用户名: 密码: 验证码:
曼氏无针乌贼养殖生物学特性和血细胞免疫功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
曼氏无针乌贼(Sepiella maindroni)曾是舟山渔场四大海产之一。上世纪九十年代以来,由于过度捕捞,自然资源遭到极大破坏。进行人工繁育是对曼氏无针乌贼资源进行保护和恢复的有效方法。本研究主要包括人工养殖条件下的曼氏无针乌贼的繁殖生物学、环境因子耐受性、生长特性、营养成分分析与评价,以及曼氏无针乌贼血细胞的分类及免疫特性等研究,为曼氏无针乌贼的人工增养殖和育种提供理论依据,并为曼氏无针乌贼的规模化生产奠定基础。
     在人工养殖条件下,曼氏无针乌贼的繁殖习性发生了重大改变,养殖的曼氏无针乌贼由原来每年的单次到两次的繁育活动。曼氏无针乌贼的卵巢发育与温度有明显相关,较高的温度(21.5-23.5℃)可促进卵巢的发育。曼氏无针乌贼5月份成熟个体怀卵量在565-4430粒,一般在1015-2487粒,平均2021粒;10月份成熟个体怀卵量870-4354粒,一般在1705-2937粒,平均2399粒。怀卵量随胴长和体重的增大而升高;绝对生殖力和相对生殖力也与胴长和体重呈线性正相关关系。对曼氏无针乌贼产卵附着基进行筛选,选择草绿色聚乙烯有结节网片作为附着基材料,对附着基进行结构优化。
     对曼氏无针乌贼胚胎发育进行显微观察。曼氏无针乌贼受精卵发育生物学零度(C)为6.53℃,受精卵发育至刚出膜幼体的有效积温(K)值为397.13℃·d。曼氏无针乌贼胚胎发育的最适宜温度范围为18.0-24.0℃,最适宜盐度范围为20.00-30.00,最适宜pH范围为7.0-9.0。曼氏无针乌贼仔稚幼体存活和生长最适温度范围为18.0~26.0℃,盐度的适宜范围为20.00-30.00,pH的适宜范围为7.5-8.5。
     曼氏无针乌贼幼体对活饵料的选择性极强,轮虫可作为曼氏无针乌贼的开口饵料。在饵料充足的条件下,曼氏无针乌贼仔稚幼体体长和体重增长较快,体长的总平均日增长率为2.86%,最高增长率为3.98%,最低增长率为1.93%;体重的总平均日增长率为8.61%,最高增长率为10.92%,最低增长率为6.76%。体重(W)与体长(L)的关系为:W=0.3038L~(2.909),R~2=0.9698,为均匀增长类型。幼体至成体生长阶段,体长和体重的日增长率降低,且表现出雌雄差异。曼氏无针乌贼雌体体长(L)与日龄(D)的关系为:L_(?)=0.1936D-9.416,R~2=0.9928;雄体体长(L)与日龄(D)的关系为:L_(?)=0.161D-6.266,R~2=0.9775。曼氏无针乌贼雌体体重(W_(?))与日龄(D)的关系为:W_(?)=4.2967D-289.12,R~2=0.9926;雄体体重(W_(?))与日龄(D)的关系为:W_(?)=3.9772D-264.44,R~2=0.9933。体重与体长的关系为:雌体的体重W_(?)=3.1256L_(?)~(1.6398),R~2=0.9918:雄体的体重W_(?)=2.0268L_(?)~(1.8115),R~2=0.9846。
     对曼氏无针乌贼的生物学性状进行测定,结果表明,曼氏无针乌贼的胴长与胴宽、壳长与壳宽都不是简单的倍数关系,是随生长阶段和性别的不同而变化的。曼氏无针乌贼胴长和内壳长度之间存在线性关系,相关系数大于0.99,因此内壳长度可作为曼氏无针乌贼生长的精确测量指标。
     测定了养殖曼氏无针乌贼、野生曼氏无针乌贼和金乌贼肌肉生化成分。结果表明:养殖曼氏无针乌贼肌肉生化成分(鲜重百分比)水分含量为75.51±1.92%、蛋白质16.45±0.62%、脂肪1.16±0.068%、灰分3.51±0.30%、糖4.27±0.31%;比能值5.08kJ/g及E/P30.88kJ/g。肌肉中含有18种氨基酸,总量为15.41%(湿重百分比),9种人体必需氨基酸总量是6.16%,必需氨基酸占氨基酸总量比例为39.97%:呈味氨基酸含量为45.42%;氨基酸评分为82分,蛋白营养价值高。缬氨酸,色氨酸为限制性氨基酸。养殖曼氏无针乌贼的高度不饱和脂肪酸二十五烯酸(EPA)和二十二碳酸(DHA)的含量最高,为5.0mg/g。样品富含钙、镁、锌、铁、磷等矿物质元素。曼氏无针乌贼肌肉是具有高蛋白、低脂类、低比能值、低E/P值等特点的优良食品。
     采用三种染色方法对曼氏无针乌贼血细胞进行染色,结果表明曼氏无针乌贼血细胞可分为两类:颗粒血细胞和透明血细胞。颗粒血细胞在体外有较强的吞噬能力,透明细胞的吞噬能力不明显。血细胞的密度随乌贼状态的不同而不同,饥饿乌贼的血细胞密度显著降低。正常乌贼血细胞抗菌活力U_a为0.352,饥饿组乌贼的血细胞抗菌活力U_a为0.287,患病组乌贼的血细胞抗菌活力U_a为0.376。正常乌贼血细胞溶菌活力U_L为0.225,饥饿组乌贼的血细胞溶菌活力U_L为0.178,患病组乌贼的血细胞溶菌活力U_L为0.316。活性氧的产生都随细菌浓度的增加而增加,在本实验设置的的最大细菌浓度10~8 cells/ml时,三种状态乌贼血细胞活性氧的产生量都处于最高值。
Sepiella maindroni once was one of the four famous marine products of Zhoushan fishing ground in 1970s.But since 1990's,the nature resource of S. maindroni have been severely damaged because of overfishing.Artificial propagation is an effective way for protecting and resuming the resource of S.maindroni.The contents of this thesis include propagate biology,tolerance of larvae to environmental conditions,growth characteristics,analysis and evaluation of nutrition composition and haemocytes immune function of cultured S.maindroni.This research aimed at offering theory foundation to the aquaculture;laying a foundation to the large-scale production and ecological restoration of S.maindroni resource in Zhoushan fishing ground.
     The propagate biological characters of this animal has been changed in cultured condition,S.maindroni might spawn twice a year.There were distinct relationship between the growth of ovary and temperature,higher temperature(21.5-23.5℃) accelerate the growth of ovary.The individual fecundity ranged from 565 to 4430 grain(mean=2021 grain) for individuals matured in May,and from 870 to 4354 (mean=2399 grain) for individuals matured in October.It seemed that the individual fecundity increase with the accretion of length or weight,and the individual absolute fecundity and relative fecundity had a linear positive relationship with the length and weight.The grass green polyethylene nodosity net,polyethylene nodosity strands and bamboo chopsticks were tested as the substance for adhering material of spawning, and the former seemed the optimum one.
