用户名: 密码: 验证码:
内皮祖细胞对血管平滑肌细胞增殖与表型转化的抑制作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章内皮祖细胞与血管平滑肌细胞共培养条件下内皮祖细胞对血管平滑肌细胞增殖的影响
     研究背景:近年来大量研究提示内皮祖细胞(endothelial progenitor cell, EPCs)能够延缓高血压、冠心病、血管成形术后再狭窄等血管增殖性疾病血管重塑的进程。鉴于血管平滑肌细胞(vascular smooth muscle cells, VSMCs)的增殖是形成高血压、冠心病、血管成形术后再狭窄等心血管疾病的共同细胞病理基础之一,本实验拟从细胞水平探讨共培养体系下EPCs对大鼠VSMCs增殖的影响。
     方法:采用3%明胶沉降红细胞及密度梯度离心法分离人脐血单个核细胞,利用内皮生长培养基(Endothelial growth medium-2,EGM-2,含EPCs分化所需各种生长因子)进行培养,诱导单个核细胞贴壁并向EPCs分化;Dil-ac-LDL和FITC-UEA-1荧光双染色鉴定正在分化的EPCs;流式细胞仪和间接免疫荧光法检测EPCs干细胞分子标志CD34/CD133以及内皮细胞分子标志FLK-1/VWF/CD31/ VE-cadherin/CD 105/CD 146;采用Transwell培养板建立早期EPCs和VSMCs共培养模式,20%FBS诱导VSMCs增殖,利用BrdU标记和蛋白定量法检测血管平滑肌细胞DNA和蛋白合成能力,观察共培养条件下EPCs对VSMCs增殖的影响。
     结果:从人脐血单个核细胞成功分离培养EPCs,早期EPCs和VSMCs共培养12,24,48和72h时,血管平滑肌细胞DNA和蛋白合成能力均较对照组明显降低(P<0.05);与此类似,流式细胞术结果显示共培养组VSMCs细胞周期中S期细胞所占百分率较对照组显著降低(P<0.05),而细胞周期中G1期细胞所占百分率均相应高于对照组(P<0.05),其中均以48h抑制效果最明显。
     结论:共培养条件下早期EPCs能够抑制血管平滑肌细胞DNA和总蛋白的合成,其机制可能与早期EPCs通过阻滞细胞周期进程抑制VSMCs的增殖有关。
     第二章内皮祖细胞对AngⅡ诱导的血管平滑肌细胞增殖与表型转化的抑制作用
     研究背景:VSMCs表型转化是高血压、冠心病和血管成形术后再狭窄等心血管疾病VSMCs增殖和迁移的关键性起始步骤。病理条件下VSMCs的增殖和表型转化受到多种血管活性物质和细胞因子的调控,其中AngⅡ诱导的VSMCs增殖和表型转化在心血管疾病的发生、发展中起着非常重要的作用。为了进一步阐明EPCs对VSMCs病理性增殖和表型转化的抑制作用及其机制,本研究拟采用AngⅡ刺激VSMCs后,观察内皮祖细胞条件培养基对VSMCs增殖、表型转化及其信号转导通路的影响。
     方法:分别制备早期EPCs条件培养基(E-EPC-CM)、晚期EPCs条件培养基(L-EPC-CM)以及人脐静脉内皮细胞条件培养基(HUVEC-CM)后,采用BrdU标记法、蛋白定量、MTT以及流式细胞术分析E-EPC-CM、L-EPC-CM、HUVEC-CM对AngⅡ诱导的VSMCsDNA合成能力、细胞总蛋白含量、细胞存活率、细胞周期进程以及VSMCs收缩表型标志基因平滑肌α-肌动蛋白(α-smootn musle actin,α-SM-actin)和合成表型标志基因骨桥蛋白(osteopontin, OPN)表达变化的影响;进一步采用RT-PCR和Western-blot观察E-EPC-CM、L-EPC-CM、HUVEC-CM对AngⅡ诱导的VSMCs MAPK (P38、JNK、ERK活化)和NF-κB(P65活化)信号通路以及原癌基因c-myc、c-fos表达的影响。
     结果:AngⅡ(10-6mmol/L)诱导VSMCs增殖48h后,血管平滑肌细胞DNA合成能力、细胞总蛋白含量、细胞存活率均较对照组明显增加(P<0.05);细胞周期中S期细胞所占百分率较对照组显著增加,G1期细胞所占百分率均相应较对照组减少(P<0.05);α-SM-actin mRNA和蛋白表达明显减少,而OPN mRNA和蛋白表达明显增加(P<0.05),提示VSMCs从收缩表型向合成表型转化;P38、JNK. ERK、P65活化以及原癌基因c-myc、c-fos的表达均较对照组显著增加(P<0.05)。E-EPC-CM、L-EPC-CM、HUVEC-CM预处理后能够显著抑制AngⅡ诱导的VSMCs DNA合成能力、细胞总蛋白含量、细胞存活率的增加以及阻滞VSMCs从Gl期向S期的转化;并且抑制VSMCs从收缩表型向合成表型转化,其中均以E-EPC-CM的抑制效果最明显(P<0.05)。同样E-EPC-CM也抑制了AngⅡ诱导的P38、JNK、ERK.P65的活化以及c-myc、c-fos的表达(P<0.05)。
     结论:EPCs能够抑制AngⅡ诱导的VSMCs病理性增殖和表型转化,其机制可能与其抑制MAPK和NF-κB信号通路的活化以及原癌基因c-myc、c-fos的表达有关。
     第三章降钙素基因相关肽介导内皮祖细胞抑制血管平滑肌细胞的增殖与表型转化
     研究背景:EPCs许多生物学功能主要都是通过其旁分泌功能而实现的,研究表明降钙素基因相关肽(calcitonin gene-related peptide, CGRP)能够显著抑制AngⅡ等诱导的VSMCs增殖和表型转化,已有研究证实EPCs(主要是早期EPCs)能够合成并分泌CGRP。前一章研究已证实EPCs可抑制AngⅡ诱导的VSMCs增殖与表型转化,那么EPCs通过旁分泌释放的CGRP是否参与这一过程值得进一步探讨。因此,本研究拟初步探讨CGRP在EPCs抑制AngⅡ诱导的VSMCs增殖与表型转化过程中的作用和可能的分子机制。
     方法:采用ELISA和RT-PCR检测EPCs和脐静脉内皮细胞CGRP的表达情况,对E-EPC-CM采取CGRP抗体封闭和CGRP受体阻断策略后,观察E-EPC-CM对AngⅡ诱导的VSMCs的增殖、表型转化及其MAPK、NF-κB信号转导通路和原癌基因c-myc、c-fos表达的影响。
     结果:早期EPCs能够表达并分泌高浓度的CGRP,并且显著高于晚期EPCs和HUVEC; CGRP阻断后,E-EPC-CM对AngⅡ诱导的VSMCs DNA合成能力、细胞总蛋白含量、细胞存活率、细胞周期进程以及表型转化的的抑制作用均较对照组明显降低(P<0.05);并且对MAPK(P38. JNK、ERK)、NF-κB(P65)信号转导通路的活化以及原癌基因c-myc、c-fos表达的抑制能力也较对照组明显降低(P<0.05)。
     结论:EPCs通过旁分泌CGRP抑制AngⅡ诱导的VSMCs增殖与表型转化。
Chapter 1 Effect of endothelial progenitor cell on the proliferation of co-cultured vascular smooth muscle cells
     Background Previous studies have demonstrated EPCs can delay the progress of vascular remodeling in blood vessel proliferating diseases such as hypertension, coronary artery disease, and vascular restenosis after stent deployment. It has been proposed that the proliferation and phenotype transformation of vascular smooth muscle cells(VSMCs) is the common basis of cell pathology for vessel proliferating diseases.Thus the present study aimed to explore the effect of EPCs on the proliferation of VSMCs in a VSMCs/EPCs co-culture system in vitro.
     Methods Mononuclear cells were isolated from fresh cord blood by 3%Gelatin and density gradient centrifugation. Isolated mononuclear cells were cultured in EBM-2 medium supplemented with 20%FBS, VEGF, bFGF and other growth factors. Flow cytometry and indirect immunofluorescence revealed that EPCs expressed hematopoietic progenitor cell-surface antigens CD34 and CD 133 as well as endothelial cell-surface antigens FLK-1, VWF, FLK-1, VE-cadherin, CD 146, CD31 and CD 105. Fluorescence microscopy showed that adherent EPCs are positive for Dil-ac-LDL uptaking and FITC-UEA-1 binding. The co-culture system of EPCs and VSMCs was established by Transwell permeable support,20%fetal bovine serum was used to stimulate the proliferation of VSMCs. In a VSMCs/EPCs co-culture system the DNA synthesis ability, total protein level and cell cycle of VSMCs was determined by BrdU marking method, protein quantitation and flow cytometry after co-culture for 6,12,24,48 and 72 h.
     Results After co-culture for 12,24,48 and 72 h, the DNA synthesis ability and total protein level of VSMCs significantly decreased compared with control group(P<0.05). Flow cytometry showed the percentage of S phase of VSMCs in VSMCs/EPCs co-culture group significantly decreased and the percentage of G1 phase increased markedly compared with control group(P< 0.05), The maximal inhibitory effect was obtained at the time of 48 h.
     Conclusion The early EPCs could inhibit the proliferation of VSMCs in vitro co-culture.
     Chapter 2 The effect of endothelial progenitor cells on angiotensin II induced proliferation and phenotype transformation of cultured rat vascular smooth muscle cells
     Background It has been proposed that phenotype transformation of VSMCs is pivotal for the proliferation for cardiovascular diseases such as hypertension, coronary artery disease, and vascular restenosis after stent deployment. Under pathological conditions, proliferation and phenotype transformation of VSMCs was regulated by a variety of vasoactive substances and cytokines. In order to further elucidate the inhibitory effect and its mechanisms of EPCs on the proliferation and phenotype transformation of VSMCs, the present study investigate the effect of pretreatment with EPC-CM on Ang II induced the proliferation, phenotype transformation and the MAPK and NF-κB signaling pathways in VSMCs.
