用户名: 密码: 验证码:
锰铈复合氧化物纳米球的超临界抗溶剂法制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮氧化物排放可对人体健康和环境安全造成极大危害。在我国,多数氮氧化物来自火电厂,其最有效的控制方法是以NH3作为还原剂的选择性催化还原法。最近新型低温选择性催化还原催化剂的开发引起许多学者的关注,其中锰铈复合氧化物(MnO_x-CeO_2)是性能较好的一种。研究者已经开发许多新的制备方法以提高其反应性能,如等离子体法和溶液燃烧法等。本文试图采用超临界抗溶剂法(Supercritical Antisolvent process, SAS)来制备MnO_x-CeO_2催化剂,同时考察其选择性催化还原和储放氧性能,且通过对催化剂表征揭示其构效关系。另外,本文还通过密度泛函理论计算研究催化剂选择性催化还原和储放氧性能的相关机理。
     研究表明,利用SAS法可以成功制备MnO_x-CeO_2催化剂,并且发现其颗粒具有中空纳米球结构。根据实验现象,本文探讨了中空纳米球结构形成机理,主要包括液滴缩小、球壁形成和中空出现三个阶段。对SAS操作参数的影响研究发现,在前驱体溶液浓度较低的条件下可得到具有中空纳米球结构的催化剂,而浓度较高则为实心结构;还可以通过调控温度和压力对粒径进行控制。通过对初始和最终的Ce/Mn摩尔比的关系进行研究,可以实现前驱体中Ce/Mn比例可控。利用该简捷的制备方法可以同时实现催化剂的形貌、粒径和比例可控。
     MnO_x-CeO_2中空纳米球的储放氧能力和实心球相当,但储氧速率较高,可归结于其晶格氧迁移速率大和其较高的比表面积。中空球的选择性催化还原性能优于实心球的催化剂可归结于中空球比表面积较大,表面的活性氧物种多和储氧速率较高。随着Mn含量增加,由于MnO_x-CeO_2中空球催化剂的晶格氧的迁移性能增强,使得其储放氧性能也增强。而催化剂选择性催化还原性能有先升高后降低的趋势,主要是比表面积的影响。随着焙烧温度增加,MnO_x-CeO_2中空球催化剂的选择性催化还原和储放氧性能均出现先增大后减小的趋势,可分别归结于比表面积、表面氧物种数和晶格氧的迁移性能的先增后减。
     对Mn掺杂增强CeO_2(111)面储放氧性能的机理的密度泛函计算发现Mn的加入使得体系的几何结构和电子结构都发生了变化,增强了表面氧的活泼性,使得空位形成能降低,从而改善了体系的OSC性能。对在Mn掺杂CeO_2(111)面上ER型选择性催化还原反应机理进行密度泛函计算发现,NH_3吸附在Ce上和修复空位的活化氧作用而活化,再和气相中的NO作用形成NH_2NO;吸附在Mn附近的NH_2NO通过一系列氢转移过程形成N2和H_2O。整个反应路径为热力学有利,NH3的活化能垒最高。本文的计算可以为设计新型低温脱硝催化剂提供参考。
Nitrogen oxides (NO_x) exhaust can cause serious damage to both human health and environmental safety. The emission of NO_x from power plants takes majority in China. The most effective method for reducing NO_x from power plants is selective catalytic reduction (SCR) with NH3 as reducing agent. In recent years, many efforts have been made to develop new SCR catalysts with good catalytic activity at low temperature. Among them, the manganese and cerium composite oxide (MnO_x-CeO_2) catalysts showed excellent activities for the SCR at low temperature. The recent reports have highlighted some new routes for the preparation of the MnO_x-CeO_2 catalysts to enhance its performance, such as plasma method and solution combustion method etc. In this work, it is attempted to synthesize MnO_x-CeO_2 catalysts via a supercritical antisolvent (SAS) process. The SCR and oxygen storage capacity (OSC) performances of catalysts were concerned. And some physicochemical characterizations of the prepared catalysts were also carried out to reveal the inherent structure-activity relationship. Furthermore, density functional theory (DFT) calculations were performed to explore the mechanisms about OSC and SCR of the MnO_x-CeO_2 catalysts.
     Firstly, the MnO_x-CeO_2 hollow nanospheres were successfully obtained in the SAS preparation. A new possible formation mechanism of the nano-sized hollow spheres had been proposed based on the experimental results. It included three stages: the shrinkage of droplets, the formation of spherical wall and the appearance of the hollow structure. Investigations on the effects of the SAS parameters revealed that the hollow MnO_x-CeO_2 nanospheres could be synthesized at low precursor concentration, but not at high solution concentration, which resulted in solid nanospheres. The size control was also realized by adjusting the pressure and temperature of the SAS process. Based on the exploration of the relationship between the Ce/Mn ratio in the initial solution and that in final product, the control of the Ce/Mn ratio was also realized. Thus, the particle morphology, size and element ratio of MnO_x-CeO_2 catalysts could be simultaneously controlled with a facile approach.