     Microscopic observation on the development of embryo of S.maindroni was carried out.The biological zero temperature of embryonic development was 6.53℃, and the effective accumulated one was 397.13℃·d.The optimum temperature,salinity and pH ranged respectively from 18.0 to 24.0℃,20.0 to 30 and 7.0 to 9.0 for the fetation of S.maindroni.The optimum temperature,salinity and pH for survival and growth of S.maindroni larvae were 18.0 to 26.0℃,20.00 to 30.00 and 7.5 to 9.5, respectively.
     S.maindroni larvae showed high degree of selectivity for alive bait.Rotifer could be used as the starter feed for this tested larvae.With enough feed,the length and weight of S.maindroni increase rapidly during larvae stage.In this period,the growth rate of length and total body weight was 2.86%per day and 8.61%per day, respectively.The relationship of length and body weight seemed exponential.These relationships could be expressed by a curvilinear correlation as follows: W=0.3038L~(2.909),R~2=0.9698.S.maindroni generally show even growth pattern in this period.During the period from larvae to mature,the growth rate decreased and showed difference in female and male.The relationship between length and day age for female individuals was L_♀=0.1936D-9.416,R2=0.9928,and L_♂=0.161D-6.266, R~2=0.9775 for males,those between body weight and day age for female and male were W_♀=4.2967D-289.12,R~2=0.9926 and W_♂=3.9772D-264.44,R~2=0.9933 respectively.It was recorded that ratioes of body weight to length was W_♀= 3.1256L_♀1.6398,R~2=0.9918,in female;and W_♂=2.0268L_♂~(1.8115),R~2=0.9846 in male.
     Several biological characters such as length,body width,cuttlebone length and width of S. maindroni were determined.The results showed that there were not simple positive linear relations between length and body width or shell length and width.The relationships were changed following the developing stage and sex.The relationship between length and shell length was linear,the correlation coefficient was higher than 0.99.Thus tshell length could be used for evaluating growth.
     Biochemical compositions of cultured S.maindroni,wild S.maindroni and S. esculenta were analyzed.The nutritive composition(%,wet) of cultured S.maindroni were that:muscle moisture 75.51±1.92%,protein 16.45±0.62%,fat 1.16±0.068%, ash 3.51±0.30%and sugar 4.27±0.31%.The content of energy was 5.08kJ/g,E/P was 30.88kJ/g.18 common amino acids were found in muscle and 9 of them were essential amino acids for human needs.The total content of amino acids was 15.41% (wet);that of the essential amino acids was 6.16%;the percentage of essential amino acids in total amino acids(E/TA) accounted for 39.97%.The delicious amino acids, i.e.Asp,Glu in total amino acids were 45.42%.The protein nutrient value was high, with the amino acids score(AAS) 82,the first and second limited amino acids were valine and tryptophane.In cultured S.maindroni muscle,the contents of EPA and DHA were also high;the percentage of highly unsaturated fatty acids(HUFA) reached 5.0mg/g.Minerals such as Ca,Mg,Zn,Fe and P in the tested samples seemed plentiful.The result showed that cultured S.maindroni contained higher protein, lower fat,low energy and E/P.
     Three kinds of histological staining methods were used to study the morphology of haemocytes in cuttlefish S.maindroni.Two types of haemocytes were identified: hyalinocytes and granulocytes.The granulocytes had strong phagocytosis ability to Staphylococcus aureus and Escherichia coli.The haemocytes densities of starved S. maindroni were lower than that of control or sicken.Antibacterial activities of the control group,the starved and the sicken ones were 0.352,0.287 and 0.376 respectively,bacteriolysis of the above groups were 0.225,0.178 and 0.316.Oxygen productions increased with bacteria density,and reached highest when bacteria density was 10~8cells/ml.
引文
[1]Worms,J..World fisheries for Cephalopods:A Synoptic Overview[M].In:J.F.Caddy,Advances in Assessment of Worle Cephalopod Resources.FAO Fish.Tech.Pap.,1983,231:1-20.
    [2]Okutani T..Cuttlefish and squids of the world in color[M].Tokyo:National Cooperative Association of Squid Processors,1995.8.
    [3]董正之.中国农业百科全书(水产业卷)[M].农业出版社(京),1994.
    [4]Gray,J.E..Catalogue of the Mollusca in the Collection of the British Museun,Part Ⅰ.CephalopodaAntepedia[M].1849.
    [5]Sasaki.A Monograph of the Dibranchiate Cephalopods of the Japanese and Adjacent Waters [M].J.Fac.Agr.Hokk.Uniu.1929.
    [6]张玺,相里矩.胶州湾及其附近海产食用软体动物之研究[J].北平研究员动物研究汇刊,1936,16:96-125.
    [7]李复雪.中国的乌贼[J].生物学通报,1955,7:7-10.
    [8]李复雪.台湾海峡头足类区系的研究p].台湾海峡,1983,2(1):103-109.
    [9]李复雪,陈清潮.南沙海区乌贼属(Sepia)一新种[J].热带海洋,1989,8(2):6-12.
    [10]张玺.中国沿岸的十腕目(头足纲)[J].海洋与湖沼.1960,3(3):188-204.
    [11]张玺.中国北部海产经济软体动物[M].科学出版社.1995.
    [12]董正之.中国近海头足纲分类的初步研究[J].海洋科学集刊,1963,4:125-162.
    [13]董正之.中国近海蛸属(八腕目、头足纲)三新种[J].海洋科学集刊,1976,11:211-215.
    [14]董正之.中国近海头足类地理分布[J].海洋与湖沼,1978,9(1):108-116.
    [15]董正之.西太平洋头足类资源现状与开发前景[J].水产学报,1981,5(3):263-269.
    [16]郭金富.南海北部深海头足类研究(1)大陆斜坡海域头足类调查报告.中国水产科学研究院南海水产研究所研究报告(33).1983.
    [17]郑玉水.东海头足类的研究[J].福建水产.1987,3:13-21.
    [18]郑玉水.中国海头足类总目录[J].福建水产.1994,12(4):13-21.
    [19]NesisKir N.Cephalopods of the world[M].TFH Publications Inc USA.1987.9.
    [20]Gulland,J.A..The Fish Resources of the Ocean[M].Fishing News,England.1971.
    [21]Clarke,M.R..Cephalopod biomass-estimation from predators[M].In:P.R.Boyle,Cephalopod Life Cycle,Vol.2,Comparative Reviews,1987,221-237.Academic Press,London.
    [22]Voss,G.L..Cephalopod capture methods:An Overview[J].Bull.Mar.Sci.,1991,49:495-505.
    [23]董正之.世界大洋经济头足类生物学[M].山东科学技术出版社(济南),1991.
    [24]陈新军.世界头足类资源及其开发利用[J].上海水产大学学报,1996,5(3):193-200.
    [25]FAO,世界渔业和水产养殖状况2002[M].FAO,2002.
    [26]FAO,世界渔业和水产养殖状况2004[M].FAO,2004.