     Methods After preparating early endothelial progenitor cell conditioned medium (E-EPC-CM), late endothelial progenitor cell conditioned medium (L-EPC-CM) and human umbilical vein endothelial cell conditioned medium (HUVEC-CM), the effect of E-EPC-CM, L-EPC-CM and HUVEC-CM on Ang II-induced DNA synthesis, total protein expression, cell survival and cycle progress was assessed by BrdU incorporation, total protein content, MTT assays and flow cytometry. RT-PCR and Western-blot were performed to analyze the effect of E-EPC-CM, L-EPC-CM and HUVEC-CM on AngⅡ-induced the expression of a-SM-actin and osteopontin in VSMCs. Moreover, the investigators further investigated the effect of E-EPC-CM on the AngⅡinduced phosphorylations of ERK, JNK, p38 MAPKs/NF-κB p65 (or nuclear translocation of p65) and the expressions of proto-oncogene c-myc and c-fos.
     Results The DNA synthesis, total protein contents and cell survival obviously increased in AngⅡ(10-6 mM) 48 h induced VSMCs compared with control group, while pretreatment with E-EPC-CM, L-EPC-CM and HUVEC-CM resulted in significant inhibitions in DNA synthesis, total protein content, and cell survival compared with the control group (P<0.05);The percentage of S phase cells significantly increased, while the percentage of cells in G1 phase decreased remarkably compared with control group, pretreatment with E-EPC-CM, L-EPC-CM, or HUVEC-CM led to sustained decrease in the percentage of cells in S phase and sustained increase in the percentage of cells in G1 phase after 48 h of stimulation with AngⅡ(P<0.05); The expression of theα-SM-actin mRNA and protein was significantly decreased and the osteopontin mRNA and protein was markerly increased compared with control group, suggesting that VSMCs was changed from contractile to synthesize type by angiotensinⅡ, pretreatment with E-EPC-CM, L-EPC-CM and HUVEC-CM could inhibit significantly the down-regulation of a-SM-actin expression and the up-regulation of osteopontin expression by AngⅡ(P<0.05). E-EPC-CM showed strongest inhibitory effect among all treatment groups(P<0.05). Western-blot showed that AngⅡtime dependently induced phosphorylation of p38, JNK, ERK/NF-κB p65 and significantly increased the expressions of c-myc and c-fos after AngⅡstimulation in VSMCs, while pretreatment with E-EPC-CM showed marked inhibitory effect on the AngⅡinduced phosphorylations of these MAPKs/NF-κB p65(nuclear translocation of p65) and the expressions of proto-oncogene c-myc and c-fos (P<0.05).
     Conclusion EPCs may inhibit AngⅡinduced proliferation and phenotype transformation of VSMCs through inactivating MAPKs and NF-κB signaling pathways as well as by reducing the expressions of proto-oncogene c-myc and c-fos.
     Chapter 3 The inhibitory effect of calcitonin gene-related peptide released from endothelial progenitor cells on proliferation and phenotype transformation of vascular smooth muscle cells
     Background Many biological functions of EPCs mainly attributed to cytokines by paracrine secretion, Previous studies showed that calcitonin gene-related peptide (CGRP) could significantly inhibit the proliferation and phenotype transformation of VSMCs induced by angiotensinⅡ. Moreover, studies demonstrated that early EPCs could express and secrete CGRP. In previous charpter, it was confirmed EPCs could inhibit the proliferation and phenotype transformation of VSMCs induced by angiotensinⅡ.According to CGRP released by EPCs by paracrine manner, we proposed that CGRP may be involved in this process.
     Methods The release and expression of CGRP was determined by ELISA and RT-PCR. E-EPC-CM was pre-incubated with functional blocking antibodies against CGRP for 1h or VSMCs was preteated with CGRP837(CGRP receptor antagonist) for 1h before VSMCs were pretreated with CM for 30 min. DNA synthesis ability, total protein levels, cell survival, MAPK/NF-κB signal transduction and expression of c-myc and c-fos of VSMCs induced by AngⅡ(10-6mol/L) were detected to assess the role of CGRP in AngⅡ-induced proliferation of VSMCs.
     Results The level of CGRP was significantly increased after 48 h and was higher than that observed in the L-EPC-CM and HUVEC-CM group.After pretreatment with anti-CGRP antibody and CGRP837 (CGRP receptor inhibitor), inhibitory effect of E-EPC-CM on DNA synthesis ability, total protein levels, cell survival, cycle progress and phenotype transformation of VSMCs induced by Ang II decreased obviously compared with the control group(P<0.05). Likewise, pretreatment with anti-CGRP antibody and CGRP837, in turn, partly attenuated the decreased activity of p38, JNK and ERK MAPKs and NF-κB p65(nuclear translocation of p65) induced by E-EPC-CM treatment in a time-dependent manner and partly cancelled the decreased expression of c-myc and c-fos induced by E-EPC-CM treatment (P<0.05).
     Conclusion The inhibitory effect of EPCs on proliferation and phenotype transformation of VSMCs may be achieved by the paracrine effect of CGRP.
引文
[1]李秀丽,谢秀梅,陈晓斌,等.氧化型低密度脂蛋白对人脐血内皮祖细胞增殖、凋亡基因bcl-2表达的影响[J].中国动脉硬化杂志,2007,15(10):755-758.
    [2]LI X, MENG Q, WU H. Effects of bone marrow-derived endothelial progenitor cell transplantation on vein microenvironment in a rat model of chronic thrombosis. Chinese Medical Journal[J].2007,120(24):2245-2249.
    [3]Smadja DM, Bieche I, Helley D, et al. Increased VEGFR2 expression during human late endothelial progenitor cells expansion enhances in vitro angiogenesis with up-regulation of integrinα6[J]. J. Cell. Mol. Med.2007,11(5):1149-1161.
    [4]Shaffer RG, Greene S, Arshi A, et al. Flow cytometric measurement of circulating endothelialcells:the effect of age and peripheral arterial disease on baseline levels of mature and progenitor populations[J]. Cytometry B Clin Cytom 2006.70 (2):56-62.
    [5]George J, Herz I, Goldstein E, et al. Number and adhesive properties of circulating endothelial progenitor cells in patients with in-stent restenosis[J]. Arterioscler Thromb Vasc Biol.2003,23:e57-e60.
    [6]Ghani U, Shuaib A, Salam A, et al. Endothelial progenitor cells during cerebrovascular disease [J]. Stroke.2005,36:151-153.
    [7]Heeschen C, Aicher A, Lehmann R, et al. Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization[J]. Blood 2003,102(4):1340-1346.
    [8]Heiss C, Keymel S, Niesler U, et al. Impaired progenitor cell activity in age-related endothelial dysfunction[J]. J Am Coll Cardiol.2005,45:1441-1448.
    [9]Kleinman ME, Tepper OM, Capla JM, et al. Increased circulating AC 133+ CD34+endothelial progenitor cells in children with hemangioma[J]. Lymphat Res Biol.2003,1:301-307.
    [10]Quyyumi AA, Hill JM. Circulating endothelial progenitor cells as novel biological determinants of vascular function and risk[J]. Can J Cardiol.2004,20 (Suppl B):44B-48B.
    [11]Hirschi KK, Ingram DA, Yoder MC. Assessing identity, phenotype, and fate of endothelial progenitor cells[J]. Arterioscler Thromb Vasc Biol.2008,28(9):1584-1595.
    [12]何晋,谢秀梅,姜德建,等.两种类型内皮祖细胞的体外分化及非对称性二甲 基精氨酸对其增殖的抑制作用[J].中南大学学报(医学版).2008,33(2):138-145.
    [13]Hur J, Yoon CH, Kim HS, et al. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis[J]. Arterioscler Thromb Vase Biol.2004,24 (2):288-293.
    [14]Zargham R. Preventing restenosis after angioplasty:a multistage approach[J]. Clin Sci (Lond),2008,114(4):257-264.
    [15]Zhang Qiu-hua, She Ming-peng. Biological behaviour and role of endothelial progenitor cells in vascular disease[J]. Chinese Medical Journal.2007,120 (24): 2297-2303.
    [16]Imanishi T, Moriwaki C, Hano T, et al. Endothelial progenitor cell senescence is accelerated in both experimental hypertensive rats and patients with essential hypertension[J]. J Hypertens.2005,23:1831-1837.
    [17]Oliveras A, Soler MJ, Martinez-Estrada OM, et al. Endothelial progenitor cells are reduced in refractory hypertension [J]. J Hum Hypertens.2008,22(3):183-190.
    [18]WernerN, Kosiol S, Schiegl T, et al. Circulating endothelial progenitor cells and cardiovascular outcomes[J]. N Engl J Med,2005,353:999-1007.
    [19]Hill JM, Zalos G, Halcox JP, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk[J]. N Engl J Med,2003,348:593-600.
    [20]Wang HY, Gao PJ, Ji KD, et al. Circulating endothelial progenitor cells, C-reactive protein and severity of coronary stenosis in Chinese patients with coronary artery disease[J]. Hypertens Res,2007,30 (2):133-141.
    [21]Nagaya N, Kangawa K, Kanda M, et al. Hybrid cell-gene therapy for pulmonary hypertension based on phagocytosing action of endothelial progenitor cells[J].Circulation,2003,108(7):889-895.
    [22]Zhao YD, Deng Y, Zhang Q, et al. Bone marrow-derived endothelial progenitor cells involved in vascular regeneration and have a protective role in experimental pulmonary arterial hypertension[J]. Circulation,2003,108:IV-295.