     Secondly, it was found that the total OSC of the hollow and solid MnO_x-CeO_2 nanospheres were equal. But the dynamic oxygen storage rate of hollow sample was better because of its better lattice oxygen mobility and higher specific surface area. Compared to the solid one, the MnO_x-CeO_2 hollow nanospheres exhibited a better NO conversion, which was related to their higher surface area, richer surface active oxygen species and higher oxygen storage rate. With the increase of Mn content, the OSC performance of the hollow MnO_x-CeO_2 nanospheres was enhanced due to the improvement of lattice oxygen mobility, but the NO conversion increased firstly and then decreased, which was mainly caused by the specific surface area of the catalysts. And with the increase of calcination temperature, the OSC and SCR performances of the MnO_x-CeO_2 hollow nanospheres increased firstly and declined later, which was due to the initial increase and the later decline of their specific surface area, surface active oxygen species and lattice oxygen mobility, respectively.
     Finally, the origin of the enhanced OSC performance of the Mn-doped CeO_2(111) was studied based on DFT calculations. It was found the modifications of geometric and electronic structures were caused by the incorporation of Mn in CeO_2, resulting in activated oxygen species on the surface. The formation energy of oxygen vacancies was lowered by the Mn doping. These changes could be responsible for the OSC enhancement of the Mn-doepd CeO_2 catalyst. The SCR mechanism according to the Eley-Rideal (ER) type on the Mn-doped CeO_2(111) was also studied by DFT calculations. It was found that NH3 adsorbed on the Ce atom could be activated by the active oxygen species, which could heal the vacancy on surface. The generated NH_2 species could react with NO in gas phase to form the adsorbed NH_2NO species near the Mn atom, which would experience a series of hydrogen-transfer steps to form N2 and H_2O. The overall reaction path was thermodynamically favorable and NH3 activation exhibited a highest energy barrier. The results could provide instructions for designing new type catalysts for the low-temperature SCR.
引文
[1] Bosch H, Janssen F, Formation and control of nitrogen oxides, Catalysis Today, 1988, 2(4): 369-379
    [2] Schneider H, Scharf U, Wokaun A, et al., Chromia on Titania: IV. Nature of Active Sites for Selective Catalytic Reduction of NO by NH3, Journal of Catalysis, 1994, 146(2): 545-556
    [3]刘孜,关于我国NO_x污染指标及控制措施等有关问题的探讨,北京城市大气污染防治学术研讨论文选集,北京:中国环境科学出版社,2000:18-21
    [4]黄诗坚,NO_x的危害及其排放控制,电力环境保护,2004,20(1):24-25
    [5] Mauzerall D L, Sultan B, Kim N, et al., NO_x emissions from large point sources: variability in ozone production, resulting health damages and economic costs, Atmospheric Environment, 2005, 39: 2851-2866
    [6]李智森,燃烧中氮氧化物的形成与防治,环境保护,1994,11:6-7
    [7]孙克勤,钟秦,火电厂烟气脱硝技术及工程应用,北京:化学工业出版社,2007
    [8]王方群,杜云贵,国内燃煤电厂烟气脱硝发展现状及建议,电力环境保护,2007,23(3):20-23
    [9] Busca G, Lietti L, Ramis G, et al., Chemical and mechanistic aspects of the selective catalytic reduction of NO_x by ammonia over oxide catalysts: A review, 1998, 18(1-2): 1-36
    [10]吕宏俊,选择性催化还原脱硝工艺的布置方式及分析,中国环保产业,2007,5:41-46
    [11] Kang M, Kim D J, Park E D, et al., Two-stage catalyst system for selective catalytic reduction of NO_x by NH3 at low temperatures, Applied Catalysis B:Environmental, 2006, 68(1-2): 21-27
    [12] An W, Chuang K T, Sanger A R, Catalyst-support interaction in fluorinated carbon-supported Pt catalysts for reaction of NO with NH3, Journal of Catalysis, 2002, 211(2): 308-315
    [13]伍斌,MnO_2/NH4NaY催化剂上的NO低温选择性催化还原(SCR),工业催化,2007,15(10):5
    [14] Richter M, Trunschke A, Bentrup U, et al., Selective Catalytic Reduction of Nitric O_xide by Ammonia over Egg-Shell MnO_x/NaY Composite Catalysts, Journal of Catalysis, 2002, 206(1): 98-113
    [15] Lin Q, Li J, Ma L, et al., Selective catalytic reduction of NO with NH3 overMn-Fe/USY under lean burn conditions, Catalysis Today, 2010, 151(3-4): 251-256