    [27]FAO,世界渔业和水产养殖状况2006[M].FAO,2006.
    [28]Carvalho G R,Nigmatullin Ch M.Stock structure analysis and species identification [A].Rodhouse P G,et al eds:Squid recruitment dynamics[C].Rome:FAO Fish Techn Pap.376,1998.199-232.
    [29]Jackson GD.Growth in tropical cephalopods:an analysis based on statolith microstructure[J].Can J Fish Aquat Sci,1992.49:218-228.
    [30]Bigelow KA.Age and growthof the oceanic squid Onychoteuthis boreal-ijaponica in the North Pacific[J].Fish Bull,1994,92:13-25.
    [31]Jackson GD,Wadley V A.Age,growth,and reproduction of the tropical squid Nototodarus hawaiiensis(Cephalopoda:Ommas - trephidae) off the North West Slope of Australia [J].Fish Bu11,1998,96:779-787.
    [32]Dimmlich WF,Hoedt F E.Age and growth of the myosid squid Loliolus noctiluca in Western Port,Victoria,determined from statolith microstructure analysis[J].J Mar Biol Assoc UK.1998,28:557-586.
    [33]Scanchez P,Gonzalez A F.lllex coindetii[J].FAO Fish Tech Pap,1998,376:59-76.
    [34]Zakaria Z B,Mohammad.Age and growth studies of oceanic squid,Sthenoteuthis oualaniensis using statoliths in the South China Sea,Area 3,Western Philippines [J].SEAFDEC Bangkoa(Thailand),2000,44:118-134.
    [35]Jackson GD,Moltschaniwskyj NA.The influence of ration level on growth and statolish increment width of the tropical squid Sepioteuthis lessoniana(Cephalopoda:Loliginidae):an experimental approach[J].Marine Biology,2001,138:819-825.
    [36]Jackson GD,Forsythe J W.Statolith age validation and growth of Loligo plei(Cephalopoda:Loliginidae) in the north-weste Gulf of Mexico during spring/summer [J].J.Mar.Biol.Ass.,2002,82:3992-3993.
    [37]Jackson GD,Forsythe J W.Age,growth and maturation of Lolliguncula brevis (Cephalopoda:Loliginidae) in the northwestern Gulf of Mexico with a comparison of length frequency versus statolith age analysis[J].Can J Fish Aquat Sci,1997,54:2907-2919.
    [38]DurholtzMD,Kretsinger R H,LipinskiMR.Unique proteinsfromthe statoliths of Lolliguncula brevis(Cephalopoda:Loliginidae)[J].Comp Biochem Physiol,1999,123B(4):381-388.
    [39]GonzalezA F,Dawe E G.Bias associatedwith statolith - basedmethodologies for ageing squid;a comparative study on Illex illecebrosus(Cephalopoda:Ommastrephidae)[J].J Exp Mar Biol Eco ,2000,244(2) .161-180.
    [40]Clarke M P. The cephalopod statolithan introduction to its form[J]. J Mar Biol U K,1978,58 :701-712.
    [41]Izumi Nakai, Raita Iwata. Ecological studyof themigrationof eel by synchrotron radiation induced X- ray fluorescence imaging of otoliths[J]. Spectro - chimica Acta Part B, 1999,54: 167-170.
    [42]Zhang Z, Beamish RJ. Use of otolith microstructure to study life history of juvenile chinook salmon in the Strait of Georgia in 1995 and 1996[J]. Fish Res ,2000,46: 239-250.
    [43]Yatsu A, Mori J. Early growth of the autumn cohort of neonflying squid, Ommastrephes bartramii, in the North Pacific Ocean [ J ] . Fish Res, 2000,45:189-194.
    [44]Natsukari Y, Nakanose T,Oda K. Age and growth of the loliginid squid Photololigo edulis (Hoyle, 1885) [J] . J ExpMarBiol Ecol ,1988,116:177 -190.
    [45]Arkhipkin A I. Age ,growth ,stock structure andmigratory rate of pre -spawning short - finned squid Illex argentinus based on statolith aging investigations[J]. Fish Res (Amst. ), 1993,16:313 - 338.
    [46]Arkhipkin A, Nekludova N. Age, growth and maturation of the loliginid squids Alloteuthis af ricana and A. subulata on the west African shelf [J]. J Mar Bio Ass UK, 1993,73: 949- 961.
    [47]Dawe E G, Beck P. Population structure, growth, and sexual maturation of short -finned squid (Illex illecebrosus) at Newfoundland[J]. J Can Fish Aquat Sci, 1997,54 (1):137-146.
    [48]Guerra F. Age and growth of two sympatric Loligo vulgaris and Loligo forbesi, in Galician waters [J]. J Mar Biol Assoc U K, 1999, 79 (4): 697-707.
    [49]Hatfield EMC, Hanlon R T .Forsythe J W,et al. 2001. Laboratory testing of a growth hypothesis for juvenile squid Loligo pealeii (Cephalopoda: Loliginidae) [J]. Can J Fish Aqu Sci, 2001,58 (5): 845-857.
    [50]Arkhipkin A I. Age of the micronektonic squid Pterygioteuthis gemmata (Cephalopoda : Pyroteuthidae) fromthe central - east Atlantic based on statolith growth increments[J ] . J Molluscan Stud ,1997,63 (2) :287-290.
    [51 ]Lipinski M R. A preliminary study on ageing of squids from their statoliths[J]. NAFO SCR Doc. 1980,80/II/ 22, 54: 1 -12.
    [52]Forsythe J W, Hanlon R T. Growth of the eastern Atlantic squid Loligo forbesi Steenstrup Aquac[J]. FishManag,1989 ,20: 1-14.
    [53]Arkhipkin AI ,Murzov SA. Age and growth patternsof themicronektonic squid Abraliopsos atlantica[J] . SovJ Mar Bio, 1991, 16: 254-260.
    [54]Arkhipkin A. Age, growth, stock structure and migratory rate of pre-spawning short - finned squid Illex argentinus based on statolith ageing investigation [J]. Fish Res, 1983, 16: 313-338.
    [55]Borges T C. Discriminant analysis of geographic variation in hard structures of Todarodes sagittatus (Lamarck 1798) from North Atlantic Ocean [A]. ICES Shell Symposium Paper [C], 1990,44.
    [56]Nigmatullin Ch M. Mass squids of the south-west Atlantic and brief synopsis of the squid (Illex argentinus) [J]. Frente Maritimo, 1989, 5(A): 71-81.
    [57]Carvalho G R, Thompson A, Stoner A L. Genetic diversity and population differentiation of the shortfin squid Illex argentinus in the south-west Atlantic [J]. J Exp Biol Ecol, 1992,158: 105-121.
    [58]Carvalho G R, Loney K H. Biochemical genetic studies on the Patagonian squid, Loligo gahi d'Orbigny. I. Electrophoretic survey of genetic variability [J]. J Exp Biol Ecol, 1989, 126:231-241.
    [59]Carvalho G R, Pitcher T J. Biochemical genetic studies on the Patagonian squid, Loligo gahi d 'Orbigny. II. Population structure in Falkland waters using isohyets, morphometrics , and life history date [J] . J Exp Biol Ecol, 1989,126: 243-258.
