用户名: 密码: 验证码:
硫氧还蛋白在高氧肺损伤中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分高氧对硫氧还蛋白系统表达的影响
     【目的】建立早产新生大鼠高氧暴露肺损伤动物模型,观察高浓度氧对早产鼠肺组织形态学影响以及硫氧还蛋白系统表达水平的变化,探讨硫氧还蛋白系统在高氧肺损伤中的可能作用。
     【方法】孕21天SD大鼠行剖腹产术,娩出的新生鼠为早产鼠。早产SD大鼠生后d1随机分为两组:空气组和高氧组。高氧组持续暴露于氧浓度85%的氧箱内,空气组置于常压空气中。两组分别于空气或高氧暴露后1、4、7、14d,10%乌拉坦腹腔注射麻醉,提取肺组织总RNA和总蛋白,采取半定量逆转录聚合酶链反应(reverse transcription polymerase chain reaction, RT-PCR)检测硫氧还蛋白和硫氧还蛋白还原酶mRNA表达水平;免疫组织化学方法检测硫氧还蛋白在肺组织中的分布和表达强度;免疫印迹法检测肺组织硫氧还蛋白蛋白水平的动态变化;同时采用HE染色观察肺组织形态学改变,并进行辐射状肺泡计数。
     【结果】①肺组织形态学观察:空气对照组呈正常肺发育状态,高氧组肺组织可见明显肺泡炎性改变和肺发育滞后,同时伴有辐射状肺泡计数的显著减少(p<0.05)。②与空气对照组比较,高氧暴露诱导了Trx、TrxR mRNA水平的显著上调,同时Trx蛋白水平也呈现相应的升高(p<0.05)③免疫组织化学染色结果显示,Trx普遍分布于肺组织血管内皮细胞和肺泡上皮细胞胞浆内,高氧暴露组Trx强度较对照组增强。
     【结论】高氧暴露诱导肺组织广泛的炎症反应及肺发育落后,同时上调肺组织Trx、TrxR表达水平。Trx系统表达增高可能在早产鼠高氧肺损伤的发病机制中发挥重要保护作用。
     第二部分硫氧还蛋白对高氧暴露胎鼠肺泡上皮细胞的保护作用
     【目的】观察补充外源性硫氧还蛋白对高氧诱导的胎鼠肺泡Ⅱ型上皮细胞损伤的影响,探讨硫氧还蛋白可能的作用机制。
     【方法】无菌分离、培养胎鼠肺泡Ⅱ型上皮细胞。随机将细胞分为单纯高氧暴露组和重组人硫氧还蛋白(recombinant human thioredoxin,rhTrx)处理组,两组同时暴露于氧浓度95%的高氧环境。两组分别于高氧暴露0、12、24、48h,MTT法检测细胞活力情况;流式细胞术检测细胞凋亡和细胞内活性氧(reactive oxygen species,ROS)的生成;超氧化物歧化酶、过氧化氢酶、谷胱甘肽过氧化物酶活性分别由其相应的酶活性检测试剂盒进行测定;免疫印迹蛋白检测法测定丝裂原激活蛋白激酶(mitogen-activited protein kinase,MAPK)和磷脂酰肌醇(3)激酶-蛋白激酶(phosphoinositide 3-kinase/protein kinase B,PI3K/Akt)信号通路活性。
     【结果】与单纯高氧暴露组细胞比较,①rhTrx处理显著减轻了高氧诱导的肺泡上皮细胞的死亡,提高了细胞活力;②rhTrx显著降低了细胞ROS的水平;③rhTrx显著提高了锰型超氧化物歧化酶和谷胱甘肽过氧化物酶的活性;④rhTrx激活了细胞外信号调节激酶1/2(extracellular signal regulated kinase,ERK 1/2)ERK 1/2和P13K活性,而抑制了c-Jun N末端激酶1/2(c-Jun N-terminal protein kinase,JNK1/2)和P38丝裂原活化蛋白激酶(P38mitogen-activited protein kinase,p38)的活性.
