用户名: 密码: 验证码:
改性纳米TiO_2及硫电解液用于敏化太阳能电池的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
染料敏化太阳能电池(DSC)作为一种新型太阳能的有效利用方式得到世界的广泛关注,这种电池制作工艺简单,成本低,不污染环境,具有高效稳定的优点,应用前景广阔。
     本论文采用高压水热法制备了纳米Ti02及Zr02掺杂的纳米Ti02多孔膜电极,以本组自制有机染料TH305和近红外染料HY103作为敏化剂对其进行光敏化。组装成双波段叠层染料敏化太阳能电池,详细研究了电池的光电转换性能,获得了11.5%的光电转换效率。采用电化学方法得到了纳米Ti02及Zr02掺杂的纳米Ti02多孔膜电极的平带电位,通过肖特基方程拟合出ZrO2-TiO2电极的平带电位为-0.62V。
     本论文采用高压水热法制备了纳米Ti02及MgO掺杂的纳米Ti02多孔膜电极,以有机染料TH305作为敏化剂进行光敏化,对其光电性质进行了研究。当MgO和Ti02的摩尔比为1:99时,复合电极的光电性能达到最佳,获得了8.21%的光电转换效率,相似条件下参比染料N719得到了7.91%的光电转换效率。采用电化学方法得到了纳米Ti02及MgO掺杂的纳米Ti02多孔膜电极的平带电位,通过肖特基方程拟合出MgO-TiO2复合电极的平带电位为-0.54V。
     本论文采用一种新的硫基氧化还原电对((CH3)4N)2S/((CH3)4N)2Sn作电解液,应用于CdS量子点敏化纳米Ti02太阳能电池,采用巯基乙酸(TGA)做稳定剂,反应在纯有机相中进行,获得了3.2%的光电转换效率和89%的填充因子。采用电化学方法测试了硫电解液的氧化还原电位,从理论上解释了CdS量子点敏化太阳能电池用硫电解液获得高电压和高填充因子的原因。
     本论文采用化学浸渍法制备了CoS对电极,以TH305染料做敏化剂,用硫电解液组装成电池,结合电化学阻抗光谱,详细研究了电池的光电转换性能,获得了5.24%的光电转换效率。
As a new effective way of using solar energy, the dye-sensitized solar cells (DSC) have attracted considerable attention around the world, because of its simple preparation procedure, low cost, friendly environment action, high photoelectric conversion efficiency and better stability. Thus the DSC have good prospect in the research of solar cells.
     The nanoporous TiO2 and ZrO2/TiO2 films are prepared by high-pressure hydrothermal method, an organic dye TH305 and a near IR dye HY103 were used as sensitizer dyes, and a double-band tandem organic dye-sensitized solar cell was producted. We studied the photoelectric characteristics by details, obtained a conversion efficiency of 11.5%. At the same time, we used electrochemical impedence spectra to investigate the energy band in the composite electrodes. Based on the difference in the bleaching width of the TiO2 and ZrO2/TiO2 composite electrodes, the flat potential in the composite electrode was about-0.62V by fitting the curve through Mott-Schottky equation.
     The nanoporous TiO2 and MgO/TiO2 films are prepared by high-pressure hydrothermal method, TH305 was used as the sensitizer dye, the photoelectrochemical properties of the sensitized composite electrodes were studied. When the mol ratio of the MgO/TiO2 was 1:99, the photoelectrochemical properties of the composite electrode were optimal which showed prominent efficiency,8.21%. Under similar test conditions, the reference dye N719 showed 7.91% efficiency. At the same time, we used electrochemical impedence spectra to investigate the energy band in the composite electrodes. Based on the difference in the bleaching width of the MgO and MgO/TiO2 composite electrode, the flat potential in the composite electrode was about-0.54V by fitting the curve through Mott-Schottky equation.
     A sulfur-based electrolyte redox couple, (CH3)4N)2S/((CH3)4N)2Sn, was employed in CdS quantum dots (QDs) sensitized solar cells, and an unprecedented energy conversion efficiency of up to 3.2% was obtained with a very high fill factor (ff0.89) has been observed under AM 1.5 G illumination. The QDs were linked to nanoporous TiO2 via covalent bond by using thioglycolic acid (TGA), followed by chemical bath deposition (CBD) in an organic solvent to prepare the QDs-cells, facilitating high wettability and superior penetration capability of the TiO2 films. We studied the redox potentials of the sulfur-based electrolyte by using electrochemical method, and gave the theoretical explanation of the results from the high Voc and ff.
     A CoS electrode was prepared by chemical bath method, TH305 was used as the sensitizer dye, ((CH3)4N)2S/((CH3)4N)2Sn, as an organic electrolyte, the photoelectrochemical properties of the sensitized composite electrode were studied by electrochemical impedance spectra, and an energy conversion efficiency of up to 5.24% has been attained, under AM 1.5 G illumination.
引文
[1]中国光伏产业发展研究报告,2004.
    [2]世界能源展望:中国选萃(M).国际能源署(IEA),2007.
    [3]王革华.主编.新能源概论(M).北京:化学工业出版社,2006.
    [4]http://baike.baidu.com/view/21294.html?wtp=tt(百度百科).