    [16] Guo Y X, Liu Z Y, Li Y M, et al., NH3 regeneration of SO_2-captured V2O5/AC catalyst-sorbent for simultaneous SO_2 and NO removal, Journal of Fuel Chemistry and Technology, 2007, 35(3): 344-348
    [17] Zhang X, Huang Z, Liu Z, Effect of KCl on selective catalytic reduction of NO with NH3 over a V2O5/AC catalyst, Catalysis Communications, 2008, 9(5): 842-846
    [18] Tang X L, Hao J M, Yi H H, et al., Low-temperature SCR of NO with NH3 over AC/C supported manganese-based monolithic catalysts, Catalysis Today, 2007, 126(3-4): 406-411
    [19]唐晓龙,活性炭改性整体催化剂上低温选择性还原NO_x,中国环境科学,2007,27(6):6
    [20] Byeon J H, Yoon H S, Yoon K Y, et al., Electroless copper deposition on a pitch-based activated carbon fiber and an application for NO removal, Surface and Coatings Technology, 2008, 202(15): 3571-3578
    [21]沈伯雄,CeO_2/ACF的低温SCR烟气脱硝性能研究,燃料化学学报,2007,35(1):4
    [22]沈伯雄,选择性催化还原脱氮催化剂的再生及其应用评述,化工进展,2008,27(1):4
    [23] Marban G, Fuertes A B, Low-temperature SCR of NO_x with NH3 over Nomex(TM) rejects-based activated carbon fibre composite-supported manganese oxides: Part I. Effect of pre-conditioning of the carbonaceous support, Applied Catalysis B: Environmental, 2001, 34(1): 43-53
    [24] Huang B, Huang R, Jin D, et al., Low temperature SCR of NO with NH3 over carbon nanotubes supported vanadium oxides, Catalysis Today, 2007, 126(3-4): 279-283
    [25] Bai S, Zhao J, Wang L, et al., SO_2-promoted reduction of NO with NH3 over vanadium molecularly anchored on the surface of carbon nanotubes, Catalysis Today, 2011, 158(3-4): 393-400
    [26] Hou Y, Huang Z, Guo S, Effect of SO_2 on V2O5/ACF catalysts for NO reduction with NH3 at low temperature, Catalysis Communications, 2009, 10(11): 1538-1541
    [27] Pena D A, Uphade B S, Smirniotis P G, TiO_2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3: I. Evaluation and characterization of first row transition metals, Journal of Catalysis, 2004, 221(2): 421-431
    [28] Wu Z, Jiang B, Liu Y, et al., Experimental study on a low-temperature SCRcatalyst based on MnO_x/TiO_2 prepared by sol-gel method, Journal of Hazardous Materials, 2007, 145(3): 488-494
    [29] Wu Z, Jiang B Q, Liu Y, Effect of transition metals addition on the catalyst of manganese/titania for low-temperature selective catalytic reduction of nitric oxide with ammonia, Applied Catalysis B: Environmental, 2008, 79(4): 347-355
    [30] Wu Z, Jin R, Liu Y, et al., Ceria modified MnO_x/TiO_2 as a superior catalyst for NO reduction with NH3 at low-temperature, Catalysis Communications, 2008, 9(13): 2217-2220
    [31] Li J H, Chen J J, Ke R, et al., Effects of precursors on the surface Mn species and the activities for NO reduction over MnO_x/TiO_2 catalysts, Catalysis Communications, 2007, 8: 1896-1900
    [32] Xie G, Liu Z, Zhu Z, et al., Simultaneous removal of SO_2 and NO_x from flue gas using a CuO/Al2O3 catalyst sorbent: I. Reactivation of SCR activity by SO_2 at low temperatures, Journal of Catalysis, 2004, 224(1): 36-41
    [33] Xie G, Liu Z, Zhu Z, et al., Simultaneous removal of SO_2 and NO_x from flue gas using a CuO/Al2O3 catalyst sorbent: II. Promotion of SCR activity by SO_2 at high temperatures, Journal of Catalysis, 2004, 224(1): 42-49
    [34] Sjoerd Kijlstra W, Biervliet M, Poels E K, et al., Deactivation by SO_2 of MnO_x/Al2O3 catalysts used for the selective catalytic reduction of NO with NH3 at low temperatures, Applied Catalysis B: Environmental, 1998, 16(4): 327-337
    [35] Jin R, Liu Y, Wu Z, et al., Low-temperature selective catalytic reduction of NO with NH3 over MnCe oxides supported on TiO_2 and Al2O3: A comparative study, Chemosphere, 78(9): 1160-1166
    [36] Huang J, Tong Z, Huang Y, et al., Selective catalytic reduction of NO with NH3 at low temperatures over iron and manganese oxides supported on mesoporous silica, Applied Catalysis B: Environmental, 2008, 78(3-4): 309-314
    [37] Kang M, Park E D, Kim J M, et al., Manganese oxide catalysts for NO_x reduction with NH3 at low temperatures, Applied Catalysis A: General, 2007, 327(2): 261-269