     【结论】硫氧还蛋白通过减少细胞内ROS的生成、提高抗氧化酶活性、调控MAPKs和PI3K-Akt信号通路对高氧暴露胎肺泡上皮细胞发挥保护作用。
     第三部分硫氧还蛋白在高氧暴露早产鼠肺损伤中作用的相关机制研究
     【目的】建立早产新生鼠高氧暴露肺损伤动物模型,观察外源性Trx对高氧暴露早产鼠肺损伤的作用,并探讨Trx的可能作用机制,为高氧肺损伤的防治寻找新的靶点。
     【方法】孕21天SD大鼠行剖腹产术,娩出的新生鼠为早产鼠。早产鼠生后dl随机分为3组:①空气对照组,简称空气组;②单纯高氧暴露组,简称高氧组;③Trx干预+高氧暴露组,简称Trx干预组。空气对照组置于室温空气中;单纯高氧暴露组和Trx干预组置于密闭氧箱中,氧浓度维持85%,由数字测氧仪连续监测。Trx干预组每日腹腔注射rhTrx (2mg/kg),空气组和单纯高氧暴露组注射与rhTrx同体积的PBS。每日观察早产鼠生长状态、定时监测体重、记录死亡情况。于空气或高氧暴露后14d,取肺组织标本分别称量肺湿和干重并计算湿干比;石蜡切片行HE染色观察肺组织的病理学变化并进行辐射状肺泡计数(radical alveolar counts,RAC);荧光实时定量PCR (real-time PCR)技术检测肺组织血管内皮生长因子(vascular endothelial growth factor, VEGF)、血管内皮生长因子受体(vascular endothelial growth factor receptor, VEGFR)和Toll样受体(Toll like receptor, TLR) 2、4 mRNA表达变化;免疫印迹蛋白检测技术观察MAPKs、PI3K-Akt信号通路活化情况及caspase 3蛋白水平。
     【结果】①空气对照组未出现早产鼠死亡;高氧暴露早产鼠死亡率较高达28.6%,存活者出现明显生活能力下降和体重增长迟缓;与单纯高氧暴露组比较,rhTrx处理显著提高了早产鼠生存率,死亡率降低到11.1%,生活能力下降和体重增长迟缓情况亦明显改善;②高氧暴露能引起早产鼠肺组织明显炎症反应和肺发育受阻,同时伴有RAC值下降,而应用rhTrx能显著减轻高氧导致的肺损伤形态学改变;③与单纯高氧组比较,rhTrx显著减轻了高氧诱导的早产鼠肺组织水肿;④荧光定量PCR结果:与空气对照组比较,高氧暴露显著抑制早产鼠肺组织VEGF、VEGR mRNA表达,而对TLR4 mRNA具有上调作用,对TLR2无显著影响;rhTrx处理显著提高高氧暴露后肺组织VEGF、VEGR及TLR4基因水平的表达;⑤与单纯高氧暴露组比较,Trx处理组早产鼠肺组织细胞外信号调节激酶1/2(extracellular signal regulated kinase, ERK1/2)和Akt活性显著增高,c-JunN末端激酶1/2 (c-Jun N-terminal protein kinase, JNK1/2)、P38丝裂原活化蛋白激酶(P38mitogen-activited protein kinase, p38)及caspase 3勺活性明显下降(p<0.05)
     [结论]硫氧还蛋白在早产鼠高氧肺损伤中具有保护作用;通过诱导VEGF及其受体、TLR4基因水平高表达,调控MAPKs和PI3K-Akt信号通路是其发挥保护作用的具体机制。
Part I The Effect of Hyperoxia on the Expression of Thioredoxin System
     [Objective] To set up the animal model of hyperoxic lung injury and investigate the expression levels of thioredoxin system.
     [Methods] In the first day after delivery, the preterm SD rats were randomly divided into two groups:Air group and Hyperxia group. The rats in hyperoxia group were exposed to 85% oxygen and those in air group were exposed to room air. The rats were killed in 1, 4,7 and 14 days respectively. Total RNA of lung was isolated and Trx and TrxR mRNA expression levels were detected by reverse transcription polymerase chain reaction (RT-PCR). Immunohistochemistry was used on lung sections to detect the distribution and expression of thioredoxin. Western blot was used to detect the expression of thioredoxin protein level in lung tissue. The sections of lung were stained with HE in order to assess lung histologic changes and examine lung radical alveolar counts (RAC).