    [5]http://www.chinabaike.com/article/316/327/2007/2007022258605.html (太阳常数-中国百科网).
    [6]雷永泉.主编.新能源材料(M).天津:天津大学出版社,2002.
    [7]施敏.主编.现代半导体器件物理(M).北京:科学出版社,2001.
    [8]http://cwera.cma.gov.cn/(中国气象局风能太阳能资源评估中心).
    [9]Green M A. Photovoltaic principles. Physica E.2002,14:11-17.
    [10]Goetzberger A, Hebling C, Schock H W. Photovoltaic materials, history, status and outlook. Materials Science and Engineering R.2003,40:1-46.
    [11]Becquerel A E. Recherches sur les effets de la radiation chimique de la lumiere solaire, au moyen des courants electriques. C. R. Acad. Sci., Paris.1839,9:561-567.
    [12]Adams W G, Day R E. Proc. Roy. Soc. London A.1877,25:113.
    [13]Fritts C E. Proc. Am. Assoc. Adv. Sci.1883,33:97.
    [14]Firtts C E. Am. J. Sci.1883,26:465.
    [15]Ohl R S. Light-sensitive electric device. US Patent No.2402622,1941.
    [16]Ohl R S. Light-sensitive device including silicon. US Patent No.2443542,1941.
    [17]Chapin D M, Fullerand C S, Pearson G L. A new silicon p-n junction photocell for converting solar radiation into electrical power [J]. J. Appl. Phys.1954,25:676.
    [18]李斌,邱勇.染料敏化纳米太阳能电池[J].感光科学与光化学.2000,18:336-347.
    [19]郝彦忠,武文俊,康志敏.导电聚合物在纳米太阳能电池中的应用研究[J].高分子材料科学与工程.2004,20(6):46-49.
    [20]http://www.nrel.gov/ncpv/thin film/docs/kaz best research cells.ppt.
    [21]Holger S, Frederik C. A brief history of the development of organic and polymeric photovoltaics [J]. Solar energy materials& Solar cells.2004,83 (2-3):125-146.
    [22]Brabec C J, Sariciftci N S, Hummelen J C, Plastic solar cells [J]. Advanced function materials.2001, 11(1):15-26.
    [23]梁宗存,沈辉,李戬洪.太阳能电池研究进展[J].能源工程.2000,4:8-11.
    [24]Murayama M, Mori T. Dye-sensitized solar cell using novel tandem cell structure [J]. J. Phys. D.2007, 40,1664-166.
    [25]黄春晖,李富友,黄岩谊.光电功能超薄膜[M].北京:北京大学出版社.2001.
    [26]Gerischer H, Tributsch H. High Light-to-Energy Conversion Efficiencies for Solar Cells Based on Nanostructured ZnO [J]. Ber. Bunsen. Phys. Chem.1968,72:437-445.
    [27]Tributch H, Gerischer H. The use of semiconductor electrodes in the study of photochemical reactions [J].Ber.Bunsen-Ges.Phys.Chem.1969,73:251-260.
    [28]Memming R. Photochemical processes in monomolecular dye layers on SnO2 [J]. Faraday Discuss. Chem. Soc.1974,58:261-270.
    [29]Memming R, Schroppel F. Electron transfer reactions of excited ruthenium (Ⅱ) complexes in monolayer assemblies at the SnO2-water interface [J]. Chem. Phys. Lett.1979,62:207-210.
    [30]Memming R, Schroppel F, Bringmann U. Sensitized oxidation of water by tris (2,2'-bipyridyl) ruthenium at SnO2 electrodes [J]. J. Electroanal. Chem.1979,100:307-318.
    [31]Kiwi J, Gratzel M. Projection, size factors, and reaction dynamics of colloidal redox catalysts mediating light induced hydrogen evolution from water [J]. J. Am. Chem. Soc.1979,101:7214-7217.
    [32]Vlachopoulos N, Liska P, Gratzel M, et al. Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films [J]. J. Am. Chem. Soc.1988,110:1216-1220.
    [33]Liska P, Vlachopoulos N, Gratzel M, et al. Cis-Diaquabis (2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium (Ⅱ) sensitizes wide band gap oxide semiconductors very efficiently over a broad spectral range in the visible [J]. J. Am. Chem. Soc.1988,110:3686-3687.
    [34]Kavan L, Gratzel M. Nafion modified TiO2 electrodes:photoresponse and sensitization by Ru (Ⅱ)-bipyridyl complexes [J]. Electrochimica Acta.1989,34:1327-1334.
    [35]O'Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature.1991,353:737-740.
    [36]Nazeeruddind M K, Kay A, Gratzel M, et al. Conversion of light to electricity by cis-X2Bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X=Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes [J]. J. Am. Chem. Soc.1993,115:6382-6390.
    [37]Gratzel M. Molecular photovoltaics that mimic photosynthesis [J]. Pure Appl. Chem.2001,73: 459-467.
    [38]李毅,胡盛明.非晶硅叠层太阳能电池的现状与发展方向[J].真空科学与技术学报.2000,20(3):222-225.
    [39]郝春云,杨明辉等.叠层太阳能电池的研究与发展[J].化工新型材料.2004,32(12):19-22.