    [23]Takahashi M, Nakamura T, Toba T, et al. Transplantation of endothelial progenitor cells into the lung to alleviate pulmonary hypertension in dogs[J]. Tissue Eng,2004,10(5-6):771-779.
    [24]WernerN, Junk S, LaufsU, et al. Intravenous transfusion of endothelial progenitor cells reduces neointima formation after vascular injury [J]. Circ Res,2003, 93(2):e17-e24.
    [25]Kong D, Melo LG, Gnecchi M, et al. Cytokine-induced mobilization of circulating endothelial progenitor cells enhances repair of injured arteries[J]. Circulation.2004,110:2039-2046.
    [26]陈剑飞,黄岚,武晓静,等.移植不同年龄大鼠骨髓EPCs对损伤内膜增殖的影响[J].中国病理生理杂志.2007,23(11):2274-2275.
    [27]Aoki J,Serruys PW,Beusekom H,et al. Endothelial progenitor cell capture by stents coated with antibody against CD34 the HEALING-FIM (Healthy endothelial accelerated lining inhibits neointimalgrowth-first in man) registry[J]. Am Coll Cardiol,2005,45 (10):1574-1580.
    [28]Blindt R, Vogt F, Astafieva I, et al. A novel drug-eluting stent coated with an integrin-binding cyclic Arg-Gly-Asp peptide inhibits neointimal hyperplasia by recruiting endothelial progenitor cells[J]. Am Coll Cardiol,2006,47(9):1786-1790.
    [29]Bhattacharya V, Mcsweeney PA, Shi Q, et al. Enhanced endothelialization and microvessel formation in polyestergrafts seeded with CD34+bone marrow cells[J].Blood,2000,95:581-587.
    [30]Matsuo Y, Imanishi T, Hayashi Y, et al. The effect of senescence of endothelial progenior cells on in-stent restenosis in patients undergoing coronary stenting[J]. Intern Med,2006,45(9):581-588.
    [31]Eggermann J, Kliche S, Jarmy G, et al. Endothelial progenitor cell culture and differentiation in vitro:a methodological comparison using huamn umbilical cord blood [J]. Cardiovasc Res,2003,58(2):478-486.
    [32]Yin AH, Miraglia S, Zanjani ED, et al. AC 133, a novel marker for human hematopoietic stem and progenitor cells[J]. Blood,1997,90(12):5002-5012.
    [33]Victor J. Dzau, Massimiliano Gnecchi, Alok S. Pachori, et al.Therapeutic Potential of Endothelial Progenitor Cells in Cardiovascular Diseases[J].Hypertension, 2005,46:7-18.
    [34]武晓静,黄岚,周骐,等.内皮细胞生长状态与血管平滑肌细胞增殖迁移能力的关系[J].心脏杂志,2004,16(5):403-406.
    [35]高治平,胡弼,柯庆,等.一氧化氮介导内皮细胞对平滑肌细胞增殖的调节作用[J].衡阳医学院学报,1999,27(1):19-21.
    [1]Rudijanto A. The role of vascular smooth muscle cells on the pathogenesis of atherosclerosis[J]. Acta Med Indones.2007,39(2):86-93.
    [2]Bouvet C, Gilbert LA, Girardot D, et al. Different involvement of extracellular matrix components in small and large arteries during chronic NO synthase inhibition[J]. Hypertension,2005,45(3):432-437.
    [3]CebovaM, Kris tek F, Kunes J. Differential remodeling of carotid artery in spontaneously hypertensive and hereditary hypertriglyceridemic rats[J]. Phys iol Res, 2006,55 Suppl 1:S81-87.
    [4]Faries PL, Rohan DI, Wyers MC, et al. Vascular smooth muscle cells derived from atherosclerotic human arteries exhibit greater adhesion, migration, and proliferation than venous cells[J]. J Surg Res,2002,104:22-28.
    [5]Owens GK. Molecular control of vascular smooth muscle cell differentiation and phenotypic plasticity [J]. Novartis Found Symp,2007,283:174-191.
    [6]Li X, Yang HY, Giachelli CM. BMP-2 promotes phosphate uptake, phenotypic modulation, and calcification of human vascular smooth muscle cells. Atherosclerosis [J].2008 Jan 5 [Epub ahead of print].
    [7]ZHANG J ian, CA I Sheng-ye.Explore on Phenotype Transforming and Related Mechanisms of Signal Transduction in Vascular SmoothMuscle Cell[J].Adv Cardiovasc Dis,2005,26,(2):185-189.,
    [8]Weir MR, Diau VJ.The rennin-angiotensin-aldosterone system:a specific target for hypertension management [J]. AmJ Hypertens,1999,12(12):205-213.
    [9]Mondrof UF, Geiger H, Herrero M, et al. Involvement of the platelet-derived growth factor receptor in angiotensin Ⅱ-induced adtivation of extracellular regulated dinases 1 and 2 in human mesangial cells[J].FEBS Lett,2000,472(1):129-132.
    [10]Chang WC, Yu YM, Chiang SY, et al. Ellagic acid suppresses oxidised low-density lipoprotein-induced aortic smooth muscle cell proliferation:studies on the activation of extracellular signal-regulated kinase 1/2 and proliferating cell nuclear antigen expression.Br J Nutr.2008,99(4):709-14.
    [11]Zhan Y, Kim S, Izumi Y, et al. Role of JNK, p38, and ERK in platelet-derived growth factor-induced vascular proliferation, migration, and gene expression. Arterioscler Thromb Vasc Biol.2003,23:795-801.
    [12]Li XA, Bianchi C, Sellke FW. Rat aortic smooth muscle cell density affects activation of MAP kinase and Akt by menadione and PDGF homodimer BB. J Surg Res.2001,100:197-204.
    [13]Goetze S, Kintscher U, Kaneshiro K, et al. TNF alpha induces expression of transcription factors c-fos, Egr-1, and Ets-1 in vascular lesions through extracellular signal-regulated kinases 1/2. Atherosclerosis.2001,159:93-101.
    [14]Ohashi N, Matsumori A, Furukawa Y, et al. Role of p38 mitogen-activated protein kinase in neointimal hyperplasia after vascular injury. Arterioscler Thromb Vasc Biol.2000,20(25):21-2526.
    [15]任澎,李喆,马东,等.p38MAPK信号途径与血管损伤后平滑肌细胞增殖关系的研究[J].临床心血管病杂志,2005,21:737-740.
    [16]Izumi Y, Kim S, Namba M, et al. Gene transfer of dominant-negative mutants of extracellular signal-regulated kinase and c-JunNH2-terminal kinase prevents neointimal formation in balloon injured rat artery [J].Circ Res,2001,88:1120-1126.
    [17]Taniyama Y, Ushio2Fukai M, Hitomi H, et al. Role of p38MAPK and MAPKAPK22 in angiotensin II induced Akt activation in vascular smoot h muscle cells [J]. Am J Physiol Cell Physiol,2004,287:494-499.
    [18]Hoshi S, Goto M, Koyama N, et al. Regulation of vascular smooth muscle cell proliferation by nuclear factor-kappaB and its inhibitor, I-kappaB. J Biol Chem,2000, 275 (2):883-889.
    [19]Selzman CH, Shames BD, McIntyre R, et al. The NF-kappaB inhibitory peptide, IkappaBalpha, prevent s human vascular smooth muscle proliferation. Ann Thorac Surg,1999,67(5):1227-1232.
    [20]Wang Z, Cast resana MR, Detmer K, et al. An IkappaB-alpha mutant inhibit s cytokine gene expression and proliferation in human vascular smoot h muscle cells. J Surg Res,2002,102 (2):198-206.
    [21]Zheng S, Qian Z, Wen N, Xi L. Crocetin suppresses angiotensin II-induced vascular smooth-muscle cell proliferation through inhibition of ERK1/2 activation and cell-cycle progression. J Cardiovasc Pharmacol.2007,50:519-525.
    [22]Wang S, Liu Y, Fan F, Yan J, Wang X, Chen J. Inhibitory effects of emodin on the proliferation of cultured rat vascular smooth muscle cell-induced by angiotensin II. Phytother Res.2008,22:247-51.
    [23]Wang HY, Gao PJ, Ji KD, et al. Circulating endothelial progenitor cells, C-reactive protein and severity of coronary stenosis in Chinese patients with coronary artery disease[J]. Hypertens Res,2007,30 (2):133-141.
    [24]Nagaya N, Kangawa K, Kanda M,et al. Hybrid cell-gene therapy for pulmonary hypertension based on phagocytosing action of endothelial progenitor cells [J].Circulation,2003,108(7):889-895.
    [25]Takahashi M, Nakamura T, Toba T, et al. Transplantation of endothelial progenitor cells into the lung to alleviate pulmonary hypertension in dogs [J].Tissue Eng,2004,10(5-6):771-779.
    [26]陈剑飞,黄岚,武晓静,等.移植不同年龄大鼠骨髓EPCs对损伤内膜增殖的影响[J].中国病理生理杂志2007,23(11):2274-2275.
    [27]Matsuo Y, Imanishi T, Hayashi Y, et al. The effect of senescence of endothelial progenior cells on in-stent restenosis in patients undergoing coronary stenting[J].Intern Med,2006,45(9):581-588.
    [28]Yang J, Jiang H, Chen SS, et al. CBP knockdown inhibits angiotensin II-induced vascular smooth muscle cells proliferation through downregulating NF-kB transcriptional activity [J]. Mol Cell Biochem.2010 Feb 16.
    [29]Yoon C H, Hut J, Park K W, et al. Synergistic neovascularization by mixed tranaplantation of early endothelial mgenitor cells and late outgrowth endothelial cells:the role of angiogenie cytokines and matrix metal proteinases[J]. Circulation, 2005,112(11):1618-1627.
    [30]方叶青,谢秀梅,何晋,等.冠心病患者外周血内皮祖细胞的数量和活性[J].中国动脉硬化杂志,2008,16(5):381-384.