     [Results]①Rats in hyperxia group showed typical lung injury, which was characterized by alveolitis and delay of lung development. Compared with air group RACs were significantly decreased in hyperxia group (p<0.05).②RT-PCR results showed Trx and TrxR mRNA expression levels in Hyperxia group were increased markedly, and Trx protein level was increased correspondingly.③Immunohistochemistry detected that Trx expressed generally in the cytoplasm of alveolar epithelial cells and vascular endothelial cells.
     [Conclusions] Hyperoxia induced the typical change of bronchopulmonary dysplasia. Trx and TrxR expression levels could be induced by hyperoxia, which might play importantly protective role in the development of hyperxia-induced lung injury.
     PartⅡRecombinant Human Thioredoxin Protects Fetal TypeⅡEpithelial Cells from Hyperoxia-induced Injury
     [Objective] The aim of this study was to determine the role of Trx in the pathogenesis of hyperoxia-induced alveolar epithelial cell injury.
     [Methods] Alveolar typeⅡepithelial cells from fetal rat lung were exposed to hyperoxia in vitro in the presence or absence of recombinant human Trx. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Apoptosis and levels of reactive oxygen species (ROS) were measured by flow cytometry. Activation of mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase-Akt (PI3K-Akt) pathways were detected by Western blotting. We also investigated the effects of rhTrx on the following antioxidants (superoxide dismutase, catalase, glutathione peroxidase).
     [Results] Trx significantly reduced hyperoxia-induced cell death and increased cell viability. In addition, ROS generation in typeⅡcells was inhibited by rhTrx under hyperoxic conditions. We demonstrated that rhTrx protected typeⅡcells against hyperoxic injury via sustaining the extracellular signal regulated kinase and PI3K activation, and decreasing of c-Jun N-terminal protein kinase and p38 activation. The results also showed manganese superoxide dismutase and glutathione peroxidase activities were increased by rhTrx in typeⅡcells exposed to hyperoxia.
     [Conclusions] Taken together, these results demonstrate that rhTrx administration markedly attenuates hyperoxia-induced typeⅡcell injury through reduction of ROS generation, elevation of antioxidant activities and regulation of both MAPK and PI3K-Akt signaling pathways.
     Part III Research on the Mechanism of Thioredoxin Protects Preterm Rat from Hyperoxia-induced Lung Injury
     [Objective] To set up the animal model of hyperoxic lung injury, investigate the effect of the recombinant human thioredoxin (rhTrx) on hyperoxic lung injury and explore it's mechanism of action.
     [Methods] Preterm Sprague-Dawley rats delivered by hysterotomy at 21-d gestation were allowed to recover in room air for 24 h. After one day of birth, pups were randomized to three groups. Group 1 pups were kept in room air and served as controls. Group 2 and 3 pups were oxygen exposed animals maintained in a transparent Plexiglas chambers with 85% oxygen, in which the oxygen concentration was monitored regularly with an oxygen sensor. Pups in group 2 received daily an intraperitoneal injection of 2 mg/kg/d of rhTrx, whereas pups in groups 1 and 3 received only its vehicle (PBS). The body weight of all pups was measured every day. All lung tissues of premature rat pups were collected at 14d after birth. The sections of lung were stained with HE in order to assess lung histologic changes and examine lung radical alveolar counts (RAC). The levels of VEGF、VEGFR、TLR2 and TLR4 mRNA were detected by real-time reverse transcription polymerase chain reaction (RT-PCR). The protein expression levels of p-ERK 1/2、ERK1/2、p-JNK1/2、JNK1/2、p-p38、p38、p-Akt、Akt and caspase 3 were determined by western blot.
     [Results]①The pups in air group did not dead; the mortality of pups in hyperoxia was 28.6%; compared with hyperoxia group rhTrx pretreatment can decreased the mortality to 11.1%.②Rats in hyperxia group showed typical lung injury, which was characterized by alveolitis and delay of lung development. Compared with air group RACs were significantly decreased in hyperxia group. rhTrx pretreatment improved the hyperoxia induced changes of lung morphometry.③Real-time PCR results showed:exposure to hyperoxia resulted in the levels of mRNA for VEGF and VEGFR were decreased, TLR4 was increased, but TLR2 mRNA expression level did not change. Rat pups treated with rhTrx from the hyperoxic environment expressed significantly high levels of mRNA for VEGF、VEGFR and TLR4 than the hyperoxic control pups.④Wssren blot results showed: the levels of active ERK1/2, JNK1/2, p38 and caspase 3 after exposure to hyperoxia were higher than air control group, and Akt activity level was decreased.The levels of active JNK1/2, p38 and caspase 3 were decreased markedly after rhTrx treatment in hyperoxia exposure rat pups, but active ERK1/2 and Akt were increased with the same rhTrx treatment.