    [60]Carvalho G R, Thompson A, Stoner A L. Population genetic structure of the shortfin squid, Illex argentinus, from Falkland and surrounding waters [J]. Res Rep Falkland Isls Govern, 1990,61.
    [61]Inaba A. Notes on the chromosomes of two species of octopods (Cephalopoda, Mollusca) [J]. Jap J Genet, 1959,34:137-139.
    [62]Vitturi R, Rasotto M B. Farinella-Ferruzza, N. The chromosomes of 16 molluscan species [J]. Boll Zool, 1982,49: 61-71.
    [63]Gao Y M, Nastukari Y. Karyological studies on seven Cephalopods [J]. Venus, 1990,49 (2): 126-145.
    [64]Voss G L. A view of cephalopod fisheries biology [J]. Mem Natl Mus Victoria Melbourne, 1983,44:229-241.
    [65]Garthwaite R L, Berg Jr C J , Harrigan J. Population genetics of the common squid Loligo pealei Lesueur, 1821, from cape cod to cape hatteras[J]. Biol Bull, 1989,177: 287-294.
    [66]Smith P J , Roberts P E , Hurst R J. Evidence for two species of arrow squid in the New Zealand fishery [J] . N ZJ Mar Fresh Res, 1981,15:247-253.
    [67]Augustyn C J, Grant W S. Biochemical and morphological systematics of Loligo vulgaris Lamarck and Loligo vulgaris reynaudii d'Orbigny Nov Comb (Cephalopoda: Myopsida) [J]. Malacologia, 1988,215 - 233.
    [68]Brierley A S, Rodhouse P G, Thorpe J P, et al. Genetic evidence of population heterogeneity and cryptic speciation in the ommastrephid squid Martialia hyadesi from the Patagonian Shelf and Antarctic Polar Frontal Zone [J]. Mar Biol, 1993,116:593-602.
    [69]Thorpe J P, Havenhand J H, Patterson K R. Report of the University of liverpool to the Falkland Islands development corporation on stock and species identities of patagonian shelf Illex argentinus [R]. Port Stanley, Falkland Islands, Falkland Islands Corporation, 1986. 21.
    [70]Katugin O N. Genetic variation in the squid Berryteuthis magister (Breey, 1913) (Oegopsida: Gonatidae) [A]. Okutani T, o'dor R K, kubodera T, eds: Recent advances in fisheries biology [C]. Tokyo: Tokai University Press, 1993. 201 - 213.
    [71]O'Brien S J, Wildt D E, Bush M, et al. East African cheetahs: evidence for two population bottlenecks [J]. USA: Proc Natl Acad Sci, 1987,84:508-511.
    [72]Ward R D , Skibinski D O F, Woodwork M. Protein heterozygosity, protein structure and taxonomic differentiation [J]. Evolutionary Biol, 1992,26: 73-159.
    [73]Nevo E, Beiles A , Ben-Shlomo R. The evolutionary significance of genetic diversity: ecological, demographic and life history correlates [A]. Mani G S, ed: Evolutionary dynamics of genetic diversity [M]. Berlin: Springer-Verlag, 1984. 13 -213.
    [74]Fevolden S E, Hang T, Vader W. Intra- and interspecific allozymic variation in Liparis fabricii and Liparis gibbus (Teleosti, Liparidadae) from Spitsbergen waters [J]. Polar Biol, 1989,10:107-111.
    [75]Patarnello T, Bisol, P M, Varotto V, et al. A study of enzyme polymorphism in the Antarctic amphipod, Paramoera walkeri stebbing [J]. Polar Biol, 1990, (10): 495-498.
    [76]Rodhouse P G. Squid fisheries in the South Atlantic [J]. N E R C News, 1988, (5): 20-21.
    [77] 唐逸民,李星颉. 海洋渔业生物学[M]. 北京:农业出版社,1991,641-686..
    [78]Norman J, Murphy J M, Pierce G, et al. Preliminary molecular genetic analysis of stock structures in the squid Loligo forbesi (Steenstrup) [A]. ICES Shellfish Committee C M[C]. 1994, 23, 8.
    [79]Shaw P W, Pierce G J, Boyle P R. Subtle population structuring within a highly vagile marine invertebrate, the veined squid Loligo forbesi, demonstrated with microsatellite DNA markers [J] . Molecular Ecology, 1999, 8: 407-417.
    [80]Hughes C R, Queller D C. Detection of highly polymorphic microsatellite loci in a species with little allozyme polymorphism [J]. Molecular Ecology, 1993,2:131-137.
    [81]Jarne P, Viard F, Delay B, et al. Variable microsatellites in a highly selfing snail Bulinus truncatus(Basommmatophors:Planoebidae)[J].Molecular Ecology,1994,3:527-528.
    [82]Shaw P W.Polymorphic microsatellite DNA markers in the veined squid Loligo forbesi [J].Molecular Ecology,1997,6:297-298.
    [83]Adcock G J,Carvalho G R,Rodhouse P G,et al.Highly polymorphic microsatellite loci of the heavily fished squid genus Illex(Ommestrephidae)[J].Molecular Ecology,1999,8:165-166.
    [84]Shaw P W,Perez Losada M.Polymorphic microsatellites in the common cuttlefish Sepia officinalis(Cephalopoda)[J].Mol Ecol,2000,9(2):237-238.
    [85]Greatorex E C,Jones C S,Murphy J,et al.Microsatellite markers for investigating population structure in Octopus vulgaris(Mollusca:Cephalopoda)[J].Mol Ecol,2000.9(5):621-641.
    [86]Chester J.Sands,Simon N.Jarman,George D.Jackson.Genetic differentitation in the squid Moroteuthis ingens inferred from RAPD analysis[J].Polar Biol.,2003,26:166-170.
    [87]Zheng Xiaodong,Zhao Jianmin,XiaoShu,et al.Isozymes Analysis of the Golden Cuttlefish Sepia esculenta(Cephalopoda:Sepiidae)[J].Journal of Ocean Univesity of China,2004,3:48-52.
    [88]Billy Sinclair,Leica Briskey,William Aspden.Genetic diversity of isolated populations of Nautilus pompilius(Mollusca,Cephalopoda) in the Great Barrier Reef and Coral Sea [J].Rev.Fish.Biol.Fisheries,2006,9:1225-1238.
    [89]Frank E.Anderson,Tooraj Valinassab,Chuan-Wen Ho,et al.Phylogeography of the pharaoh cuttle Sepia pharaonis based on partial mitochondrial 16S sequence data[J].Rev.Fish Biol.Fisheries,2007,1-8.
    [90]Forsythe J W,Hanlon R T.Growth of the eastern Atlantic squid Loligo forbesi Steenstrup Aquac[J].FishManag,1989,20:1-14.
    [91]Arkhipkin A l,Murzov SA.Age and growth patternsof themicronektonic squid Abraliopsos atlantica[J].SovJ Mar Bio,1991,16:254-260.