    [31]Loomans CJ, de Koning EJ, Staal FJ, et al. Endothelial progenitor cell dysfunction:a novel concept in the pathogenesis of vascular complications of type 1 diabetes[J]. Diabetes,2004,53(1):195-199.
    [32]Tepper OM, Galiano RD, Capla JM, et al. Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures [J]. Circulation,2002,106 (22):2781-2786.
    [33]杜兵,陈蓓蓓,王西明,等.低氧内皮细胞条件培养液和DDPH对肺动脉平滑肌细胞骨桥蛋白基因及α平滑肌肌蛋白表达的影响中国临床药理学与治疗学[J].2007,12(9):1013-1017.
    [34]Hou Y, Okamoto C, Okada K, et al. c-Myc is essential for urokinase plasminogen activator expression on hypoxia-induced vascular smooth muscle cells[J]. Cardiovasc Res.2007,75(1):186-194.
    [35]Altura BM, Kostellow AB, Zhang A, et al. Expression of the nuclear factor-kappaB and proto-oncogenes c-fos and c-jun are induced by low extracellular Mg2+in aortic and cerebral vascular smooth muscle cells:possible links to hypertension, atherogenesis, and stroke [J].Am J Hypertens.2003,16(9 Pt 1):701-707.
    [1]Xia JH, Xie AN, Zhang KL, et al. The vascular endothelial growth factor expression and vascular regeneration in infarcted myocardium by skeletal muscle satellite cells[J].Chin Med J 2006,119(2):117-121.
    [2]Yang Z, von Ballmoos MW, Faessler D, et al. Paracrine factors secreted by endothelial progenitor cells prevent oxidative stress-induced apoptosis of mature endothelial cells[J]. Atherosclerosis.2010 Feb 24. [Epub ahead of print]
    [3]Xia L, Fu GS, Yang JX, et al.Endothelial progenitor cells may inhibit apoptosis of pulmonary microvascular endothelial cells:new insights into cell therapy for pulmonary arterial hypertension[J]. Cytotherapy.2009,11(4):492-502.
    [4]Negre AP, Van EM, Van LRE, et al. Differential effect of simvastatin on various signal transduction intermediates in cultured human smooth muscle cells[J]. Biochem Pharmacol,2001,61(8):9912998.
    [5]Sata M, Nishimatsu H, Suzuki E, et al. Endothelial nitric oxide synthase is essential for the HMG-CoA reductase inhibitor cerivastatin to promote collateral growth in response to ischemia[J]. FASEB J,2007,15 (13):2530-2532.
    [6]Johnson JL, van Eys GJ, Angelini GD, et al. Injury induces dedifferentiation of smooth muscle cells and increased matrix-degrading metallo-proteinase activity in human saphenous vein [J]. Arterioscler Thromb Vasc Biol,2001,21 (7):1146-1151.
    [7]周知,降钙素基因相关肽抗高血压内皮祖细胞衰老作用和机制的研究.[博士学位论文].长沙:中南大学,2009.
    [8]陈晓彬,蒲晓群,谢秀梅,等.冠心病患者PCI术前后循环内皮祖细胞变化[J].中南大学学报.2008,33(2):432-437.
    [9]方叶青,谢秀梅,何晋,等.冠心病患者外周血内皮祖细胞的数量和活性[J].中国动脉硬化杂志.2008,(16)5:381-384.
    [10]Yoon C H, Hut J, Park K W, et al. Synergistic neovascularization by mixed tranaplantation of early endothelial mgenitor cells and late outgrowth endothelial cells:the role of angiogenie cytokines and matrix metal proteinases[J]. Circulation, 2005,112(11):1618-1627.
    [11]Tang JA, Xu D, Yuan QX, et al. Calcitonin gene-related peptide in the pathogenesis and treatment of hypertension [J]. Chin Med J (Engl),1989,102 (12):897-901.
    [12]Gangula PR, Zhao H, Supowit SC, et al. Increased blood pressure in alpha-calcitonin gene-related peptide/calcitonin gene knockout mice[J]. Hypertension, 2000,35(1 Pt 2):470-5.
    [13]Santhanam AV, Smith LA, He T, et al. Endothelial progenitor cells stimulate cerebrovascular production of prostacyclin by paracrine activation of cyclooxygenase-2[J]. Circ Res,2007,100(9):1379-88.
    [14]Vajkoczy P, Blum S, Lamparter M, et al. Multistep nature of microvascular recruitment of ex vivo-expanded embryonic endothelial progenitor cells during tumor angiogenesis[J]. J Exp Med,2003,197(12):1755-65.
    [15]Wang W, Sun W, Wang X. Intramuscular gene transfer of CGRP inhibits neointimal hyperplasia after balloon injury in the rat abdominal aorta[J]. Am J Physiol Heart Circ Physiol.2004,287(4):H1582-9.
    [16]杨芹,吴开云,王彩英.降钙素基因相关肽对大鼠血管平滑肌细胞增殖及表型转化的影响[J].解剖学杂志,2007,30(4):397-434.
    [17]邓水秀,曾泗宇,任俊芳.降钙素基因相关肽对血管平滑肌细胞增殖及小凹蛋白1表达的影响[J].中国动脉硬化杂志,2007,15(9):661-665.
    [18]Zhao Q, Liu Z, Wang Z, et al. Effect of prepro-calcitonin gene-related peptide-expressing endothelial progenitor cells on pulmonary hypertension[J].Ann Thorac Surg.2007,84(2):544-552.
    [19]Luo D, Zhang YW, Peng WJ, et al. Transient receptor potential vanilloidl-mediated expression and secretion of endothelial cell-derived calcitonin gene-related peptide[J]. Regul Pept,2008,150(1-3):66-72.
    [20]邓水秀,秦旭平.降钙素基因相关肽的血管生物学功能多样性[J].国际病理科学与临床杂志2006,26(3):246-249.
    [1]Arasaha T, Masuda H, Takahashi T, et al. Isolation of putative progenitor endothelial cells for angiogenesis[J]. Science.1997,275(5302):964-967.
    [2]Shaffer RG, Greene S, Arshi A, et al. Flow cytometric measurement of circulating endothelialcells:the effect of age and peripheral arterial disease on baseline levels of mature and progenitor populations. Cytometry B Clin Cytom 2006,70(2):56-62.
    [3]George J, Herz I, Goldstein E, et al. Number and adhesive properties of circulating endothelial progenitor cells in patients with in-stent restenosis. Arterioscler Thromb Vasc Biol 2003,23:e57-e60.
    [4]Ghani U, Shuaib A, Salam A, et al. Endothelial progenitor cells during cerebrovascular disease.Stroke.2005,36:151-153.
    [5]Heeschen C, Aicher A, Lehmann R, et al. Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood 2003,102(4):1340-1346.
    [6]Heiss C, Keymel S, Niesler U, et al. Impaired progenitor cell activity in age-related endothelial dysfunction. J Am Coll Cardiol 2005,45:1441-1448.
    [7]Kleinman ME, Tepper OM, Capla JM, et al. Increased circulating AC 133+ CD34+endothelial progenitor cells in children with hemangioma. Lymphat Res Biol 2003,1:301-307.
    [8]Quyyumi AA, Hill JM. Circulating endothelial progenitor cells as novel biological determinants of vascular function and risk. Can J Cardiol 2004,20 (Suppl B):44B-48B.
    [9]Schmidt D, Breymann C, Weber A, et al. Umbilical cordblood derived endothelial progenitor cells for tissue engineering of vascular grafts [J]. Ann Thorac Surg,2004,78 (6):2094-2098.
    [10]方叶青,谢秀梅,何晋.外周血内皮祖细胞分离和培养的试验研究.医学临床研究,2007,24(8):1252-1254.
    [11]何晋,谢秀梅,方叶青,陈晓彬,刘静.人脐血两种类型内皮祖细胞的体外分化研究.医学临床研究,2007,24(12):2056-2062.
    [12]Hur J, Yoon CH, Kim HS, et al. Characterization of two types of endothelial p rogenitor cells and their different contributions to neovasculogenesis[J]. Arterioscler Thromb Vasc Biol,2004,24 (2):288-293.
    [13]Powell TM, Paul JD, Hill JM, et al. Granulocyte colony stimulating factor mobilizes functional endothelial progenitor cells in patients with coronary artery disease. Arterioscler Thromb Vasc Biol.2005,25:1-6.
    [14]14. Askari AT, Unzek S, Popovic ZB, et al. Effect of stromal cell-derived factor 1 on stem cell homing and tissue regeneration in ischemic cardiomyopathy. Lance.2003, 362:697-703.
    [15]Hiasa K, Ishibashi M, Ohtani K, et al. Gene transfer of stromal cell-derived factor 1_enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitric oxide synthaserelated pathway:next generation chemokine therapy for therapeutic neovascularization. Circulation.2004,109:2454-2461.
    [16]Kong D, Melo LG, Gnecchi M, et al.Cytokine-induced mobilization of circulating endothelial progenitor cells enhances repair of injured arteries. Circulation.2004,110:2039-2046.
    [17]Kalka C, Tehrani H, Laudernberg B,et al. Mobilization of endothelial progenitor cells following gene therapy with VEGF165 in patients with inoperable coronary disease. Ann Thorac Surg.2000,70:829-834.
    [18]Spyridopoulos I, Haendeler J, Urbich C, et al. Statins enhance migratory capacity by upregulation of the telomere repeat-binding factor TRF2 in endothelial progenitor cells. Circulation.2004,110:3136-3142.
    [19]Heeschen C, Aicher A, Lehmann R, et al. Erythropoietin is a potent physiological stimulus for endothelial progenitor cell mobilization. Blood.2003,102:1340-1346.
    [20]Laufs U, Werner N, Link A, et al. Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation. 2003,109:220-226.