    [40]He J, Hagfeldt A, Lindquist S E, et al. Tandem dye-sensitised solar cell and method of its production [J]. Solar Energy Materials & Solar Cells.2000,62:265-273.
    [41]Durr M, Bamedi A, Nelles G, et al. Tandem dye-sensitized solar cell for improved power conversion efficiencies [J]. Appl. Phys. Lett.2004,84 (17):3397-3399.
    [42]Kubo W, Sakamoto A, Yanagida S, et al. Dye-sensitized solar cells: improvement of spectral response by tandem structure [J]. J. Photochem. Photobiology. A:Chem.2004,164:33-39.
    [43]Liska P, ThampiK R, Gratzel M, et al. Nanocrystalline dye-sensitized solar cell/copper indium gallium selenide thin-film tandem showing greater than 15% conversion efficiency [J]. Appl. Phys. Lett.2006,88 (20):203103/1-203103/3.
    [44]Ahn K S, Yoo S J, Kang M S, et al. Tandem dye-sensitized solar cell-powered electrochromic devices for the photovoltaic-powered smart window [J]. J. Power Source.2007,168:533-536.
    [45]Murayama M, Mori T. Dye-sensitized solar cell using novel tandem cell structure [J]. J. Phys. D.2007, 40,1664-166.
    [46]孙宝,郝彦忠,李伟等.纳米太阳能电池研究进展[J].河北科技大学学报.2002,23(2):22-30.
    [47]武文俊,郝彦忠.纳米光电化学电池的敏化剂及其敏化机理研究[J].河北科技大学学报.2004,25(2):4-9.
    [48]Vogel R, Pohl K, Weller H, et al. Sensitization of highly porous, polycrystalline TiO2 electrodes by quantum sizes CdS [J]. J. Chem. Phys. Lett.1990,174 (3):241-246.
    [49]Vogel R, Hoyer P, Weller H. Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors [J]. J. Phys. Chem. B.1994,98 (12): 3183-3188.
    [50]Wang C J, Moonsub S, Philippe G. Electrochromic nanocrystal quantum dots [J]. Nature.2001,291: 2390-2392.
    [51]Toyoda T, Sato J, Shen Q. Effect of sensitization by quantum-sized CdS on photoacoustic and photoele-ctrochemical currents pectua of porous TiO2 electrodes [J]. Rev Sci Instrum.2003,74 (1): 297-299.
    [52]Peter L M, Rileyd J, Tull E J. Photosensitization of nanocrystalline TiO2 by self-assembled layers of CdS quantum dots [J]. Chem. Commun.2002,10:1030-1031.
    [53]Zhang J. Interfacial charge carrier dynamics of colloidal semiconductor nanoparticles [J]. J. Phys. Chem. B.2000,104 (31):7239-7244.
    [54]Murphy C J, Coffer J L. Quantum dots:Primer [J]. Appl. Spectrosc.2002,56 (1):16227.
    [55]Jovin T M. Quantum dots finally come of age [J]. Nat. Biotechnol.2003,21 (1):32-33.
    [56]Yoffe A D. Semiconductor quantum dots and related systems: Electronic op tical luminescence and p roperties of low dimensional systems [J]. Adv. Phys.2001,50 (1):1-208.
    [57]Nozik A J. Quantum dot solar cells [J]. Physica E.2002,14 (122):1152.
    [58]Ginger D S, Greemham N C. Charge transport in semiconduct or nanocrystals [J]. Synth. Met.2001, 124(1):1172.
    [59]Shen Q, Katayama K, Yamaguch M, et al. Study of ultrafast carrier dynamics of nanostructures TiO2 filmswith and without CdSe quantum dot deposition using lens-free heterodyne detection transieng grating technique [J]. Thin Solid Films.2005,486:15-19.
    [60]Wijayanthak K G, Peter L M, Otleyl C. Fabrication of CdS quantum dot sensitized solar cells via a pressing route [J]. Sol. Energy Mater. Sol. Cells.2004,83 (4):3632-3639.
    [61]Shen Q, Arae D, Toyoda T. Photosensitization of nanostructures TiO2 with CdSe quantum dots: Effects ofmicrostructure and electr on transport in TiO2 substuates [J]. Photochem. Photobiol. A: Chemistry.2004,164:75-80.
    [62]Hoyer P, Kenkamp R. Photoconduction in por ous TiO2 sensitized by PbS quantum dots [J]. Appl. Phys. Lett.1995,66 (3):349-351.
    [63]Capoen B, Martucci A, Bouazaou I M. Effects of the sol-gel solution host on the chemical and optical properties of PbS quantum dots [J]. Mol Structure.2003,651:467-473.
    [64]Peter L M, Wijayanghak G U, Riley D J, et al. Band-edge tuning in self-assembled layers of Bi2S3 nanoparticles used to photosensitize nanocrystalline TiO2 [J]. J. Phys. Chem. B.2003,107 (33):8378-8381.
    [65]Shalom M, Dor S, Ruhle S, et al. Core/CdS Quantum Dot/Shell Mesoporous Solar Cells with Improved Stability and Efficiency Using an Amorphous TiO2 Coating [J]. J. Phys. Chem. C.2009, 113,3895-3898.