    [92]龚启祥,杜立勤.浙江近海曼氏无针乌贼卵巢周年变化的研究[J].水产学报,1988,12(1):57-62.
    [93]张炯,卢伟成.曼氏无针乌贼繁殖习性的初步观察[J].水产学报,1985,2(2):35-44.
    [94]李星颉,戴健寿,唐志跃.曼氏无针乌贼怀卵量及生殖力[J].浙江水产学院学报,1985,4(1):1-8.
    [95]李星颉,戴健寿,马利青等.不同形式的附卵器对曼氏无针乌贼附卵效果的试验[J].浙江水产学院学报,1986,5(2):109-113.
    [96]李星颉,唐逸民.浙江近海曼氏无针乌贼资源增殖及繁殖保护的研究[J].浙江水产学院学 报,1986,5(2):99-104.
    [97]张宝琳,孙道元,毕洪生等.胶州湾及邻近水域曼氏无针乌贼的生长和季节分布[J].海洋科学,1997,5:61-64.
    [98]陈小娥.曼氏无针乌贼墨的主要营养成分研究[J].浙江海洋学院学报(自然科学版),2000,19(4):325-326.
    [99]郑小东,王如才,刘维青.华南沿海曼氏无针乌贼表型变异研究[J].青岛海洋大学学报,2002,32(5):713-719.
    [1]Wotton,R.J..Ecology of Teleost Fishes[M].Chapman and Hall Ltd..New York,1990.
    [2]Polard,D.A.,J.llannan.The ecological effects of structural flood mitigation works on fish habitats and fish communities in the lower Clarence river system of South Eastern Australia Estuaries.1994,17:427-461.
    [3]Lardicci,C.,F.Rossi and A.Castelli.Analysis of macrozoohenthic community structure after severe dystrophic crises in a Mediterranean coastal lagoon[J].Marine Pollution Bulletin.1997,34:536-547.
    [4]Matthews,W.J.Critical current speeds and microhabitats of the benthic fishes,Percina roanoka and Etheostoma flabellare[J].Env.Biol.Fish.1998,12:303-308.
    [5]Pampoulie C.P.,J.L.Bouchereau,E.Rosecchi,et al.Annual variations in the reproductive traits of Omatoschistus microps in a Mediterranean lagoon undergoing environmental changes:evidence of phenotypic plasticity[J].J.Fish.Biol.,2000,57:1441-1452.
    [6]张炯,卢伟成.曼氏无针乌贼繁殖习性的初步观察[J].水产学报,1985,2(2):35-44.
    [7]龚启祥,杜立勤.浙江近海曼氏无针乌贼卵巢周年变化的研究[J].水产学报,1988,12(1):57-62.
    [8]Barber B J,Blake.Growth and reproduction of the bay scallop Argopecten irradians(Lamarck)at its Southern distributional limit[J].J Exp Mar Biol Ecol,1983,66:247-256.
    [9]Loosanoff,V,L.,and Davis,H,C.Temperature.requirements for maturation of gonads at northern Oysters[J].Biol Bu11,1952,103(1):80-86.
    [10]张红卫.发育生物学[M1.北京:高等教育出版社,2001.
    [11]王剑伟.稀有晌卿的繁殖生物学[J].水生生物学报,1992,16:165-174.
    [12]孙儒泳,李庆芬,牛翠娟.基础生态学[J].高等教育出版社,2002,7.
    [13]李星颉,戴健寿,唐志跃.曼氏无针乌贼怀卵量及生殖力[J].浙江水产学院学报,1985,4(1):2-7.
    [14]李远友.鱼类人工繁殖的原理和技术[M].上海科学技术出版社,1997.
    [15]Saner W.H.H.,Melo Y.C.,Wet W..Fecundity of the chokka squid Loligo vulgaris reynaudii on the southeastern coast of South Africa[J].Marine Biology,1999,135:315-319.
    [16]Vladimir Laptikhovsky,Alp Salman.Fecundity of the common cuttlefish,Sepia officinalis L.(Cephalopoda,Sepiidae):a new look at an old problem[J].Scientia Marina,2003,67:279-284.
    [17]费鸿年,何宝全.广东大陆架鱼类生态学参数和生活史类型.见:中国水产学会编.水产科技文集:第2集.北京:农业出版社,1983,16-16.
    [18]叶富良.东江七种鱼类的生活史类型研究[J].水生生物学报,1988,12(2):107-115.
    [19]Juan Tomas Timi,Aria Laura Lanfranchi.Is there a trade-off between fecundity and egg volume in the parasitic copepod Lemanthropus cynoscicola?[J].Parasitol Res.,2005,95:1-4.
    [20]M.I.Shatunovskii.Some patterns of age and geographical variation in fish fecundity [J].Biology Bulletin,2006,33:195-198.
    [21]Minto C.,Nolan C.P..Fecundity and Maturity of Orange Roughy(Hoplostethus aflanticus Collett 1889) on the Porcupine Bank,Northeast Atlantic[J].Environ Biol Fish,2006,77:39-50.
    [22]Guido Plaza,Hideo Sakaji,Hitoshi Honda.Spawning pattern and type of fecundity in relation to ovarian allometry in the round herring Etrumeus teres[J].Mar.Biol.,2007,2:227-241.
    [23]Tania Hubenova,Angel Zaikov,Penka Vasileva.Investigation on fecundity,follicles and free embryo size of pond-reared pike(Esox lucius) of different age and size[J].Aquacult.Int.,2007,15:235-240.
    [24]李星颉,唐逸民.浙江近海曼氏无针乌贼资源增值及繁殖保护的研究[J].浙江水产学院学报,1986,5(2):99-104.
    [25]李嘉泳.金乌贼(Sepia esculenta Hoyle)在黄渤海的结群生殖和洄游.山东海洋学院报,1963,5(2):69-108.
    [26]李星颉,戴健寿.曼氏无针乌贼的人工孵化及其在资源增值中作用的估计[J].海洋渔业,1982,1:2-6.
    [27]李星颉,戴健寿,马利青等.不同形式的附卵器对曼氏无针乌贼附卵效果的试验[J].浙江水产学院学报,1986,5(2):109-133.
    [28]赵厚钧,魏邦福,胡明等.金乌贼受精卵孵化及不同材料附着基附卵效果的初步研究.海洋湖沼通报,2004,26(3):64-68.
    [29]A.Blanc,J.Daguzan.Artificial surfaces for cuttlefish eggs(Sepia officinalis L.) in Morbihan Bay,France[J].Fisheries Research,1998,38:225-231.
    [30]Fujita T,Hirayama I,Matsuoka T.Spawning behavior and selection of spawning substrate by cuttlefish Sepia esculenta[J].Nippon Suisan Gakkaishi,1997,63:145-151.
    [1]张炯,卢伟成.曼氏无针乌贼Sepiella maindroni de Rochebrune繁殖习性的初步观察[J].水产学报,1965,2(2):35-44.
    [2]李星颉,戴健寿.曼氏无针乌贼Sepiella maindron de Rochebrune资源增殖的研究[J].浙江水产学院学报,1982,1(1):1-10.