    [21]Heeschen C, Lehman R, Honold J, et al. Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation.2004; 109:1615-1622.
    [22]Valgimigli M, Rigolin GM, Fucili A, et al. CD34_and endothelial progenitor cells in patients with various degrees of congestive heart failure. Circulation.2004,110: 1209-1212.
    [23]Iwaguro H, Yamaguchi J, Kalka C, et al. Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration. Circulation.2002, 105:732-738.
    [24]Murayama T, Tepper OM, Silver M, et al.Determination of bone marrowderived endothelial progenitor cell significance in angiogenic growth factor-induced neovascularization in vivo. Exp Hematol 2002,30:967-972.
    [25]Smadja DM, Bieche I, Uzan G, et al. PAR-1 activation on human late endothelial progenitor cells enhances angiogenesis in vitro with upregulation of the SDF-1/CXCR4 system. Arterioscler Thromb Vase Biol 2005,25:2321-2327.
    [26]Walter DH, Haendeler J, Reinhold J, et al. Impaired CXCR4 signaling contributes to the reduced neovascularization capacity of endothelial progenitor cells from patients with coronary artery disease. Circ Res 2005,97:1142-1151
    [27]Jackson KA, Majka SM, Wang H, et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 2001,107:1395-1402.
    [28]Llevadot J, Murasawa S, Kureishi Y, et al. HMG-CoA reductase inhibitor mobilizes bone marrow——Derived endothelial progenitor cells. J Clin Invest 2001, 108:399-405.
    [29]Lyden D, Hattori K, Dias S, et al. Impaired recruitment of bone-marrowderived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 2001,7:1194-1201.
    [30]Xia JH, Xie AN, Zhang KL, et al. The vascular endothelial growth factor expression and vascular regeneration in infarcted myocardium by skeletal muscle satellite cells. Chin Med J 2006,119:117-121.
    [31]Murry CE, Soonpaa MH, Reinecke H, et al.Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 2004,428: 664-668.
    [32]Murasawa S, Kawamoto A, Horii M, et al. Niche-dependent translineage commitment of endothelial progenitor cells, not cell fusion in general, into myocardial lineage cells. Arterioscler Thromb Vasc Biol 2005,25:1388-1394.
    [33]Urbich C, Aicher A, Heeschen C, et al. Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J Mol Cell Cardiol 2005,39:733-742.
    [34]Anantha Vijay R. Santhanam, Leslie A. Smith, et al. Endothelial Progenitor Cells Stimulate Cerebrovascular Production of Prostacyclin By Paracrine Activation of Cyclooxygenase-2. Circulation Research,2007,100:1379-1388.
    [35]Vajkoczy P., Blum S., Lamparter M., et al. Multistep nature of microvascular recruitment of ex vivo-expanded embryonic endothelial progenitor cells during tumor angiogenesis. J. Exp. Med.,2003(197):1755-1765.
    [36]Carmeliet P, Moons L, Luttun A, et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nature Med,2001(7):575-583.
    [37]Werner N, Junk S, Laufs U, et al. Intravenous transfusion of endothelial progenitor cells reduces neointima formation after vascular injury.CircRes.2003, 93:e17-e24.
    [38]Griese DP, Ehsan A, Melo LG, et al. Isolation and transplantation of autologous circulating endothelial cells into denuded vessels and prosthetic grafts:implications for cell-based vascular therapy. Circulation,2003,108(21):2710-2715.
    [39]Werner N, Nickenig G.Clinical and therapeutical implication of EPC biology in atherosclerosis [J]. J Cell Mol Med,2006,10 (2):318-332.
    [40]Takamiya M, Okigaki M,, Jin D, et al. Granulocyte colony stimulating factor-mobilized circulating c-Kit+/Flk21+progenitor cell regenerate endothelium and inhibit neointimal hyperplasia after vascular injury [J]. Arterioscler Thromb Vase Biol,2006,26 (4):751-757.
    [41]Aicher A, Zeiher AM, Dimmeler S.Mobilizing endothelial progenitor cell[J]. Hypertension,2005,45 (3):321-325.
    [42]Badorff C', Brandes RP, Popp R, et al. Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation,2003,107 (7):1024-1032.
    [43]Orlic D, Kajstura J, Chimenti S, et al. Transplanted adult bone marrow cells repair myocardial infarcts in mice. Ann NY Acad Sci 2001,938:221-229.
    [44]Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001,410:701-705.
    [45]Yeh ET, Zhang S, Wu HD, et al. Transdifferentiation of human peripheral blood CD34+-enriched cell population into cardiomyocytes, endothelial cells, and smooth muscle cells in vivo. Circulation 2003,108:2070-2073.
    [46]Fernandez-Aviles F, San Roman JA, Garcia-Frade J, et al. Experimental and clinical regenerative capability of human bone marrow cells after myocardial infarction. Circ Res 2004,95:742-748.
    [47]Orlic D, Kajstura J, Chimenti S, et al. Bone marrow stem cells regenerate infarcted myocardium. Pediatr Transplant 2003,7 (Suppl 3):86-88.
    [48]Nygren JM, Jovinge S, Breitbach M, et al. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med 2004,10:494-501.
    [49]Hiasa K, Egashira K, Kitamoto S, et al. A. Bone marrow mononuclear cell therapy limits myocardial infarct size through vascular endothelial growth factor. Basic Res Cardiol 2004,99:165-172.
    [50]Assmus B, Schachinger V, Teupe C, et al. Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation,2002,106:3009-3017.
    [51]Britten MB, Abolmaali ND, Assmus B, et al. Infarct remodeling after intracoronaryprogenitor cell treatment in patients with acute myocardial infarction (TOPCARE-AMI):mechanistic insights from serial contrast-enhanced magnetic resonanceimaging. Circulation,2003,108:2212-2218.
    [52]Kocher AA, Schuster MD, Szabolcs MJ, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 2001,7:430-436.
    [53]Wollert KC, Drexler H. Clinical applications of stem cells for the heart. Circ Res 2005,96:151-163.
    [54]Imanishi T, Moriwaki C, Hano T, et al. Endothelial progenitor cell senescence is accelerated in both experimental hypertensive rats and patients with essential hypertension. J Hypertens,2005,23:1831-1837.
    [55]Oliveras A, Soler MJ, Martinez-Estrada OM, et al. Endothelial progenitor cells are reduced in refractory hypertension. J Hum Hypertens.2008,22(3):183-190.
    [56]WernerN, Kosiol S, Schiegl T, et al. Circulating endothelial progenitor cells and cardiovascular outcomes[J]. N Engl J Med,2005,353:999-1007.
    [57]Hill JM, Zalos G, Halcox JP, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk[J]. N Engl J Med,2003,348:593-600.
    [58]Wang HY, Gao PJ, J i KD, et al. Circulating endothelial progenitor cells, C-reactive protein and severity of coronary stenosis in Chinese patients with coronary artery disease [J]. Hypertens Res,2007,30 (2):133-141.
    [59]Nagaya N, Kangawa K, Kanda M,et al. Hybrid cell-gene therapy for pulmonary hypertension based on phagocytosing action of endothelial progenitor cells. Circulation,2003,108 (7):889-895.
    [60]Zhao YD, Deng Y, Zhang Q, et al. Bone marrow-derived endothelial progenitor cells involved in vascular regeneration and have a protective role in experimental pulmonary arterial hypertension. Circulation,2003,108:IV-295.
    [61]Takahashi M, Nakamura T, Toba T, et al. Transplantation of endothelial progenitor cells into the lung to alleviate pulmonary hypertension in dogs. Tissue Eng, 2004,10(5-6):771-779.
    [62]WernerN, Junk S,LaufsU, et al. Intravenous transfusion of endothelial progenitor cells reduces neointima formation after vascular injury [J]. Circ Res,2003,93 (2): e17-e24.
    [63]陈剑飞,黄岚,武晓静,等.移植不同年龄大鼠骨髓EPCs对损伤内膜增殖的影响.中国病理生理杂志.2007,23(11):2274-2275.
    [64]Aoki J,Serruys PW,Beusekom H,et al. Endothelial progenitor cell capture by stents coated with antibody against CD34 the HEALING-FIM (Healthy endothelial accelerated lining inhibits neointimalgrowth-first in man) registry. Am Coll Cardiol, 2005,45 (10):1574-1580.
    [65]Blindt R, Vogt F, Astafieva I, et al. A novel drug-eluting stent coated with an integrin-binding cyclic Arg-Gly-Asp peptide inhibits neointimal hyperplasia by recruiting endothelial progenitor cells. Am Coll Cardiol,2006,47(9):1786-1790.
    [66]Bhattacharya V, Mcsweeney PA, Shi Q, et al.Enhanced endothelialization and microvessel formation in polyestergrafts seeded with CD34+bone marrow cells. Blood,2000,95:581-587.
    [67]Matsuo Y,Imanishi T,Hayashi Y, et al.The effect of senescence of endothelial progenior cells on in-stent restenosis in patients undergoing coronary stenting. Intern Med,2006,45(9):581-588.
    [68]Modarai B, Burnand KG, Sawyer B, et al. Endothelial progenitor cells are recruited into resolvingvenous thrombi. Circulation.2005,20:2645-2653.
    [69]Moldovan NI, Asahara T. Role of blood mononuclearcells in recanalization and vascularization of thrombi:past, present, and future. Trends Cardiovasc Med.2003,7: 265-269.
    [70]Singh I, Burnand KG, Collins M, et al. Failure of thrombus toresolve in urokinase-type plasminogen activatorgene-knockout mice:rescue by normal bone marrowderivedcells. Circulation.2003,6:869-875.