    [38] Tang X L, Hao J M, Xu W G, et al., Low temperature selective catalytic reduction of NO_x with NH3 over amorphous MnO_x catalysts prepared by three methods, Catalysis Communications, 2007, 8(3): 329-334
    [39] Kang M, Park E D, Kim J M, et al., Cu-Mn mixed oxides for low temperature NO reduction with NH3, Catalysis Today, 2006, 111(3-4): 236-241
    [40] Chen Z H, Li X H, Gao X, et al., Selective catalytic reduction of NO_x with NH3 on a Cr-Mn mixed oxide at low temperature, Chinese Journal of Catalysis, 2009, 30(1): 4-6
    [41] Chen Z H, Li X H, Yang Q, et al., Removal of NO_x using novel Fe-Mnmixed-oxide vatalysts at low temperature, Acta Physico-chimica Sinica, 2009, 25(4): 601-605
    [42] Qi G, A superior catalyst for low-temperature NO reduction with NH3, Chemical Communications, 2003, 7: 848-849
    [43] Qi G, Yang R T, Characterization and FTIR studies of MnO_x-CeO_2 catalyst for low-temperature selective catalytic reduction of NO with NH3, The Journal of Physical Chemistry B, 2004, 108(40): 15738-15747
    [44] Qi G, Yang R T, Chang R, MnO_x-CeO_2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures, Applied Catalysis B: Environmental, 2004, 51(2): 93-106
    [45] Machida M, Kurogi D, Kijima T, MnO_x-CeO_2 binary oxides for catalytic NO_x-sorption at low temperatures. Selective reduction of sorbed NO_x, Chemistry of Materials, 2000, 12(10): 3165-3170
    [46] Chen H, Sayari A, Adnot A, et al., Composition-activity effects of Mn-Ce-O composites on phenol catalytic wet oxidation, Applied Catalysis B: Environmental, 2001, 32(3): 195-204
    [47] Martins R C, Quinta-Ferreira R M, Catalytic ozonation of phenolic acids over a Mn-Ce-O catalyst, Applied Catalysis B: Environmental, 2009, 90(1-2): 268-277
    [48] Jia L W, Shen M Q, Wang J, et al., Redox behaviors and structural characteristics of Mn0.1Ce0.9O_x and Mn0.1Ce0.6Zr0.3O_x, Journal of Rare Earths, 2008, 26(4): 523-527
    [49] Wang X Y, Kang Q, Li D, Catalytic combustion of chlorobenzene over MnO_x-CeO_2 mixed oxide catalysts, Applied Catalysis B: Environmental, 2009, 86(3-4): 166-175
    [50] Ye Q, Xu B Q, Textural and structure characterizations of Ce1-xMnxO_2 prepared by citric acid sol-gel method, Acta Physico-Chimica Sinica, 2006, 22(3): 345-349
    [51] Shi L M, Chu W, Qu F F, et al., Low-temperature catalytic combustion of methane over MnO_x-CeO_2 mixed oxide catalysts: Effect of preparation method, Catalysis Letters, 2007, 113(1-2): 59-64
    [52] Tang X F, Li Y G, Huang X M, et al., MnO_x-CeO_2 mixed oxide catalysts for complete oxidation of formaldehyde: Effect of preparation method and calcination temperature, Applied Catalysis B: Environmental, 2006, 62(3-4): 265-273
    [53] Arena F, Trunfio G, Negro J, et al., Basic evidence of the molecular dispersion of MnCeO_x catalysts synthesized via a novel "redox-precipitation" route, Chemistry of Materials, 2007, 19(9): 2269-2276
    [54] Murugan B, Ramaswamy A V, Srinivas D, et al., Nature of manganese species in Ce1-xMnxO_2- solid solutions synthesized by the solution combustion route,Chemistry of Materials, 2005, 17(15): 3983-3993
    [55] Delimaris D, Ioannides T, VOC oxidation over MnOx-CeO_2 catalysts prepared by a combustion method, Applied Catalysis B: Environmental, 2008, 84(1-2): 303-312
    [56] Hutchings G J, Catalyst synthesis using supercritical carbon dioxide: a green route to high activity materials, Topics in Catalysis, 2009, 52: 982–987
    [57]朱自强,超临界流体技术原理和应用,北京:化学工业出版社,2000:11-17
    [58] Kukonis J, Supercritical fluid nucleation of difficult-to-comminute solids, San Francisco: American Institute of Chemical Engineers Annual Meeting, 1984: 140
    [59] Smith R D, Supercritical fluid molecular spray film deposition and powder formation, US4582731, 1986
    [60] Martin A, Cocero M J, Micronization processes with supercritical fluids: Fundamentals and mechanisms, Advanced Drug Delivery Reviews, 2008, 60(3): 339-350