    [66]Sun W T, Yu Y, Pan H, et al. CdS Quantum Dots Sensitized TiO2Nanotube-Array Photoelectrodes [J]. J. Am. Chem. Soc.2008,130,1124-1125.
    [67]Shen Q, Kobayashi J, Diguna L J, et al. Photoacoustic and photoelectrochemical current spectra of combined CdS/CdSe quantum dots adsorbed on nanostructured TiO2 electrodes together with photovoltaic characteristics [J]. J. Appl. Phys.2008,103,084304.
    [68]Lee H J, Yum J H, Leventis H C, et al. CdSe Quantum Dot-Sensitized Solar Cells Exceeding Efficiency 1% at Full-Sun Intensity [J]. J. Phys. Chem. C.2008,112,11600-11608.
    [69]Hao Y Z, Pei J, Wei Y, et al. Efficient Semiconductor-Sensitized Solar Cells Based on Poly (3-hexylthiophene)@CdSe@ZnO Core- Shell Nanorod Arrays [J]. J. Phys. Chem. C.2010,114, 8622-8625.
    [70]Rensmo K, Keis K, Lindstrom H, et al. High light-to-engergy conversion efficiencies for solar cells based on nanostructured ZnO electrodes [J]. J. Phys. Chem. B.1997,101 (14):2598-2601.
    [71]Nasr C, Hotchandan I S, Kamat P V, et al. Photoelectrochemistry of composite semiconductor thin films photosensitizati on of SnO2/CdS coupled nanocrystallites with a ruthenium polypyridyl complex [J]. J. Phys. Chem. B.1997,101 (14):7480-7484.
    [72]孙宝,郝彦忠,李伟等.纳米太阳能电池研究进展[J].河北科技大学学报.2002,23(2):22-30.
    [73]Shah A, Torres P, Tscharner R, et al. Photovoltaic technology:the case for thin-film solar cells [J]. Science.1999,285:692-698.
    [74]唐笑,钱觉时,黄佳木.染料敏化太阳能电池中的光电极制备技术[J].材料导报.2006,20:97-103.
    [75]解宪英.纳米级二氧化钛的制备及其应用进展(上)[J].上海化工.2001,(3):37-40.
    [76]Morooka S, Yasutakae T, Kobata A, et al., A mechanism for the production of ultrafine particles of TiO2 byagasphasereaction[J]. Int. Chem. Eng.1989,29 (1):119-124.
    [77]陈早明,郑典模.纳米二氧化钛制备方法[J].江西化工.2003,(1):7-10.
    [78]陈建军,陈晓春,李庆余等.Sol-Gel法制备纳米二氧化钛凝胶的工艺优化[J].中国有色金属学报.2000,10(1):84-88.
    [79]杨柯,刘阳,尹虹.纳米二氧化钛的制备技术研究[J].中国陶瓷.2004,40(4):8-11.
    [80]雷闫盈,俞行.均匀沉淀法制备纳米二氧化钛工艺条件研究[J].无机盐工业.2001,33(2):3-7.
    [81]唐芳琼,侯莉萍,郭广生.单分散纳米二氧化的研究和应用[J].无机材料学报.2001,16(4):615-619.
    [82]林玉龙,魏雨,贾振斌.纳米二氧化钛的液相合成[J].纳米材料与结构.2003,(3):14-16.
    [83]施利毅,胡莹玉,张剑平等.微乳液法合成二氧化钛超细粒子[J].功能材料.1999,30(5):495-498.
    [84]国伟林,杨中喜,王西奎等.纳米二氧化钛的超声化学法合成[J].硅酸盐学报.2004,(8):1008-1015.
    [85]Li C, Wang W B, Wang X S, et al. Molecular Design of Squaraine Dyes for Efficient Far-red and Near-IR Sensitization of Solar Cells [J]. Chem. Lett.2005,34 (4):554-555.
    [86]Xia J, Naruhiko, Masaki. Deposition of a Thin Film of TiOx from a Titanium-71-Metal Target as Novel Blocking Layers at Conducting Glass/TiO2 Interfaces in Ionic Liquid Mesoscopic TiO2 Dye-Sensitized Solar Cells [J]. J. Phys. Chem. B.2006,10:25222-25228.
    [87]C. J. Barbe, F. Arendse, P. Comte, etal. Nanoctrystalline Titanium Oxide Electrodes for Photovoltaic Applications [J]. J. Am. Chem. Soc.1997,80 (12):3157-3171.
    [88]Sommeling P M, O'Regan B C, Haswell R., et al. Influence of a TiCl4 Post-Treat-ment on Nanocrystalline TiO2 Films in Dye-Sensitized Solar Cells [J]. J. Phys. Chem. B.2006,110 (39): 19191-19197.
    [89]Chen S G, Chappel S, Diamant Y, etal. Preparation of Nb2O5 Coated TiO2 Nanoporous Electrodes and Their Application in Dye-sensitized Solar Cells [J]. Chem. Mater.2001,13 (12):4629-4634.
    [90]Yum J H, Nakade S, Kim D Y, et al. Improved Performance in Dye-Sensitized Solar Cells Employing TiO2 Photoelectrodes Coated with Metal Hydroxides [J]. J. Phys. Chem. B.2006,110 (7):3215-3219.