    [71]David M. Smadja, Agnes Basired, Thrombin bound to a fibrin clot confers angiogenic and haemostatic properties on endothelial progenitor cells.J. Cell. Mol. Med.2008,12(3):975-986
    [72]Griese DP, Achatz S, Batzlsperger CA. Vascular gene delivery of anticoagulants by transp lantation of retrovirally transduced endothelial p rogenitor cells[J]. Cardiovasc Res,2003,58 (2):469-477.
    [73]Hill JM, Zalos G, Halcox JP, et al. Circulating Endothelial Progenitor Cells, Vascular Function, and Cardiovascular Risk N. Engl J Med,2003,348 (7):593-600.
    [74]Vasa M, Fichtlscherer S, Aicher A, et al. Number and Migratory Activity of Circulating Endothelial Progenitor Cells Inversely Correlate With Risk Factors for Coronary Artery Disease. Circ Res,2001,89 (1):E1-7.
    [75]Kawamoto A, Gwon HC, Iwaguro H, et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation,2001,103: 634-637.
    [76]Kawamoto A, Tkebuchava T, Yamaguchi J, et al. Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation,2003,107 (3):461-468.
    [77]Park S, TepperOM, Galiano RD, et al. Selective recruitment of endothelial progenitor cells to ischemic tissueswith increased neovascularization[J]. Plast Reconstr Surg,2004,113(1):284-293.
    [78]Bahlmann FH, de Groot K, MuellerO, et al. Stimulation of endothelial p rogenitor cells:A new putative therapeutic effect of angiotensin Ⅱ recep tor antagonists[J]. Hypertension,2005,45 (4):526-529.
    [79]Iwaguro H, Yamaguchi J, Kalka C, et al. Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration [J]. Circulation,2002, 105.(6):732-738.
    [80]Kaushal S, Amiel GE, Guleserian KJ, et al. Functional small-diameter neovessels created using endothelialprogenitor cells expanded ex vivo. Nat Med.2001, 7:1035-1040.
    [81]Shirota T, Yasui H, Shimokawa,H, et al. Fabrication of endothelialprogenitor cell (EPC)-seeded intravascular stent devices and in vitroendothelialization on hybrid vascular tissue. Biomaterials.2003,24:2295-2302.
    [82]Gulati R, Jevremovic D, Peterson TE, et al. Autologous culture-modified mononuclearcells confer vascular protection after arterial injury. Circulation.2003, 108:1520-1526.
    [83]He T, Smith LA, Harrington S, et al. Transplantation of circulating endothelial progenitor cells restores endothelialfunction of denuded rabbit arteries. Stroke.2004, 35:2378-2384.
    [84]Nowak G, Karrar A, Holmen C, et al. Expression of vascular endothelial factorreceptor-2 or Tie-2 on peripheral blood cells defines functionally competentcell populations capable of reendothelialization. Circulation.2004,110:3699-3707
    [85]Hu Y, Davison F, Zhang Z, et al. Endothelial re2placement and angiogenesis in arteriosclerotic lesionsof allograf,t s are cont ributed by circulating progenitorcells. Circulation,2003,108:3122-3127.
    [86]Silvestre JS, Govova A, Brun V, et al. Transplantation of bone marrow-derived mononuclear. cells in ischemic apolipoprotein E-knockout mice accelerates atherosclerosis without altering plaque composition. Circulation,2003, 108:2839-2842.
    [87]Shirota T, Yasui H, Shimokawa H, et al. Fabrication of endothelial progenitorcell(EPC)-seeded intravascular stent devices and in vitro endothelialization onhybrid vascular tissuel[J]. Biomaterials,2003,24:2295-2302.
    [88]He H, Shirota T, Yasui H, et al. Canine endothelial p rogenitor cell-lined hybridvascular graftwith nonthrombogenic potential [J]. J Thorac Cardiovasc Surg. 2003,126:455-464.
    [89]Fuujiyama S, Amano K, Uehira K, et al. Bone marrow monocyte lineage cells adhere on injured endotheliumin a monocyte chemoattractant protein-1-dependent mannerand accelerate reendothelialization as endothelial progenitor cells. CircRes. 2003,93:980-989.
    [90]Vasa M, Fichtlscherer S, Adler K, et al. Increase in circulating endothelial progenitor cells by statintherapy in patients with stable coronary artery disease. Circulation.2001,103:2885-2890.
    [91]Walter DH, Rittig K, Bahlmann FH, et al. Statin therapyaccelerates reendothelialization:a novel effect involving mobilizationand incorporation of bone marrow-derived endothelial progenitor cells.Circulation.2002,105:3017-3024.
    [92]Aoki J,Serruys PW,Beusekom H,et al.Endothelial progenitor cellcapture by stents coated with antibody against CD34:the HEALING-FIM(Healthy endothelial accelerated lining inhibits neointimalgrowth-first in man) registry. Am Coll Cardiol, 2005,45(10):1574.
    [93]Blindt R, Vogt F, Astafieva I, et al. A novel drug-eluting stentcoated with an integrin-binding cyclic Arg-Gly-Asp peptideinhibits neointimal hyperplasia by recruiting endothelial progenitorcells. Am Coll Cardiol,2006,47(9):1786.
    [94]Bhattacharya V,Mcsweeney PA,Shi Q,et al.Enhanced endothelialization and microvessel formation in polyestergrafts seeded with CD34+bone marrow cells. Blood,2000,95:581.
    [95]Kipshidze N, Dangas G, Tsapenko M, et al.Role of the endotheliumin modulating neointimal formation:vasculoprotective approachesto attenuate restenosis after percutaneous coronary interventions.J Am Coll Cardiol,2004,44(4):733.
    [96]Rotmans JI, Heyligers JM, Verhagen HJ, et al. In vivo cell seeding with anti2CD34 antibodies successfully accelerates endothelialization but stimulates inti2mal hyperp lasia in porcine arteriovenous expanded polytetrafluoroethylene grafts[J]. Circulation,2005,112 (1):12-18.
    [97]Stewart DJ, Zhao YD, Courtman DW, et al. Cell therapy for pulmonary hyper2tension:What is the true potential of endothelial p rogenitor cells[J] Circulation,2004,109 (12):e172-e173.
    [98]马彩艳,陈君柱.内皮祖细胞移植治疗儿童原发性肺动脉高压的初步探讨.浙江医学,2006,28(7):526-531.
    [99]Murasawa S, Llevadot J, SilverM, et al. Constitutive human telomerase reverse transcrip tase exp ression enhances regenerative p roperties of endothelial progenitor cells[J]. Circulation.2002,106:1133-1139.
    [101]Choi JH, Hur J, Yoon CH, et al. Augmentation of therapeutic angiogenesis using geneticallymodified human endothelial progenitor cells with altered glycogen synthase kinase23beta activity [J]. Biol Chem.2004,279(47):49430-49438.
    [102]王卫东,陈正堂.血管内皮祖细胞的研究进展[J].中国微循环.2002,6(1):6-8.
    [103]Xu HX, Li GS, J iang H, et al. Implantation of BM cells transfected with phVEGF165 enhances functional imp rovement of the infarcted heart[J]. Cytotherapy. 2004,6(3):204-211.
    [104]Kong D, Melo LG, MangiAA, et al. Enhanced inhibition of neointimal hyperp lasia by genetically engineered endothelial p rogenitor cells [J]. Circulation. 2004,109:1769-1775.
    [105]Kang HJ, Kim HS, Zhang SY, et al. Effects of intracoronary infusion of peripheral blood stem cellsmobilizedwith granulocyte colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction:TheMAGIC cell randomized clinical trial [J]. Lancet,2004,363:751-756.
    [1]Liuzzo G. At herosclerosis:an inflammatory disease [J]. Rays,2001,26 (4):221-230.
    [2]Rzucidlo EM, Martin KA, Powell RJ. Regulation of vascular smooth muscle cell differentiation. J Vasc Surg.2007,45 Suppl A:A25-32.
    [3]Owens GK.Molecular control of vascular smooth muscle cell differentiation and phenotypic plasticity [J]. Novartis Found Symp,2007,283:174-191.
    [4]Faries PL, Rohan DI, Wyers MC, et al. Vascular smooth muscle cells derived from atherosclerotic human arteries exhibit greater adhesion, migration, and proliferation than venous cells. J Surg Res,2002,104(1):22-28.
    [5]Liang KW, Yin SC, Ting CT, et al. Berberine inhibits platelet-derived growth factor-induced growth and migration partly through an AMPK-dependent pathway in vascular smooth muscle cells[J].Eur J Pharmacol.2008, [Epub ahead of print].
    [6]Izawa Y, Yoshizumi M, Ishizawa K, et al. Big mitogen-activated protein kinase 1 (BMK1)/extracellular signal regulated kinase 5 (ERK5) is involved in platelet-derived growth factor(PDGF)-induced vascular smooth muscle cell migration[J]. Hypertens Res.2007,30(11):1107-1117.
    [7]Kato S, Ueda S, Tamaki K, et al. Ectopic expression of SMAD7 inhibits transforming growth factor-beta responses in vascular smooth muscle cells [J]. Life Sci,200,69 (22):2641-2652.
    [8]Pasche B. Role of TGF-beta in cancer [J]. Journal of Cellular Physiology, 2001,186 (3):153-168.
    [9]Skaletz-Rovowski A, Waltenberger J. Protein kinase C mediates basic fibroblast growth factor-induced proliferation through mitogen activated protein kinase in coronary smooth muscle cells[J]. Arterioscler Thromb Vasc Biol,1999,19 (7):1608-1614.
    [10]Montezano AC, Callera GE, Yogi A, et al. Aldosterone and Angiotensin Ⅱ Synergistically Stimulate Migration in Vascular Smooth Muscle Cells Through c-Src-Regulated Redox-Sensitive RhoA Pathways [J].Arterioscler Thromb Vasc Biol. 2008,28(8):1511-1518.