    [61] Reverchon E, Della Porta G, Di Trolio A, et al., Supercritical antisolvent precipitation of nanoparticles of superconductor precursors, Industrial & Engineering Chemistry Research, 1998, 37(3): 952-958
    [62] Reverchon E, Della Porta G, Sannino D, et al., Supercritical antisolvent precipitation of nanoparticles of a zinc oxide precursor, Powder Technology, 1999, 102(2): 127-134
    [63] Reverchon E, Della Porta G, Sannino D, et al., Supercritical anti-solvent precipitation: a novel technique to produce catalyst precursors. Preparation and characterization of samarium oxide nanoparticles, Studies in surface science and catalysis, 1998, 118: 349-358
    [64] Tang Z R, Edwards J K, Bartley J K, et al., Nanocrystalline cerium oxide produced by supercritical antisolvent precipitation as a support for high-activity gold catalysts, Journal of Catalysis, 2007, 249(2): 208-219
    [65] Miedziak P J, Tang Z, Davies T E, et al., Ceria prepared using supercritical antisolvent precipitation: a green support for gold-palladium nanoparticles for the selective catalytic oxidation of alcohols, Journal of Materials Chemistry, 2009, 19(45): 8619-8627
    [66] Tang Z R, Bartley J K, Taylor S H, et al. Preparation of TiO_2 using supercritical CO_2 antisolvent precipitation (SAS): A support for high activity gold catalysts. Studies in surface science and catalysis. Elsevier. 2006: 219-226
    [67] Lu T, Blackburn S, Dickinson C, et al., Production of titania nanoparticles by a green process route, Powder Technology, 2009, 188(3): 264-271
    [68] Tang Z R, Jones C D, Aldridge J K W, et al., New nanocrystalline Cu/MnOx catalysts prepared from supercritical antisolvent precipitation, ChemCatChem,2009, 1(2): 247-251
    [69] Hutchings G J, Lopez-Sanchez J A, Bartley J K, et al., Amorphous vanadium phosphate catalysts prepared using precipitation with supercritical CO_2 as an antisolvent, Journal of Catalysis, 2002, 208(1): 197-210
    [70]谷学谦,超临界抗溶剂技术制备醋酸锰超细粒子:[硕士学位论文],天津;天津大学,2007
    [71]何春燕,姜浩锡,张敏华,超临界抗溶剂法制备纳米氧化铝颗粒,催化学报,2007,28(10):890-894
    [72] Jiang H X, He C Y, Sun H H, et al., Preparation and characterization of composed alumina-zirconia nanoparticles by supercritical anti-solvent process, J Inorg Mater, 25(10): 1065-1070
    [73]张金彦,纳米晶铈锆复合氧化物催化剂的SAS法制备与表征:[硕士学位论文],天津;天津大学,2008
    [74]刘霖,纳米晶铈锆复合氧化物固溶体的SAS合成及机理研究:[硕士学位论文],天津;天津大学,2009
    [75]孙焕花,铜铈锆氧化物纳米颗粒的SAS制备及其中空结构的可控合成:[硕士学位论文],天津;天津大学,2010
    [76]孙克勤,选择性催化还原脱硝的理论及实验研究:[硕士学位论文],天津;天津大学,2007
    [77]李云涛,氟掺杂氧化钒/氧化钛催化剂制备及其低温脱硝过程研究,浙江,南京工业大学,2010
    [78] Anstrom M, Topsoe N Y, Dumesic J A, Density functional theory studies of mechanistic aspects of the SCR reaction on vanadium oxide catalysts, Journal of Catalyst, 2003, 213(2): 115-125
    [79] Phil H H, Reddy M P, Kumar P A, et al., SO_2 resistant antimony promoted V2O5/TiO_2 catalyst for NH3-SCR of NOx at low temperatures, Applied Catalysis B: Environmental, 2008, 78(3-4): 301-308
    [80] Yamazoe S, Masutani Y, Teramura K, et al., Promotion effect of tungsten oxide on photo-assisted selective catalytic reduction of NO with NH3 over TiO_2, Applied Catalysis B: Environmental, 2008, 83(1-2): 123-130
    [81] Zhang X L, He H, Gao H W, et al., Experimental and theoretical studies of surface nitrate species on Ag/Al2O3 using DRIFTS and DFT, Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 2008, 71(4): 1446-1451
    [82] Li J, Li S, A DFT Study toward Understanding the high activity of Fe-exchanged zeolites for the fast selective catalytic reduction of nitrogen oxides with ammonia, The Journal of Physical Chemistry C, 2008, 112(43): 16938-16944
    [83] Broclawik E, Gora A, Najbar M, The role of tungsten in formation of active sites for no SCR on the V-W-O catalyst surface-quantum chemical modeling (DFT),Journal of Molecular Catalysis A: Chemical, 2001, 166(1): 31-38
    [84] Schr?dinger E, An undulatory theory of the mechanics of atoms and molecules, 1926, 28: 1049-1070
    [85] Born M, Oppenheimer R. Zur quantentheorie der moleküle, 1927, 84: 457-485