    [91]Palomares E, Clifford J. N, Haque S A, et al. Control of Charge Recombination Dynamics in Dye Sensitized Solar Cells by the Use of Conformally Deposited Metal Oxide Blocking Layers [J]. J. Am. Chem. Soc.2003,125 (2):475-482.
    [92]Yang S, Huang Y, Huang C H, et al. Enhanced Energy Conversion Efficiency of the Sr2+-modified Nanoporous TiO2 Electrode Sensitized with a Ruthenium Complex [J]. Chem. Mater.2002,14 (4): 1500-1504.
    [93]Chappel S, Chen S G, Zaban A. TiO2-coated Nanoporous SnO2 Electrodes for Dye-sensitized Solar Cells [J]. Langmuir.2002,18 (8):3336-3342.
    [94]Imahori H, Hayashi S, Umeyama T, et al. Comparison of Electrode Structures and Photovoltaic Properties of Porphyrin-sensitized Solar Cells with TiO2 and Nb, Ge, Zr-added TiO2 Composite Electrodes [J]. Langmuir.2006,22 (26):11405-11411.
    [95]Wang P, Wang L D, Ma B B, et al. TiO2 Surface Modification and Characteriza--tion with Nanosized PbS in Dye-sensitized Solar Cells [J]. J. Phys. Chem. B.2006,110 (29):14406-14409.
    [96]Wang Z S, Yanagida M, Sayama K, et al. Electronic-insulating Coating of CaCO3 on TiO2 Electrode in Dye-sensitized Solar Cells:Improvement of Electron Lifetime and Efficiency [J]. Chem. Mater. 2006,18 (12):2912-2916.
    [97]Kitiyanan A, Sakulkhaemaruethai S, Suzuki Y, et al. Structural and Photovoiltaic Properties of Binary TiO2-ZrO2 Oxides System Prepared by Sol-Gel Method [J]. Compos. Sci. Technol.2006,66: 1259-1265.
    [98]Kitiyanan A, Yoshikawa S. The use of ZrO2 mixed TiO2 Nanostructures as Efficient Dye-Sensitized Solar Cells'Electrodes [J]. Mater. Lett.2005,59:4038-4040.
    [99]Bandara J, Kuruppu S S, Pradeep U W. The Promoting Effect of MgO Layer in Sensitized Photodegradation of Colorants on TiO2/MgO Composite Oxide Col-loids and Surfaces A: Physicochem [J]. Eng. Aspects.2006,276:197-202.
    [100]Taguchi T, Zhang X T, Sutanto I. Improving the Performance of Solid-State Dye-Sensitized Solar Cell Using MgO-coated TiO2Nanoporous Film [J]. Chem. Comm.2003,19: 2480-2481.
    [101]Ngamsinlapasathian S, Pavasupree S, Suzuki Y. Dye Sensitized Solar Cell Made of Mesoporous Titania by Surfactant-Assisted Tem-plating Method [J]. Sol. Energy Mater. Sol. Cells.2006,90 (18-19):3187-3192.
    [102]Song M Y, Kim D K, Jo S M, et al. Enhancement of the Photocurrent Gene-ration in Dye-sensitized Solar Cell Electrode Based on Electrospun TiO2 by Sur-face Treatment [J]. Synth. Met.2005,155 (3):635-638.
    [103]Menzies D B, Dai Q, Cheng Y B, et al. One-Step Microwave Calcination of ZrO2-coated TiO2 Electrodes for Use in Dye-Sensitized Solar Cells [J]. C. R. Chimie.2006,9 (5-6):713-716.
    [104]Hart J N, Menzies D, Cheng Y B, et al. TiO2 Sol-Gel Blocking Layers for Dye-Densitized Solar Cells [J]. C. R. Chimie.2006,9 (5-6):622-626.
    [105]Grabowski Z R, Rotkiewicz K, Rettig W. Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures [J]. Chem. Rev.2003, 103:3899-4031.
    [106]Huang Z, Liu X, Li K, et al. Application of carbon materials as counter electrodes of dye-sensitized solar cells [J]. Electrochem. Commun.2007,9 (4):596-598.
    [107]Wang Z S, Huang C H. A Highly Efficient Solar Cell Made from a Dye Modified ZnO-Covered TiO2 Nanoporous Electrode [J]. Chem. Mater.2001,13 (2):678-682.
    [108]G K, Mor K, Shankar M. Paulose, et al. Use of Highly-ordered TiO2 Nanotube Arrays in Dye-sensitized Solar Cells [J]. Nano. Lett.2006,6 (2):215-218.
    [109]Lindgren T, Mwabora J M, Avendano E, et al. Photoelectrochemical and Optical Properties of Nitrogen Doped Titanium Dioxide Films Prepared by Reactive DC Magnetron Sputtering [J]. J. Phys. Chem. B.2003,107 (24):5709-5716.
    [110]Akiyama T L. High-Efficiency Dye-Sensitized Solar Cell Based on a Nitrogen Doped Nanostructured Titania Electrode [J]. Nano. Lett.2005,5 (12):2543-2547.
    [111]Vittal S R, R Kim. Incorporation of Functionalized Single-Wall Carbon Nano--tubes in Dye-Sensitized TiO2 Solar Cells [J]. Langmuir.2004,20 (22):9807-9810.