    [3]李星颉,戴健寿,唐志跃.曼氏无针乌贼SepieUa maindron de Rochebrune怀卵量及生殖力[J].浙江水产学院学报,1985,4(1):1-8.
    [4]李星颉,戴健寿,马利青等.不同形式的附卵器对曼氏无针乌贼附卵效果的试验[J].浙江水产学院学报,1986,5(2):109-113.
    [5]唐逸民,吴常文.曼氏无针乌贼生物学特性及渔场分布变化[J].浙江水产学院学报,1986,5(2):165-170.
    [6]唐逸民,吴常文,钟世祥.浙江北部近海损害乌贼资源的作业渔具分析[J].浙江水产学院学报,1986,5(2):177-182.
    [7]唐逸民,吴常文,周江华.影响曼氏无针乌贼卵孵化的因子及其保护[J].浙江水产学院学报,1986,11(2):147-154.
    [8]李星颉,唐逸民,吴常文.浙江近海曼氏无针乌贼资源增殖与繁殖保护的研究[J].浙江水产学院学报,1996,5(2):99-104.
    [9]王晓晴,章俊.一九九四年和一九九五年夏季浙江渔场头足类资源量评估[J].浙江水产学院学报,1998,17(2):96-101.
    [10]李嘉泳.金乌贼的生殖、洄游和发育[J].1959年全国胚胎学学术会议论文摘要汇集,1961,9-11.
    [11]张玺,齐钟彦.贝类学摘要[M].科学出版社,1961,289-357.
    [12]滨布基次.柔鱼Ommastrephes sloani pacificus的繁殖生态学相关实验研究[J].动物学杂志,1961,70(11):378-394.
    [13]Liu S J,Liu Y,Zhou G J,et al.The formation of tetraploid stocks of red crucian carpxcommon carp hybrids as an effect of interspecific hybridization[J].Aquaculture,2001,192:171-186.
    [14]Babiak I,Dobosz S,Goryczko K,et al.Androgenesis in rainbow trout using cryopreserved spermatozoa:the effect of processing and biological factors[J].Theriogenology,2002,57:1229-1249.
    [15]Uttam.K.S,Prashant.K.D,Raje.S.N,et al.Captive breeding of endangered fish Chitala chitala(Hamilton-Buchanan) for species conservation and sustainable utilization[J].Biodiversity and Conservation,2006,15,3579-3589.
    [16]申佳珉,刘少军,孙远东等.新型三倍体鲫鱼一红鲫(♀)×四倍体鲫鲤(♂)[J].自然科学 进展,2006,16(8):947-952.
    [17]邬祥光.昆虫生态学的常用数学分析方法[M].北京:农业出版社,1963:232-233.
    [18]Kamler E.Ontogeny of yolk-feedingfish:an ecological persective[M].Review in Hsh Biology and Fisheries,2002,12:79-103.
    [19]谢仰杰,翁朝红,管延华等.温度对花尾胡椒鲷胚胎发育的影响[J].集美大学学报(自然科学版),2001,6(2):138-139.
    [20]张培军主编.海水鱼类繁殖发育和养殖生物学[M].济南:山东科学技术出版社,1999.1-207.
    [21]王宏田,张培军.环境因子对海产鱼类受精卵及早期仔鱼发育的影响[J].海洋科学,1998,4:50-52.
    [22]叶星,潘德博,许淑英等.水温和盐度对广东鲂胚胎发育的影响[J].水产学报,1998,22(4):322-327.
    [23]何义朝,张福绥.贻贝胚胎发育的有效温度范围的变化[G]//中国贝类学会.贝类学论文集(第二集).北京:科学出版社,1986:89-93.
    [24]刘德经,陈杰明.西施舌早期胚胎发育温度效应的研究[J].动物学杂志,1998,33(2):123.
    [25]刘德经,黄天华,肖思祺等.西施舌生殖腺发育生物学零度和有效积温的初步研究[J].特产研究,2002(1):33-34.
    [26]#12
    [27]丁天明,宋海棠.东剑尖枪乌贼生物学特征[J].浙江海洋学院学报(自然科学版),2000,19(4):371-374
    [28]焦海峰,尤仲杰,竺俊全等.嘉庚蛸对温度、盐度的耐受性试验[J].水产科学,2004,23(9):7-10.
    [29]吴常文,吕永林.暂养长蛸行为习性与对水质变化耐受性的研究[J].福建水产,1996(2):25-29.
    [30]程家骅,黄洪亮.北太平洋柔鱼渔场的环境特征[J].中国水产科学,2003,10(6):507-512.
    [31]程济生.黄海针乌贼的渔业生物学及其资源状况的初步研究[J].中国水产科学,1997,4(5):22-28.
    [32]王涵生,方琼珊,郑乐云.盐度对赤点石斑鱼受精卵发育的影响及仔鱼活力的判断[J].水产学报,2002,26(4):344-350.
    [1]Watanabe T Comparison between eicosapentaenoic and docosahexaenoic acids in terms of essential fatty acid efficacy in larval red seabream[J].Bull Jpn Soc Sci Fish,1989,55(9):1633-1640.
    [2]顾志敏,许谷星,黄鲜明.红螯螯虾的室内人工育苗[J].水产学报,2003,27(1):33-37.
    [3]Dong B,Xue Q z,u J.Ingestion rate of marine suspension-feeding molluscs[J].Marine Science,1999,(3):26-29.
    [4]许波,李昕,刘宝权.三疣梭子蟹开口饵料探讨[J].水产科学,2000,19(3):46.
    [5]Cahu C,Zambonino I J.Substitution of live food by formulated diets in marine fish larvae[J].Aquaculture,2001,200(1-2):161-180.
    [6]Blair T,Castell J,Neil S,et al.Evaluation of microdiets versus live feeds on growth,survival and fatty acid composition of larval haddock(Melanogrammus aeglefinus)[J].Aquaculture,2003,225(1-4):451-461.
    [7]Forsythe,J.W.,Heukelem,W.F.Growth.In:Boyle,P.R.Ed.,Cephalopod Life Cycles[M],vol.2.Academic Press,London,1987:351-365.
    [8]Navarro,J.C.,Villanueva,R.Lipid and fatty acid composition of early stages of cephalopods:an approach to their lipid requirements[J].Aquaculture,2000,183:161-177.
    [9]Toll,R.B.,Strain,C.H..Freshwater and terrestrial food organisms as an alternative diet for laboratory culture of cephalopods[J].Malacologia,1988,29:195-200.
    [10]Boletzky,S.V.Elevage de Ce'phalopodes en aquarium:acquis recents[J].Bull.Soc.Zool.Ft.1989:57-66.
    [ll]Lee,P.G.,Forsythe,J.W.,DiMarco,F.P.,et al.Initial palatability and growth trials on pelleted diets for cephalopods[J].Bull.Mar.Sci.1991,49:362-372.
    [12]Castro,B.G.,Di Marco,F.P.,De Rusha,R.H.,eta.The effects of surimi and pelleted diets on the laboratory survival,growth,and feeding rate of the cuttlefish Sepia officinali3L[J].J.Exp.Mar.Biol.Ecol.1993,170:241-252.