    [86]封继康,基础量子化学原理,北京:高等教育出版社,1987
    [87] Thomas L H, The calculation of atomic fields, Mathematical Proceedings of the Cambridge Philosophical Society, 1927, 23(05): 542-548
    [88] Fermi E, Un metodo statistico per la determinantione di alcune priorieta dell atome, Rend Accad Naz Lincei, 1927, 6: 602-607
    [89] Hohenberg P, Kohn W, Inhomogeneous electron gas, Physical Review, 1964, 136(3): 864-871
    [90] Kohn W, Sham L J, Self-consistent equations including exchange and correlation Effects, Physical Review, 1965, 140(4): 1133-1138
    [91] Jones R O, Gunnarsson O, The density functional formalism, its applications and prospects, Reviews of Modern Physics, 1989, 61(3): 689-746
    [92] Perdew J P, Burke K, Ernzerhof M, Generalized gradient approximation made simple, Physical Review Letter, 1996, 77: 3865-3868
    [93] Anisimov V I, Zaanen J, Andersen O K, Band theory and Mott insulators: Hubbard U instead of Stoner I, Physical Review B, 1991, 44(3): 943-954
    [94] Hellmann H, A new approximation method in the problem of many electrons, Journal of Chemical Physics, 1935, 3:61
    [95] Monkhorst H J, Pack J D, Special points for brillouin-zone intergrations, 1976, 13: 5188-5192
    [96] Payne M C, Teter M P, Allan D C, et al., Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients, Reviews of Modern Physics, 1992, 64(4): 1045-1097
    [97] Wang X Y, Qian K, Dao L, Catalytic combustion of chlorobenzene over MnOx-CeO_2 mixed oxide catalysts, Applied Catalysis B: Environmental, 2009, 86(3-4): 166-175
    [98] Wang X Y, Kang Q, Li D, Low-temperature catalytic combustion of chlorobenzene over MnOx-CeO_2 mixed oxide catalysts, Catalysis Communications, 2008, 9(13): 2158-2162
    [99] Anastas P T, Warner J C, Green chemistry, theory and practice, Oxford University Press, New York, 1998
    [100] Seville J P K, Tüzün U, Clift R, Processing of Particulate Solids, Chapman & Hall/Kluwer, 1997
    [101] Kumar R, Anomalous dependence of leachability on surface area duringsulphuric acid leaching of nickel- and copper-doped birnessites, Hydrometallurgy, 1999, 52(1): 71-79
    [102] Radwan N R E, Turky A E-M M, El-Shobaky G A, Surface and catalytic properties of CuO doped with Li2O and Al2O3, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 203(1-3): 205-215
    [103] Chen Y C, Chen K B, Lee C S, et al., Direct Synthesis of Zr-doped ceria nanotubes, Journal of Physical Chemistry C, 2009, 113: 5301-5034
    [104] Carno J, Ferrandon M, Bjonbom E, et al., Mixed manganese oxide/platinum catalysts for total oxidation of model gas from wood boilers, Applied Catalysis A: General, 1997, 155(2): 265-281
    [105] Reverchon E, De Marco I, Torino E, Nanoparticles production by supercritical antisolvent precipitation: A general interpretation, The Journal of Supercritical Fluids, 2007, 43(1): 126-138
    [106] Reverchon E, De Marco I, Adami R, et al., Expanded micro-particles by supercritical antisolvent precipitation: Interpretation of results, The Journal of Supercritical Fluids, 2008, 44(1): 98-108
    [107] Reverchon E, Adami R, Caputo G, et al., Spherical microparticles production by supercritical antisolvent precipitation: Interpretation of results, The Journal of Supercritical Fluids, 2008, 47(1): 70-84
    [108] Werling J O, Debenedetti P G, Numerical modeling of mass transfer in the supercritical antisolvent process: miscible conditions, The Journal of Supercritical Fluids, 2000, 18(1): 11-24
    [109]梁广,刘伟平,高文桂,乙酰丙酮铑的化学性质,中国有色金属学报,2004,14(11):1969-1976
    [110] Reverchon E, De Marco I, Supercritical antisolvent precipitation of Cephalosporins, Powder Technology, 2006, 164(3): 139-146
    [111] Chang S C, Lee M J, Lin H M, The in?uence of phase behavior on the morphology of protein l-chymotrypsin prepared via a supercritical anti-solvent process, Proceedings of 8th International Symposium on Supercritical Fluids, Kioto, Japan, 2006