    [112]Bandara J, Weerasinghe H C. Enhancement of Photovoltage of Dye-sensitized Solid-state Solar Cells by Introducing High-band-gap Oxide Layers [J]. Sol. Energy Mater. Sol. Cells.2005,88 (4): 341-350.
    [113]敬饼文,张曼华,沈涛.光电池染料敏化的研究进展.科学通报[J].1997,42(15):1575-1584.
    [114]Nazeeruddin Md K, Kay A, Gratzel M, et al. Conversion of light to electricity by cis-X2Bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(Ⅱ) charge-transfer sensitizers (X=Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes [J]. J. Am. Chem. Soc.1993,115:6382-6390.
    [115]Nazeeruddin Md K, Zakeeruddin S M, Gratzel M, et al. Acid-base equilibria of (2,2'-bipyridyl-4,4'-dicarboxylic acid)ruthenium(Ⅱ) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania [J]. Inorg. Chem.1999,38:6298-6305.
    [116]Nazeeruddin Md K, Pechy P, Gratzel M. Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato-ruthenimu complex [J]. Chem. Commun.1997, 1705-1706.
    [117]Nazeeruddin Md K, Pechy P, Gratzel M, et al. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells [J]. J. Am. Chem. Soc.2001,123:1613-1624.
    [118]Jasieniak J, Johnston M, Waclawik E R. Characterization of a Porphyrin Containing Dye-Sensitized Solar Cell [J]. J. Phys. Chem. B.2004, (108):12962-12971.
    [119]Kay A, Baker R H, Gratzel M. Investigations on the Mechanism of Photosensitization of Nanocrystalline TiO2 Solar Cells by Chloro-phyll Derivatives [J]. J. Phys. Chem. B.1994, (98): 952-959.
    [120]X. F.Wang, A. Matsuda,Y.Koyama.Effects of Plant Carotenoid Spacers on the Performance of a Dye-Sensitized Solar Cell Using a Chlorophyll Derivative:Enhancement of Photocurrent Determined by One Electron Oxidaion Potential of Each Carotenoid [J]. Chem. Phys. Lett.2006, (423):470-475.
    [121]Sirimanne P M,.Senevirathna M K I, Premalal E V A, et al. Utilization of Natural Pigment Extracted from Pomegranate Fruits as Sensitizer in Solid-State Solar Cells [J]. Photochem. Photobiol. A: Chemistry.2006, (177):324-327.
    [122]Hara K, Sayama K. A Coumarin-Derivative Dye Sensitized Nano-crystalline TiO2 Solar Cell Having a High Solar-Energy Conversion Efficiency up to 5.6%[J]. Chem. Comm.2001:569-570.
    [123]Funabiki K, Iida H, Sugiyama N, et al. Ring-Fluorinated Fluoresceins as an Organic Photosensitizer for Dye-Sensitized Solar Cells Using Nanocrystalline Zinc Oxide [J]. J. Fluorine Chem.2006, (127): 257-262.
    [124]Geary E A M, Yellowlees L J, Jack L A, et al. Synthesis, Structure, and Properties of [Pt(Ⅱ)(diimine)(dithiolate)] Dyes with 3,3'-,4,4'-, and 5,5'-Disu-bstituted Bipyridyl:Applications in Dye-Sensitized Solar Cells [J]. Inorg. Chem.2005, (44):242-250.
    [125]Bandara J, Weerasinghe H. Design of High-Efficiency Solid-State Dye Sensi-tized Solar Cells Using Coupled Dye Mixtures [J]. Sol. Energy Mater. Sol. Cells.2006, (90):864-871.
    [126]Liu Y, Hagfeldt A, Xiao X, et al. Investigation of influence of redox species on the interfacial energetics of a dye-sensitized nanoporous TiO2 solar cell [J]. Sol. Energy Mater. Sol. Cells.1998, 55:267-281.
    [127]Haque S, Tachibana Y, Willis R, et al. Parameters influencing charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films [J]. J. Phys. Chem. B.2000,104:538-547.
    [128]Lindstrom H, Rensmo H, Sodergren S, et al. Electron transport properties in dye-sensitized nanoporous-nanocrystalline TiO2 films [J]. J. Phys. Chem. B.1996,100:3084-3088.
    [129]Pelet S, Moser J, Gratzel M. Cooperative effect of adsorbed cations and iodide on the interception of back electron transfer in the dye sensitization of nanocrystalline TiO2 [J]. J. Phys. Chem. B.2000, 104:1791-1795.
    [130]Hara K, Horiguchi T, Kinoshita T, et al. Influence of electrolytes on the photovoltaic performance of organic dye-sensitized nanocrystalline TiO2 solar cells [J]. Sol. Energy Mater. Sol. Cells.2001,70: 151-161.
    [131]Huang S, Schlichthorl G, Nozik A, et al. Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells [J]. J. Phys. Chem. B.1997,101:2576-2582.
    [132]Nakade S, Kambe S, Kitamura T, et al. Effects of lithium ion density on electron transport in nanoporous TiO2 electrodes [J]. J. Phys. Chem. B.2001,105:9150-9152.