    [13]Forsythe,J.W.,DeRusha,R.H.,Hanlon,R.T..Growth,reproduction and life of Sepia officinalis Cephalopoda:Mollusca.cultured through seven consecutive generations[J].J.Zool.London 1994,233:175-192.
    [14]Hanley,R.T.,Shashar,N.,Smolowitz,R.et al.Modified laboratory culture techniques for European cuttlefish Sepia officinalis[J].Biol.Bull.1998,195:223-225.
    [15]Planas M,Cunha I.Larviculture of marine fish:problems and perspectives [J].Aquac,1999(177):171-190.
    [16]Watanabe T,Kitaj Ima C,Fuj Ita S.Nutritional values of live organisms used in Japan for mass propagation of fish:a review[J.Aquac,1983,34:115-143.
    [17]Watanabe T,KIVON V.Prospests in larval fish dietetics[J].Aquac,1994,124:223-251.
    [18]Chen J N,Takeuchi T,Takahasi T,et al.Effect of rotifers enriched with taurine on growth and survival activity of red sea bream Pagrus major larvae[J].Nippon Suisan Gakkaishi,2004,70(4):542-547.
    [19]Izquierdo M S.Requirement of marine larval fish for essential fatty acids[M].MSc Their,Tokyo Univ of fisheries,1988,197.
    [20]张雅芝,谢仰杰,胡家财等.不同饵料和接种密度对褶皱臂尾轮虫种群增长的影响[J].集美大学学报,2005,10(1):1-7.
    [21]陈兆芳.轮虫的室内高密度培养与营养强化[J].水产养殖,1999,5:11-12.
    [22]曹洪泽,石延港.轮虫的营养强化[J].河北渔业,2004,6:46.
    [23]王春琳,尹飞,宋微微等.卤虫无节幼体的营养强化对黑斑口虾蛄幼体发育的影响[J].海洋与湖沼,2006,5:406-411.
    [24]张雅芝,胡家财,谢仰杰.浅色黄姑鱼早期发育阶段的摄食习性与生长特性[J].热带海洋学报,2006,25(5):75-79.
    [25]殷名称.鱼类仔鱼期的摄食和生长[J].水产学报,1995,19(4):335-342.
    [26]华元渝,胡传林鱼种质量与长度公式(W=aLb)的生物学意义及其运用[A].北京科学出版社,1981.
    [27]李思发.淡水鱼类种群生态学[M],北京:农业出版社,1990.
    [28]黄宁宇,夏连军,么宗利.养殖密度和温度对白斑狗鱼在设施养殖中生长的影响[J].水产学报,2006,30:76-80..
    [29]石小涛,李大鹏,庄平.养殖密度对史氏鲟消化率、摄食率和生长的影响[J].应用生态学报,2006,17(8):1517-1520.
    [30]尤仲杰.不同放养密度对泥螺生长的影响[J].水产科学,2007,2(2):103-105.
    [31]Fagerlund,U.H.M.,McBride,J.R,Stone,E.T..Stress-related effects of hatchery rearing density on coho salmon[J].Trans.Am.Fish.Soc.,1981,110:644-649.
    [32]Schreck,C.B.,Patino,R.,Pring,C.K.et al.Effects of rearing density on indices of smoltification and performance of coho salmon,Oncorhynchus kisutch[J].Aquaculture,1985,45:345-58.
    [33]张晓华,苏锦祥,殷名称.不同温度条件对鳜仔鱼摄食和生长发育的影响[J].水产学报,1999,23(1):91-94
    [34]李大鹏,庄平,严安生.光照、水流和养殖密度对史氏鲟稚鱼摄食、行为和生长的影响[J].水产学报,2004,8:55-61.
    [35]Huang Ning-yu,Cheng Qi-qun,Gao Lu-jiao.Effect of water current and temperature on growth of juvenile Acipenser baeri[J].Journal of Fisheries of China,2007,31(1):31-37.
    [36]Meske,C..Fish Aquaculture[M].Pergamon Press,Oxford,1985,237pp.
    [37]Williams,R.C..Interrelations of oxygen concentration fish density,and performance of Atlantic salmon in an ozonated water reuse system[J]..Progve Fish Cult.,1988,50:69-76.
    [38]唐逸民,李星颉.曼氏无针乌贼.海洋渔业生物学[M].北京:农业出版社,1991.
    [39]Ikimira S.Seed production of groupers in Japan[J].Pro Second Int Seminaron Fisheries Sci,1997,97-102.
    [40]张宝琳,孙道元,毕洪生等.胶州湾及邻近水域曼氏无针乌贼的生长和季节分布[J].海洋科学,1997,5:61.64.
    [41]Ricker W E.Growth rates and models.In:Fish physiology[M].New York:Acdemic Press,1979.
    [42]张雅芝,胡家财,谢仰杰等.斜带髭鲷仔、稚鱼的摄食与生长特性[J].海洋学报,2003,25:128-134.
    [43]李家乐,李思发,韩风进.台湾红罗非鱼和尼罗罗非鱼的生长特性与养殖效果的比较[J].上海水产大学学报,2002,11:1-5.
    [1]Bayne, C.J.. Phagocytosis and non-self recognition in invertebrates [J]. BioScience. 1990, 40: 723-731.
    [2]Bachere, E., Mialhe, E., Ntlel, D., et al. Knowledge and research prospects in marine mollusk and crustacean immunology [J]. Aquaculture, 1995, 132: 17-32.
    [3]Cheng, T.C.. Bivalves [M]. In Invertebrate Blood Cells (N. A. Ratcliffe & A. F. Rowley, eds), London: Academic Press, 1981: 233-300.
    [4]Huehner, M. K. & Etges, F. J. Encapsulation ofAspidogaster conchicola (Trematoda: Aspidogastrea) by Unionid Mussels [J]. Journal of Invertebrate Pathology, 1981, 37: 123-128.
    [5]Sagrisa E., Durfort, M., Azevedo, C. Perkinsus sp. (Phylum Apicomplexa) in Mediterranean clam Ruditapes semidecussatus: ultrastructural observation of the cellular response of the host [J]. Aquaculture, 1995, 132: 153-160.
    [6]Renwrantz, L. R, Daniels, J., Hansen, P. D.. Lectin-binding to haemocytes ofMytilus edulis [J]. Developmental and Comparative Immunology, 1985, 9: 203-210.
    [7]01afsen, J. A., Fletcher, T.C, Grant, P. T.. Agglutinin activity in pacific oyster (Crassostrea gigas) hemolymph following in vivo Trbrio anguillarum challenge [J]. Developmental and Comparative Immunology, 1992,16: 123-138.
    [8]Tunkijjanukij, S., Giaever, H., Chin, C. C., et al. Sialic acid in hemolymph and affinity purified lectins from two marine bivalves [J]. Comparative Biochemistry and Physiology-Part B: Biochemistry and Molecular Biology, 1998, 119: 705-713.