    [11]Yang YM, Wang SJ, Jin DD, et al. Inhibitory effects of emodin on proliferation of rat vascular smooth muscle cell induced by angiotensin II [J]. Zhongguo Zhong Yao ZaZhi.2008,33(1):63-67.
    [12]Chang WC, Yu YM, Chiang SY, et al. Ellagic acid suppresses oxidised low-density lipoprotein-induced aortic smooth muscle cell proliferation:studies on the activation of extracellular signal-regulated kinase 1/2 and proliferating cell nuclear antigen expression[J]. Br J Nutr.2008,99(4):709-714.
    [13]Zhan Y, Kim S, Izumi Y, et al. Role of JNK, p38, and ERK in platelet-derived growth factor-induced vascular proliferation, migration, and gene expression[J]. Arterioscler Thromb Vasc Biol.2003,23:795-801.
    [14]Li XA, Bianchi C, Sellke FW. Rat aortic smooth muscle cell density affects activation of MAP kinase and Akt by menadione and PDGF homodimer BB[J]. J Surg Res.2001,100:197-204.
    [15]Ohashi N, Matsumori A, Furukawa Y, et al. Role of p38 mitogen-activated protein kinase in neointimal hyperplasia after vascular injury [J].Arterioscler Thromb Vasc Biol.2000,20(25):21-2526.
    [16]任澎,李喆,马东,等.p38MAPK信号途径与血管损伤后平滑肌细胞增殖关系的研究[J].临床心血管病杂志,2005,21:737-740.
    [17]Izumi Y, Kim S, Namba M, et al. Gene transfer of dominant-negative mutants of extracellular signal-regulated kinase and c-JunNH2-terminal kinase prevents neointimal formation in balloon injured rat artery [J]. Circ Res,2001,88:1120-1126.
    [18]Taniyama Y, Ushio2Fukai M, Hitomi H, et al. Role of p38MAPK and MAPKAPK22 in angiotensin II induced Akt activation in vascular smoot h muscle cells [J]. Am J Physiol Cell Physiol,2004,287:494-499.
    [19]Hoshi S, Goto M, Koyama N, et al. Regulation of vascular smooth muscle cell proliferation by nuclear factor-kappaB and its inhibitor, I-kappaB[J]. J Biol Chem, 2000,275 (2):883-889.
    [20]Selzman CH, Shames BD, McIntyre R,et al.The NF-kappaB inhibitory peptide, IkappaBalpha, prevents human vascular smooth muscle proliferation[J]. Ann Thorac Surg,1999,67 (5):1227-1232.
    [21]Wang Z, Cast resana MR, Detmer K, et al. An IkappaB-alpha mutant inhibits cytokine gene expression and proliferation in human vascular smooth muscle cells[J]. J Surg Res,2002,102 (2):198-206.
    [22]Goetze S, Kintscher U, Karieshiro K, et al. TNF alpha induces expression of transcription factors c-fos, Egr-1, and Ets-1 in vascular lesions through extracellular signal-regulated kinases 1/2[J]. Atherosclerosis.2001,159:93-101.
    [23]Watanabe S, Mu W, Kahn A, et al. Role of JAK/STAT pathway in IL-6-induced activation of vascular smooth muscle cells[J]. Am J Nephrol.2004,24(4):387-92.
    [24]Neeli I, Liu Z, Dronadula N, et al. An essential role of the Jak-2/STAT-3/cytosolic phospholipase A(2) axis in platelet-derived growth factor BB-induced vascular smooth muscle cell motility[J]. J Biol Chem.2004,279(44):46122-46128.
    [25]李鹏飞,郭艳红,李黔,等.腺病毒介导的rHSG-1基因转染对自发性高血压大鼠血管平滑肌细胞增殖的影响[J].北京大学学报,2004,36:259-262.
    [26]姜广建,温进坤,韩梅.高血压相关基因hrg-1对血管平滑肌细胞周期蛋白E和P27蛋白表达及细胞增殖的影响[J].中国老年学杂志,2004,24:923-926.
    [27]Jiang GJ, Han M, Zheng B, et al. Hyperplasia suppressor geneassociates with smooth muscle a-actin and is involved in the re-differentiation of vascular smooth muscle cells[J]. Heart Vessels,2006,21:315-320.
    [28]Sato J, Nair K, Hiddinga J, et al. eNOS gene transfer to vascular smooth muscle cells inhibits cell proliferation via upregulation of p27and p21 and not apop tosis[J]. Cardiovasc Res,2000,47 (4):697-706.
    [29]ChangMW,Barr E, Seltzer J, et al. Cytostatic gene therapy for vascular proliferative disorders with a constrictive active form of the retinoblastoma gene product[J]:Science,1995,267 (5197):518-522.
    [30]Varenne O, Sinnaeve P, Gillijns H, et al. Percutaneous gene therapy using recombinant adenoviruses encoding human herps simp lex virus thymidine kinase, human PA 121, and human NOS3 in balloon-injured porcine coronary arteries[J]. Hum Gene Ther,2000,11 (9):1329-1339.
    [31]Speir E, Ep stein SE. Inhibition of smooth muscle cell proliferation by an antisence oligodeoxynucleotide targeting the message rRNA encoding proliferating cell nuclear antigen[J]. Circulation,1992,86:538-544.
    [32]Dollery CM, Humphries SE,Mcclelland A, et al. Exp ression of tissue inhibitor of matrix metallop roteinases 1 by use of an adenoviral vector inhibits smoothcellmigration and reduce sneointimal hyperp lasia in the rat model of vascular balloon injury [J]. Circulation,1999,99 (24):3199-3205.
    [33]尚丹,郑启昌,宋自芳等.人Arresten基因的真核表达及其对血管平滑肌细 胞增殖和迁移的影响[J].中国病理生理杂志,2007,23(10):1887-1890.
    [34]Hammond SM, Caudy AA, Hannon GJ, et al. Post-transcrip tional gene silencing by double-stranded RNA [J]. Nature Rev Gen,2001,2 (2):110-119.
    [35]孙成林,段志泉,辛世杰.血管紧张素Ⅱ1型受体短发夹环RNA对大鼠血管平滑肌细胞增殖的影响[J].中国应用生理学杂志,2004,20(3):263-266.
    [36]Dwarakanath RS, Sahar S, ReddyMA, et al. Regulation of monocyte chemoattractant protein-1 by the oxidized lipid,132hydroperoxyoctadecadienoic acid, invascular smooth muscle cells via nuclear factor2kappa B (NF-kappa B) [J]. JMol Cell Cardiol,2004,36 (4):585-595.
    [37]张宏伟,王欣,霍鑫,等.Ap-1基因RNA干扰对大鼠血管平滑肌细胞增殖的影响[J].山东医药2007,47(32):24-25.
    [38]胡新华,张强,杨军等.RNA干扰沉默雷帕霉素靶蛋白基因表达对血管平滑肌细胞增殖活性的影响[J].中华实验外科杂志,2006,3(10):1181-1183
    [39]覃跃龙,舒茂琴,江明宏.ORC1基因RNA干扰对大鼠血管平滑肌细胞增殖的影响[J].第三军医大学学报,2006,28(11):1161-1163.
    [40]Ohanna M, Sobering AK, Lapointe T, et al.Atrophy of S6K1(2P2) skeletal muscle cells reveals distinct mTOR effectors for cell cycle and size control [J]. Nat Cell Biol,2005,7(3):286-294.
    [41]Liu X, Luo F, Pan K, et al.. High glucose upregulates connective tissue growth factor expression in human vascular smooth muscle cells[J].BMC Cell Biol. 2007,16(8):1-12
    [42]LeungWCY, LawrieA, Demaries S, et al. Apolipop rotein D and platelet-derived growth factor-BB synergism mediates vascular smooth muscle cell migration[J]. Circ Res,2004,95:179-186.
    [43]Min LJ, MogiM, Li JM, et al. A ldosterone and angiotensin Ⅱ synergistically induce mitogenic response in vascular smooth muscle cells[J]. Circ Res,2005,97: 434-442.
    [44]Sussmann M, Sarbia M, Meyer-Kirchrath J, et al. Induction of hyaluronic acid synthase 2 (HAS2) in human vascular smooth muscle cells by vasodilatory prostaglandins[J]. Circ Res,2004,94:592-600.
    [45]Pp CW, de Martin R. Gene therapy app roaches for the prevention of restenosis [J]. CurrVasc Pharmacol,2004,2 (2):183-189.
    [46]Bekeredjian R, Shohet RV. Cardiovascular gene therapy:angiogenesis and beyond[J]. Am J Med Sci,2004,327 (3):139-148.
    [47]Tomita N, Morishita R, Higaki J, et al. A novel strategy for gene therapy and gene regulation analysis using transcription factor decoy oligonucleotides[J]. Exp Nephrol,1997,5(5):429-434.
    [48]甘卫华,陈荣华.转录因子decoy基因治疗的研究进展[J].国外医学儿科学分册,2004,31(4):169-171.
    [49]Morishita R, Gibbons GH, HoriuchiM, et al. A novel molecular strategy using cis elemen"t decoy"of E2F binding sit inhibits smooth muscle proliferation in vivo[J]. Proc NatlAcad SciUSA,1995,92:5855-5859.
    [50]Yoshimura S,Morishita R, Hayashi K, et al. Inhibition of intimal hyperp lasia after balloon injury in rat carotid artery model using cis-element"decoy"of nuclear factor2kappa B binding site as a novelmolecular strategy [J]. Gene Ther,2001,8 (21): 1635-1642.
    [51]Morishita R. Recent progress in gene therapy for cardiovascular disease[J].Circ J, 2002,66:1077-1086.
    [52]Negre AP, Van EM, Van LRE, et al. Differential effect of simvastatin on various signal transduction intermediates in cultured human smooth muscle cells[J]. Biochem Pharmacol,2001,61(8):9912998.