    [133]Desilvestro J, Gratzel M, Kavan L, et al. Highly efficient sensitization of titanium dioxide [J]. J. Am. Chem. Soc.1985,107:2988-2990.
    [134]Wang Z, Sayama K, Sugihara H. Efficient eosin Y dye-sensitized solar cell containing Br-/Br3-electrolyte [J]. J. Phys. Chem. B.2005,109 (47):22449-22455.
    [135]Oskam G, Bergeron B, Meyer G, et al. Pseudohalogens for dye-sensitized TiO2 photoelectrochemical cells [J]. J. Phys. Chem. B.2001,105 (29):6867-6873.
    [136]Sapp, S, Elliott C, Contado C, et al. Substituted polypyridine complexes of cobalt (Ⅱ/Ⅲ) as efficient electron-transfer mediators in dye-sensitized solar cells [J]. J. Am. Chem. Soc.2002,124 (37): 11215-11222.
    [137]Wang P, Zakeeruddin S, Gratzel M, et al. Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells [J]. J. Am. Chem. Soc.2003,125: 1166-1167.
    [138]Schmidt-Mende L, Zakeeruddin S M, Gratzel M. Efficiency improvement in solid-state-dye-sensitized photovoltaics with an amphiphilic ruthenium-dye [J]. Appl. Phys. Lett. 2005,86:1-3.
    [139]Gratzel M. Mesoscopic solar cells for electricity and hydrogen production from sunlight [J]. Chem. Lett.2005,34:8-13.
    [140]Bach U, Lupo D, Gratzel M, et al. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies [J]. Nature.1998,395:583-585.
    [141]Schmidt-Mende L, Bach U, Gratzel M, et al. Organic dye for highly efficient solid-state dye-sensitized solar cells [J]. Adv. Mater.2005,17:813-815.
    [142]Wang M, Xu M, Shi D, et al. High-performance liquid and solid dye-sensitized solar cells based on a novel metal-free organic sensitizer [J]. Adv. Mater.2008,20 (23):4460-4463.
    [143]Kron G, Egerter T, Werner J, et al. Electronic transport in dye-sensitized nanoporous TiO2 solar cells-comparison of electrolyte and solid-state devices [J]. J. Phys. Chem. B.2003,107:3556-3564.
    [144]Ruhle S, Cahen D. Electron tunneling at the TiO2/substrate interface can determine dye-sensitized solar cell performance [J]. J. Phys. Chem. B.2004,108:17946-17951.
    [145]Bai Y, Cao Y, Zhang J, et al. High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts [J]. Nature Mater.2008,7:626-630.
    [146]Suzuki K, Yamaguchi M, Kumagai M, et al. Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells [J]. Chem. Lett.2003,32 (1):28-29.
    [147]Lee W, Ramasamy E, Lee D, et al. Performance variation of carbon counter electrode based dye-sensitized solar cell [J]. Sol. Energy Mater. Sol. Cells.2008,92 (7):814-818.
    [148]Ramasamy E, Lee W, Lee D, et al. Nanocarbon counterelectrode for dye sensitized solar cells [J]. Appl. Phys. Lett.2007,90 (17):1-3.
    [149]Kim Y, Sung Y, Xia J, et al. Solid-state dye-sensitized TiO2 solar cells using poly (3,4-ethylenedioxythiophene) as substitutes of iodine/iodide electrolytes and noble metal catalysts on FTO counter electrodes [J]. J. Photochem. Photobiol. A: Chem.2008,193 (2-3):77-80.
    [150]Chen J, Wei H, Ho K. Using modified poly (3,4-ethylene dioxythiophene):poly (styrene sulfonate) film as a counter electrode in dye-sensitized solar cells [J]. Sol. Energy Mater. Sol. Cells.2007, 91(15-16):1472-1477.
    [151]Xia J, Masaki N, Jiang K, et al. The influence of doping ions on poly (3,4-ethylenedioxythiophene) as a counter electrode of a dye-sensitized solar cell [J]. J. Mater. Chem.2007,17 (27):2845-2850.
    [152]Saito Y, Kitamura T, Wada Y, et al. Application of poly (3,4-ethylenedioxythiophene) to counter electrode in dye-sensitized solar cells [J]. Chem. Lett.2002,31:1060-1061.
    [153]Wu J, Li Q, Fan L, et al. High-performance polypyrrole nanoparticles counter electrode for dye-sensitized solar cells [J]. J. Power Sources.2008,181(1):172-176.
    [154]Nazeeruddin Md K, Pechy P, Gratzel M, et al. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells [J]. J. Am. Chem. Soc.2001,123:1613-1624.
    [155]Ito S, Chen P, Comte P, et al. Fabrication of screen-printing pastes from TiO2 powders for dye-sensitized solar cells [J]. Prog. Photovolt:Res. Appl.2007,15:603-612.
    [156]Sommeling P, O'Regan B, Haswell R, et al. Influence of a TiCl4 post-treatment on nanocrystalline TiO2 films in dye-sensitized solar cells [J]. J. Phys. Chem. B.2006,110:19191-19197.
    [157]Ito S, Nazeeruddin Md K, Gratzel M et al. Photovoltaic characterization of dye-sensitized solar cells: effect of device masking on conversion efficiency. Prog. Photovolt:Res. Appl.,2006,14:589-601.
