.杨清河,等.NH4HCO3对氧化铝孔结构的影响[J].催化学报,1999,20(2):139-144.
    142.Liu Shangbin,Wu Jinfu,Ma Longja,et al. On the thermalstability of zeolite beta[J]. Journal of catalysis,1991,132(2):432-439.
    143.Zhang Jingchang, Sun Faqun, Cao Weiliang,et al. Alkyla-tion of catechol with t-butyl alcohol over Hpzeolite[J].Chi-nese Journal of Catalysis,2002,(1):33-36.
    144.Zhao Min, Yuan Zhongyong, Chen Tiehong,et al.Catalytic synthesis of di-isooctyl maleate over H-Beta zeolite[J]. Spe-ciality Petrochemicals,1999,(4):34-36.
    145.Trimm D L,Stanislaus A.The control of pore size in alu-mina catalyst supports:a review[J].Applied Catalysis,1986(4):215-238.
    146.Bett man M, Chase R E, Otto K, etal.Dispersion studies on the system La2O3/γAl2O3. J Catal, 1989,117(2):447-454.
    147.Tack, Robert, Dryden. Distillate fuels with polyalkylene glycol diacid derivatives as flow improvers[P]. WO:27184,1998.
    148.KumarC, Balasabramanian D.Studies on the triton x-100-alcohol-water reverse micelles in cyclohexane.Journal of Colloid and Interface science.1979,69(2):271-279.
    149.余忠清,赵秦生,张启修.分散球形氧化铝粉末的生产方法[J].粉末治金技术,1994,12(4):290-296.
    150.毛煌,杨峰.双重孔氧化铝载体的研制-炭黑粉扩孔剂的应用[J].化学研究应用,2001,13(2):111-116.
    151.EI-Gamal IM, KhidrTT, Ghuiba F M.Nitrogen-based copolymers as wax dispersants for paraffinic gas oils[J]. Fuel,1998,77(2):375-385.
    152.龚茂初,文梅,高士杰,章洁.耐高温高表面积氧化铝的制备及性质Ⅱ.La的添加对硫酸铝铵法
    制高表面Al203的影响[J].催化学报,2000.21(5):404-406.
    153.陈航榕,施剑林,张文华.高比表面积有序多孔氧化锆的合成与表征[J].无机材料学报,2000.15(6):1123-1126.
    154.Li Tonglin, Liu Xiyao, Wang Xiangsheng.Shape selectivity for the disproportionation of methylnaphthalene over zeolite Hβ[J]. Chinese Journal of Catalysis,1997,3:221-224.
    155.Masuda K,Sano T,Mizukami F,etal.Effect of the type of support preparation on the thermostability and the oxidation activity of CeOx/BaO/Al2O3 supported catalysts [J].Applcatal A,1995,133:59-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700