    [112] Subra P, Laudani C G, Vega-Gonzalez A, et al., Precipitation and phase behavior of theophylline in solvent-supercritical CO_2 mixtures, Journal of Supercritical Fluids, 2005, 35(2): 95-105
    [113] Costa M S, Duarte A R C, Cardoso M M, et al., Supercritical antisolvent precipitation of PHBV microparticles, International Journal of Pharmaceutics, 2007, 328(1): 72-77
    [114] Dixon D J, Johnoton K P, Bodmeier R A, Polymeric materials formed by precipitation with a compressed ?uid antisolvent, Aiche Journal, 1993, 39(1):127-139
    [115] Miguel F, Martin A, Gamse T, et al., Supercritical anti solvent precipitation of lycopene-Effect of the operating parameters, Journal of Supercritical Fluids, 2006, 36(3): 225-235
    [116] Varughese P, Li J, Wang W, et al., Supercritical antisolvent processing ofγ-Indomethacin: Effects of solvent,concentration, pressure and temperature on SAS processed Indomethacin, Powder Technology, 2010, 201(1): 64-69
    [117] Martin A, Mattea F, Gutierrez L, et al., Co-precipitation of carotenoids and bio-polymers with the supercritical anti-solvent process, The Journal of Supercritical Fluids, 2007, 41(1): 138-147
    [118] Balducci G, Islam M S, Ka?par J, et al., Reduction Process in CeO_2-MO and CeO_2-M2O3 Mixed O_xides:? A Computer Simulation Study, Chemistry of Materials, 2003, 15(20): 3781-3785
    [119] Gupta A, Waghmare U V, Hegde M S, Correlation of oxygen storage capacity and structural distortion in transition-metal-, noble-metal-, and rare-earth-ion-substituted CeO_2 from first principles calculation, Chemistry of Materials, 22(18): 5184-5198
    [120]祥晋,潘湛昌,肖楚民,等,纳米氧化铈催化作用研究探讨,化学与生物工程,2005,2(2):1-5
    [121] Kümmerle E A, Heger G, The structures of C-Ce2O3+ , Ce7O12 and Ce11O_20, Journal of Solid State Chemistry, 1999, 147: 485-500
    [122] Nolan M, Parker S C, Watson G W, The electronic structure of oxygen vacancy defects at the low index surfaces of ceria, Surface Science, 2005, 595(1-3): 223-232
    [123] Yang Z X, Fu Z M, Wei Y W, et al., The electronic and reduction properties of Ce0.75Zr0.25O_2(110), Chemical Physics Letters, 2008, 450(4-6): 286-291
    [124] Wuilloud E, Delley B, Schneider W D, et al., Spectroscopic evidence for localized and extended f-symmetry states in CeO_2, Physical Review Letters, 1984, 53(2): 202
    [125] Yang Z X, Woo T K, Baudin M, et al., Atomic and electronic structure of unreduced and reduced CeO_2 surfaces: A first-principles study, Journal of Chemical Physics, 2004, 120: 7741-7749
    [126] Nolan M, Grigoleit S, Sayle D C, et al., Density functional theory studies of the structure and electronic structure of pure and defective low index surfaces of ceria, Surface Science, 2005, 576(1-3): 217-229
    [127] Gennard S, Cora F, Catlow C R A, Comparison of the bulk and surface properties of ceria and zirconia by ab initio investigations, Journal of Physical Chemistry B, 1999, 103(46): 10158-10170
    [128] Hertzberg G, Moleculara Spectra and Molecular Structure, New York, 1950
    [129] Esch F, Fabris S, Zhou L, et al., Electron localization determines defect formation on ceria substrates, Science, 2005, 309(5735): 752-755
    [130] Wu X D, Liang Q, Weng D, et al., Synthesis of CeO_2-MnO_x mixed oxides and catalytic performance under oxygen-rich condition, Catalysis Today, 2007, 126(3-4): 430-435
    [131] Watanabe K, Miyao T, Higashiyama K, et al., High temperature water-gas shift reaction over hollow Ni-Fe-Al oxide nano-composite catalysts prepared by the solution-spray plasma technique, Catalysis Communications, 2009, 10(14): 1952-1955
    [132] Jin P, Chen Q, Hao L, et al., Synthesis and catalytic properties of nickel-silica composite hollow nanospheres, The Journal of Physical Chemistry B, 2004, 108(20): 6311-6314
    [133] Jia L W, Shen M Q, Hao J J, et al., Dynamic oxygen storage and release over Mn0.1Ce0.9O_x and Mn0.1Ce0.6Zr0.3O_x complex compounds and structural characterization, Journal of Alloys and Compounds, 2008, 454(1-2): 321-326
    [134] Kn?zinger H, Mestl G, Laser Raman spectroscopy-a powerful tool for in situ studies of catalytic materials, Topics in Catalyst, 1999, 8(1): 45-55