    [158]Koide N, Han L. Measuring methods of cell performance of dye-sensitized solar cells. Rev. Sci. Instru.2004,75:2828-2831.
    [159]Gratzel M. Photoelectrochemical cells. Nature.2001,414:338-344.
    [160]李卫华,乔学斌,高恩勤等.3d过渡金属掺杂TiO2纳米晶膜电极的光电化学研究[J].高等学校化学学报.2000,21(10):1534-1538.
    [161]Vogel R, Hoger P, Weller H. Quantum-sized PbS, CdS, Ag2S, Sb2S3 and Bi2S3 particles as sensitizers for variousnanoporous wide-bandage semiconductor [J]. Phys. Chem.1994,98(12): 3183-3188.
    [162]刘超,杨良准,杜立芬等.不同金属离子掺杂Ti02薄膜的制备及光催化活性的研究[J].工业催化.2006,14(1):56-60.
    [163]Tian H N, Yang X. C, Cong J Y, et al. Tuning of phenoxazine chromophores for efficient organic dye-sensitized solar cell [J]. Chem. Commun.2009,41:6288-6290.
    [164]Hao Y, Yang X C, Cong J. Y, et al. Efficient Near Infrared D-p-A Sensitizers with Lateral Anchoring Group for Dye-Sensitized Solar Cells [J]. Chem. Commun.2009,27:4031-4033.
    [165]Ngamsinlapasathian S, Sakulkhaemaruethai S, Pavasupree S. Highly efficient dye-sensitized solar cell using nanocrystalline titaniaum containing nanotube structure [J]. Electrochemistry.2002,70: 418-420.
    [166]Scaife D E. Oxide semiconductors in photo-electrochemical conversion of solar energy [J]. Solar Energy.1980,25:41-54.
    [167]P. N. Kapoor, S. Uma, S. Rodriguez, et al. Uniformly porous MgTi2O5 with narrow pore-size distribution:in situ processing, microstructure and thermal expansion behavior [J]. J. Mol. Catal. A. 2005,229:145-150.
    [168]Adachi M, Sakamoto M, Jiu J, et al. Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy [J]. J. Phys. Chem. B. 2006,110(28),13872-13880.
    [169]Wang Q, Moser J, Gratzel M. Electrochemical Impedance Spectroscopic Analysis of Dye-Sensitized Solar Cells [J]. J. Phys. Chem. B.2005,109 (31):14945-14953.
    [170]Wang Z, Koumura N, Cui Y, et al. Hexylthiophene-Functionalized Carbazole Dyes for Efficient Molecular Photovoltaics:Tuning of Solar-Cell Performance by Structural Modification [J]. Chem. Mater.2008,20 (12):3993-4003.
    [171]Hodes, G, Manassen, J, Cahen D J. Stability of Cadmium-Chalcogenide-Based Photoelectrochemical Cells [J]. Electrochem. Soc.1981,24: 369-385.
    [172]Allongue P, Blonkowski S, Lincot D. Study of reaction coupling and interfacial kinetics at semiconductor electrodes by band edge shift measurements [J]. J. Electroanal. Chem.1991, 300(1-2),261-281.
    [173]Lee Y L, Chang C H. Highly Efficient CdSe-Sensitized TiO2 Photoelectrode for Quantum-Dot-Sensitized Solar Cell Applications [J]. Chem. Mater.2008,20 (22):6903-6905.
    [174]Kuang D, Uchida S, Humphry-Baker R, et al. Capturing Sunlight:Indoline Dyes Improve Efficiency of Solar Cells [J]. Angew Chemie, Inter Edition 2008,47 (10):1923-1927.
    [175]Chang C H, Lee Y L. Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dot-sensitized solar cells [J]. Appl. Phys. Lett.2007,91,053503.
    [176]Robel I, Subramanian V, Kuno M, Kamat P V. Multiple exciton dissociation in CdSe quantum dots by ultrafast electron transfer to adsorbed methylene blue [J]. J. Am. Chem. Soc.2006,132(13): 4858-4864.
    [177]Shen Y J, Lee Y L, Yang Y M. Monolayer behavior and Langmuir-Blodgett manipulation of CdS quantum dots [J]. J. Phys. Chem. B.2006,110 (19):9556-9564.
    [178]Ganesh T, Rajaram S, Gangeri C M, Chang J H, et al. ZnO Nanoparticles-CdS Quantum Dots/N3 Dye Molecules:Dual Photosensitization [J]. J. Phys. Chem. C.2009,113 (18):7666-7669.
    [179]Bang J H, Kamat P V. The Collective Behavior of Nanoscale Building Blocks [J]. ACS. Nano.2009, 3(6):1307-1308.
    [180]王美容.CdS敏化纳晶TiO2薄膜电极的光电化学性能研究.(博士学位论文).北京:北京化工大学.(2006).
    [181]Kay A, Gratzel M. Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon power [J]. Sol. Energy Mater. Sol. Cells.1996,44 (1):99-117.
    [182]Olsen E, Hagen G, Lindquist S E. Dissolution of platinum in methoxy propionitrile containing Lil/I2 [J]. Sol. Energy Mater. Sol. Cells.2000,63 (3):267-273.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700