    [9]0ubella, R, Paillard, C., Maes, P, et al. Changes in hemolymph parameters in the Manila Clam Ruditapes philippinarum (Mollusca, Bivalvia) following bacterial challenge [J]. Journal oflnvertebrate Pathology, 1994, 64: 33-38.
    [10]Carballal, M. J., Lbpez, C., Azevedo, C., et al. Enzymes involved in defense functions of Haemocytes of Mussel Mytillus galloprovincialis. Journal of Invertebrate Pathology, 1997, 70: 96-105.
    [11]Charlet, M., Chemysh, S., Philppe H., et al.. Innate immunity. Isolation of several cystein-rich antimicrobial peptides from the blood of a mollusk, Mytilus edulis [J]. The Journal of Biological Chemistry, 1996, 271: 21808-21813.
    [12]Hughes, T. K. Jr., Smith, E. M., Barnett, J. A., et al. LPS stimulated invertebrate Haemocytes: a role for immunoreactive TNF and IL-1 [J]. Developmental and Comparative Immunology,1991,15:115-122.
    [13]Ottaviani,E.,Franchini,A.,Cassanelli,S.,et al..Cytokines and invertebrate immune responses[M].Biology of the Cell,1995,85:87-91.
    [14]Ottaviani,E.,Capriglione,T.,Franceschi,C..Invertebrate and vertebrate immune cells express pro-opiomelanocortin(POMC) mRNA[J].Brain,Behavior,and Immunity,1995,9:1-8.
    [15]Stefano,G.B.,Digenis,A.,Spector,S.,et al.Opiate-like substances in an invertebrate,an opiate receptor on invertebrate and human immunocytes,and a role in immunosuppression[J].Proceedings of the National Academy of Sciences of the United States of America,1993,90:11099-11103.
    [16]Stefano,G.B.,Liu,Y.,Goligorsky,M.S..Cannabinoid receptors are coupled to nitric oxide release in invertebrate immunocytes,microglia,and human monocytes[J].The Journal of Biological Chemistry,1996,271:19238-19242.
    [17]Foley D A,Cheng T C.Interaction of molluscs and foreign substances:The morphology and behavior of hemolymphcells of the American oyster,Crassostres virginica,in vitro[J].J.Invertebr.Pathol.,1972(19):383-394.
    [18]Auffret M.Comparative of the hemocytes of two oyster species:the european flat oyster,Ostrescdulis,linnaeus,1750 and the pacific oyster,Crssostres gigas (thunberg,1793)[J].J of Shellfish Research,1989(2):367-373.
    [19]Renwrantzl,Yoshino T,Cheng T C,et al.Size determination of hemocytes from the American oyster,Crassostres virginica,and the description of a phagocytosis mechanism[J].Zool J b Physiol,1979(83):1-12.
    [20]Pipe R K,Livingstone D R.Antioxidant enzymes associated with the blood cells and haemolymph of the mussel Myritus edulis[J].Fish Shellfish Immunol,1993(3):221-233.
    [21]Wootton E C,Dyrynda E A,Ratcliffe N A.Bivalve immunity:comparison between the marine mussel(Mytllus edulis),the edible cockle(Cerastoderma edule) and the razorshell(Ensis siliqus)[J].Fish Shellfish Immunol,2003,5:195-210.
    [22]Maria J C.Hemolymph cell types of the mussel Mytilus galloprovincialis.[J]Diseasa of aquatic organims,1997(29):127-135.
    [23]Morre M N,Lowe D W.The cytology and cytochemostry of the hemocytes of gytilus edulis and their response to experimentally injected carbon particles[J].J Invertebr Pathol,1977(29):18-30.
    [24]张维翥,吴信忠,李登峰等.栉孔扇贝血液细胞的免疫功能.动物学报,2005,51(4): 669-677.
    [25]孙虎山,李光友.栉孔扇贝血细胞的吞噬作用及其扫描电镜研究[J].高技术通讯,2001(4):16-19.
    [26]Mix M C A.Generalmodel for leucocyte cell renewal in bivalve mollusks[J].Mar,Fish,Rew.,1976(38):37-41.
    [27]Xue Q,Renault T.Monoclonal antibodies to European flat oyster Ostrea edulis hemocytes:characterization and tissue distribution of granulocytes in adult and developing animals[J].Developmental and Comparative Immunology,2001(25):187-194.
    [28]Sahaphong S,Linthong V,Wanichanon C,et al.Morphofunctional study of the hemocytes of Haiotis asinins[J].Journal of Shellfish Research,2001(2):711-716.
    [29]李静,陈昌福.低温季节草鱼离体白细胞吞噬活性的研究[J].水生生物学报,1998,(22):132-137.
    [30]Hultmark,D.et a1.Eur.J.Biochem[M].1980,106:7-16
    [31]王雷,李光友,毛远兴.中国对虾血淋巴中的抗菌、溶菌活力与酚氧化酶活力的测定及其特性研究.海洋与湖沼,1995,26(2).133-139.
    [32]Sminia T,Ratcliffe N A,Rowley A Feds.Invertebrate blood cells[J].London:Acad Press,1981:191-232.
    [33]Anderson R S.Inducible hemolytic activity in Mercenaria mercenaria hemolymph [J].Dev Com Immunol,1981(5):575-585.
    [34]潘沙芳,李太武,苏秀榕.泥蚶血细胞耐饥饿及抗菌力特性的研究[J].水产科学,2007,26(1):22-25.
    [35]许秀芹,孙虎山,王宜艳.酵母聚糖和甘氨酸锌对栉孔扇贝血细胞的影响[J].上海水产大学学报,2006,15(2):150-155.
    [36]Cheng T C..During phagocytosilease of lysozyme from hemolyph cells of Mercenaria mercenaria[J].Invertebrate Pathology,1975,25:261-265.
    [37]Klebannonoff S J.Oxygen - dependent antimicrobial systems of mononuclear phagocytes[J].Progress in Leukocyte Biology,1985,4:487-503.
    [38]Babior B M.Microbial oxidant production by phagocytes[A].Oxy - radicals in Molecular Biology and Pathology[C].New York:Alan R.Liss,Inc,1998.
    [39]Dikkeboom R.Hemocytes of the pond snail Lymnaea stagnalis generate reactive forms of oxygen[J].J Invertebr Pathol,1987,49:321-331.
    [40]Noel D.Chemiluminescence activity of normal neoplastic hemocytes in Mytilus edulis(Bivalavia)[J].Dev Comp Immunol,1993,17:483-493.
    [41]邢婧,战文斌,周丽.栉孔扇贝(Chlamys farreri)血细胞类型及抗菌力的研究[J].青岛海洋大学学报,2003,1:41-46.
    [42]陈政强,陈昌生,战文斌等.不同类群九孔鲍免疫防御机能的比较[J].水产学报,2004,28:189-194.
    [43]张剑诚,张峰,王吉桥.皱纹盘鲍血细胞分离及活性氧产生机理的研究[J].大连水产学院学报,2004,19:182-188.
    [44]Mccord J.M.& Fridovich I.Superoxide dismutase:an enzyme function for erythrocuprein(hemocuprein)[J].J.Bio.Chem,1969,193:353-358.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700