    [53]Sata M, Nishimatsu H, Suzuki E, et al. Endothelial nitric oxide synthase is essential for the HMG-CoA reductase inhibitor cerivastatin to promote collateral growth in response to ischemia[J]. FASEB J,200,15 (13):2530-2532.
    [54]Johnson JL, van Eys GJ, Angelini GD, et al. Injury induces dedifferentiation of smooth muscle cells and increased matrix-degrading metallo-proteinase activity in human saphenous vein [J]. Arterioscler Thromb Vasc Biol,2001,21 (7):1146-1151.
    [55]章希炜,杨宏宇,高志伟,等.血管紧张素Ⅱ受体Ⅰ阻滞剂抑制血管平滑肌细胞增殖、迁移的实验研究[J].南京医科大学学报(自然科学版),2006,26(2):113-117.
    [56]Macia M, Lozano R, Villarroya M, et al. On the antiatherogenity of calcium channel blockers:studies in proliferating vascular smooth muscle cells on age sensitivity, dose dependent inhibitory effect, and time of action[J]. Arch Gerontol Geriatr.2002,35(1):51-57.
    [57]陶勇,华守明.维拉帕米缓释剂对实验性球囊损伤兔动脉粥样硬化进程的影响[J].中国现代医学杂志,2006,16(22):3431-3434.
    [58]Nakajima T, Ma J, Iida H, et al. Inhibitory effects of carvedilol on calcium channels in vascular smooth muscle cells[J]. Jpn Heart J.2003,44(6):963-978.
    [59]Gizard F, Bruemmer D.Transcriptional Control of Vascular Smooth Muscle Cell Proliferation by Peroxisome Proliferator-Activated Receptor-gamma:Therapeutic Implications for Cardiovascular Diseases[J]. PPAR Res,2008:429123.
    [60]Bruemmer D, Berger JP, Liu J, et al. A non-thiazolidinedione partial peroxisome proliferator-activated receptor-gamma ligand inhibits vascular smooth muscle cell growth. European Journal of Pharmacolog.2003,466(3):225-234.
    [61]de Dios ST, Bruemmer D, Dilley RJ, et al. Inhibitory activity of clinical thiazolidinedione peroxisome proliferator activating receptor-gamma ligands toward internal mammary artery, radial artery, and saphenous vein smooth muscle cell proliferation.Circulation.2003,107(20):2548-2550.
    [62]Law BK, Waltner-Law ME, Entingh AJ, et al. Salicylate-induced growth arrest is associated with inhibition of p70s6k and down-regulation of c-myc, cyclin D1, cyclin A, and proliferating cell nuclear antigen [J]. J Biol Chem,2000,275 (49):38261-267.
    [63]刘振华,刘亚杰,刘卉,等.阿司匹林抑制大鼠血管平滑肌细胞增殖及p44P42MAPK的表达[J].中华神经医学杂志,2005,4(5):452-454.
    [64]于雪梅,冯萍,金慧英.阿司匹林抗大鼠血管平滑肌增殖及与细胞周期的关系[J].中国病理生理杂志,2005,21(6):1080.
    [65]Gu Q, Chen JL, Ruan YM. Inhibitory effects of aspirin, clopidogrel, and their combination on the progression of atherosclerosis in rabbits [J]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao,2005,27(1):87-91.
    [66]杨思进,崔学生,肖顺汉,等.调脂合剂对血脂代谢紊乱型大鼠血管平滑肌细胞增殖的干预作用[J].中西医结合心脑血管病杂志,2003,1(9):527-529.
    [67]金惠民,刘俊荣,罗跃峨,等.调肝导浊中药对体外培养大鼠主动脉平滑肌细胞增殖调控的影响[J].天津中医药,2004,21(4):332-334.
    [68]黄伟毅,陈素云,邱幸生,等.益气通络丹含药血清对大鼠血管平滑肌细胞的影响[J].中国微循环,2000,4(3):148-150.
    [69]彭哲,王硕仁,李秋梅,等.解毒活血益气方药物血清对兔血管平滑肌细胞增殖及脂质过氧化的影响[J].中国医药学报,2004,19(6):341-344.
    [70]周惠芳,张旭,吴德芹.麦冬对诱导性血管平滑肌细胞增殖的拮抗作用[J].浙江中西医结合杂志,2003,13(9):531-533.
    [71]李琦,温进坤,韩梅.黄芪和当归对血管平滑肌细胞表型标志基因表达和细胞增殖的影响[J].2004,12(2):147-150.
    [72]黄进宇,单江,徐耕,等.黄芪抑制血管平滑肌细胞增殖及其作用机制[J].中国现代应用药学杂志,2003,20(4):277-279.
    [73]王宏伟,张露,赵华月.川芎嗪对血管平滑肌细胞增殖及表达c-myc基因的影响[J].中国动脉硬化杂志,2000,8(4):319-321.
    [74]李俊峡,李佃贵,李振彬,等.粉防已碱对血管平滑肌细胞增殖及相关基因表达的影响[J].心肺血管病杂志,2002,21(3):170-174.
    [75]庞荣清,潘兴华,龙沛然,等.灯盏花素对兔血管平滑肌细胞增殖的影响[J].中国动脉硬化杂志,2004,12(4):395-398.
    [76]何书英,钱之玉,绪广林.西红花苷对平滑肌细胞增殖的影响及机制研究[J].中国药科大学学报,2004,35(1):65-681.
    [77]王敏,崔连群,张承俊.水蛭素对凝血酶诱导的血管平滑肌细胞增殖的影响[J].中国动脉硬化杂志,2003,11(7):609-611.
    [78]张俊霞,黄晶,王新,等.超声辐照对血管平滑肌细胞增殖和凋亡的影响[J].重庆医科大学学报,2005,30(5):636-639.
    [79]Spyridopoulos I, Principe N, Krasinski KL, et al. Restoration of E2F expression rescues vascular endothelial cells from tumor necrosis factora induced apop tosis[J]. Circulation,1998,98 (25):2883-2890
    [80]陈浩,李虹.血管内照射及他汀类、抗血小板药物联用预防PTCA术后再狭窄[J].临床医药实践杂志,2004,13(3):163-166.
    [81]刘英梅,傅岳武,孙立,等.γ粒子核素支架影响血管平滑肌细胞增殖与凋亡的实验研究[J].中国病理生理杂志,2007,23(5):884-887.
    [82]孟琼,雷磊,朱伟,等.针刺对动脉再狭窄家兔血管平滑肌细胞增殖及c-foc基因表达的影响[J].中国中医药科技2008,15(2):81-83.
    [83]zhang Qiu-hua and SHE Ming-peng. Biological behaviour and role of endothelial progenitor cells in vascular diseases. Chinese Medical Journal 2007, 120(24):2297-2303.
    [84]Dernbach E, Urbich C, Brandes RP, et al. Antioxidative stress-associated genes in circulating progenitor cells:evidence for enhanced resistance against oxidative stress. Blood 2004,104:3591-3597.
    [85]Takahashi M, Nakamura T, Toba T, et al. Transplantation of endothelial progenitor cells into the lung to alleviate pulmonary hypertension in dogs. Tissue Eng, 2004,10(5-6):771-779.
    [86]WernerN, Junk S,LaufsU, et al. Intravenous transfusion of endothelial progenitor cells reduces neointima formation after vascular injury [J]. Circ Res,2003,93 (2): e17-e24.
    [87]Kong D,Melo LG, GnecchiM, et al. Cytokine-induced mobilization of circulating endothelial progenitor cells enhances repair of injured arteries[J].Circulation, 2004,110 (14):2039-2046.
    [88]崔斌,黄岚,武晓静,等.内皮祖细胞移植对血管内膜修复的影响[J].中国病理生理杂志,2007,23(4):625-628.
    [89]Blindt R, Vogt F, Astafieva I, et al. A novel drug-eluting stentcoated with an integrin-binding cyclic Arg-Gly-Asp peptideinhibits neointimal hyperplasia by recruiting endothelial progenitorcells. Am Coll Cardiol,2006,47(9):1786.
    [90]Bhattacharya V, Mcsweeney PA, Shi Q, et al.Enhanced endothelialization and microvessel formation in polyestergrafts seeded with CD34+bone marrow cells. Blood,2000,95:581.
    [91]Zou T, Liu N, Li SD, et al. Vitamin E inhibits homocysteine-mediated smooth muscle cell proliferation[J]. Nan Fang Yi Ke Da Xue Xue Bao.200,27(6):783-786.
    [92]褚现明,钟志欢,王国栋,等全反式维甲酸对球囊损伤大鼠胸主动脉VSMC表型变化及增殖的影响[J].青岛大学医学院学报,2005,41(4):297-301
    [93]Wang W, Sun W, Wang X. Intramuscular gene transfer of CGRP inhibits neointimal hyperplasia after balloon injury in the rat abdominal aorta[J]. Am J Physiol Heart Circ Physiol.2004,287(4):H1582-9.
    [94]杨芹,吴开云,王彩英.降钙素基因相关肽对大鼠血管平滑肌细胞增殖及表型转化的影响[J].解剖学杂志,2007,30(4):397-434.
    [95]邓水秀,曾泗宇,任俊芳.降钙素基因相关肽对血管平滑肌细胞增殖及小凹蛋白1表达的影响[J].中国动脉硬化杂志,2007,15(9):661-665.
    [96]Ling S, Dai A, Dilley RJ, et al. Endogenous estrogen deficiency reduces proliferation and enhances apop tosis related death in vascularsmooth muscle cells: insights from the aromatase knockout mouse[J]. Circulation,2004,109 (4):537-543.
    [97]Yue TL, Vickery-Clark L, Louden CS, et al. Selective estrogen receptormodulator idoxifene inhibits smooth muscle cell proliferation, enhances reendothelialization, and inhibits neointimal formation In vivo after vascular injury [J].Circulation,2000,102(19 supp 13):Ⅲ281-Ⅲ288.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700