    [135] Fernández-Garc??A M, Mart??Nez-Arias A, Iglesias-Juez A, et al., Structural characteristics and redox behavior of CeO_2–ZrO_2/Al2O3 Supports, Journal of Catalysis, 2000, 194(2): 385-392
    [136] Zhao B, Li G, Ge C, et al., Preparation of Ce0.67Zr0.33O_2 mixed oxides as supports of improved Pd-only three-way catalysts, Applied Catalysis B: Environmental, 2010, 96(3-4): 338-349
    [137] Pu Z-Y, Lu J-Q, Luo M-F, et al., Study of oxygen vacancies in Ce0.9Pr0.1O_2- solid solution by in situ X-raydiffraction and in situ Raman spectroscopy, The Journal of Physical Chemistry C, 2007, 111(50): 18695-18702
    [138] Rogers J W Jr, Shinn N D, Schirber J E,et al., Identification of a superoxide in superconducting La2CuO4+ by x-ray photoelectron spectroscopy, Physical Review B, 1988,38(7): 5021-5024
    [139] Machocki A, Ioannides T, Stasinska B, et al., Manganese-lanthanum oxides modified with silver for the catalytic combustion of methane, Journal of Catalysis, 2004, 227(2): 282-296
    [140] Falcón H, Barbero J A, Araujo G, et al., Double perovskite oxides A2FeMoO6? (A=Ca, Sr and Ba) as catalysts for methane combustion, Applied Catalysis B: Environmental, 2004, 53(1): 37-45
    [141] Kapteijn F, Singoredjo L, Andreini A, et al., Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide withammonia, Applied Catalysis B:Environmental, 1994, 3(2-3): 173-189
    [142] Carn- J, Ferrandon M, Bj-rnbom E, et al., Mixed manganese oxide/platinum catalysts for total oxidation of model gas from wood boilers, Applied Catalysis A: General, 1997, 155(2): 265-281
    [143] He H, Dai H X, Wong K W, et al., RE0.6Zr0.4-xYxO_2 (RE = Ce, Pr; x = 0, 0.05) solid solutions: an investigation on defective structure, oxygen mobility, oxygen storage capacity, and redox properties, Applied Catalysis A: General, 2003, 251(1): 61-74
    [144] Picasso G, Gutiérrez M, Pina M P, et al., Preparation and characterization of Ce-Zr and Ce-Mn based oxides for n-hexane combustion: Application to catalytic membrane reactors, Chemical Engineering Journal, 2007, 126(2-3): 119-130
    [145] Chen L, Fleming P, Morris V, et al., Size-related lattice parameter changes and surface defects in ceria nanocrystals, The Journal of Physical Chemistry C, 2010, 114(30): 12909-12919
    [146] Machida M, Uto M, Kurogi D, et al., MnO_x-CeO_2 binary oxides for catalytic NO_x sorption at low temperatures. Sorptive removal of NO_x, Chemistry of Materials, 2000, 12(10): 3158-3164
    [147] Shan W, Ma N, Yang J, et al., Catalytic oxidation of soot particulates over MnO_x-CeO_2 oxides prepared by complexation-combustion method, Journal of Natural Gas Chemistry, 2010, 19(1): 86-90
    [148] Krishna K, Bueno-López A, Makkee M, et al., Potential rare-earth modified CeO_2 catalysts for soot oxidation, Topics in Catalysis, 2007, 42-43(1): 221-228
    [149] Pena D A, Uphade B S, Reddy E P, et al., Identification of surface species on titania-supported manganese, chromium, and copper oxide low-temperature SCR catalysts, The Journal of Physical Chemistry B, 2004, 108(28): 9927-9936
    [150] Wu Z, Jiang B, Liu Y, et al., DRIFT Study of manganese/titania-based catalysts for low-temperature selective catalytic reduction of NO with NH3, Environmental Science Technology, 2007, 41(16): 5812-5817
    [151] Qi G, Yang R T, Performance and kinetics study for low-temperature SCR of NO with NH3 over MnO_x-CeO_2 catalyst, Journal of Catalyst, 2003, 217(2): 434-441
    [152] Eigenmann F, Maciejewski M, Baiker A, Selective reduction of NO by NH3 over manganese-cerium mixed oxides: Relation between adsorption, redox and catalytic behavior, Applied Catalysis B:Environmental, 2006, 62(3-4): 311-318
    [153] Soyer S, Uzun A, Senkan S, et al., A quantum chemical study of nitric oxide reduction by ammonia (SCR reaction) on V2O5 catalyst surface, Catalysis Today, 2006, 118(3-4): 268-278

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700