     [Conclusions] Trx had a protective effect on hyperoxic lung injury by which decrease active levels of JNK, p38 and caspase 3, increase active levels of ERK and Akt, subsequently increase the expression of VEGF, VEGFR and TRL4.
引文
1. Monte LF, Silva Filho LV, Miyoshi MH, et al. Bronchopulmonary dysplasia. J Pediatr,2005,81(2):99-110.
    2. Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med, 2001,163 (7):1723-1729.
    3. 常立文.新生儿支气管肺发育不良诊治进展.临床儿科杂志,2007,25(3):161-165.
    4. 钱莉玲,常立文,张谦慎.85%高浓度氧长期暴露诱发早产大鼠肺损伤.中国当代儿科杂志,2003,5(2):95-99.
    5. Oslund KL, Miller LA, Usachenko JL, et al. Oxidant-injured airway epithelial cells upregulate thioredoxin but do not produce interleukin-8. Am J Respir Cell Mol Biol, 2004,30:597-604.
    6. 单瑞艳,常立文,陈燕,等.高体积分数氧对胎鼠肺泡Ⅱ型上皮细胞硫氧还蛋白及其还原酶表达的影响.实用儿科临床杂志,2008,23(6):415-417.7.李文斌,常立文,容志惠,等.维甲酸通过调控MAPK途径减轻早产大鼠高氧肺损伤.基础医学与临床,2006,26(2):143-148.
    8. Ladha F, Bonnet S, Eaton F, et al. Sildenafil improves alveolar growth and pulmonary hypertension in hyperoxia-induced lung injury. Am J Respir Crit Care Med.2005,172(6):750-756.
    9. Jakkula M, Le Cras TD, Gebb S, et al. Inhibition of angiogenesis decreases alveolarization in the developing rat lung. Am J Physiol Lung Cell Mol Physiol,2000,279(3):L600-7.
    10. Powis G, Montfort WR. Properties and biological activities of thioredoxins. Annu. Rev Pharmacol Toxicol.2001,41,261-295.
    11. Pekkari K, Holmgren A. Truncated thioredoxin:physiological functions and mechanism. Antioxid Redox Signal,2004,6(1):53-61.
    12. Kaimul AM, Nakamura H, Masutani H, et al. Thioredoxin and thioredoxin-binding protein-2 in cancer and metabolic syndrome. Free Radic Biol Med,2007.43(6):861-868.
    13. Andoh T, Chock PB, Chiueh CC. The roles of thioredoxin in protection against oxidative stress-induced apoptosis in SH-SY5Y cells. J Biol Chem,2002, 277(12):9655-9660.
    14. Koc A, Mathews CK, Wheeler LJ, et al. Thioredoxin is required for deoxyribonucleotide pool maintenance during S phase. J Biol Chem,2006, 281(22):15058-15063.
    15. Tanaka T, Hosoi F, Yamaguchi-I wai, et al. Thioredoxin-2 (TRX-2) is an essential gene regulating mitochondria-dependent apoptosis. EMBO J,2002,21(7):1695-703.
    16. Okuyama H, Nakamura H, Shimahara Y, et al. Overexpression of thioredoxin prevents thioacetamide-induced hepatic fibrosis in mice. J Hepatol,2005, 42(1):117-123.
    17. Langston C, Kida K, Reed M, et al. Human lung growth in late gestation and in the neonate. Am Rev Respir Dis.1984,129(4):607-613.
    18. LD Wallen, W Myint, K Nygard, et al. Cellular distribution of insulin-like growth factor binding protein mRNAs and peptides during rat lung development. J Endocrinol.1997,155(2),313-327.
    19. Taniguchi Y, Taniguchi-Ueda Y Mori K. et al.A novel promoter sequence is involved in the oxidative stress-induced expression of the adult T-cell leukemia-derived factor (ADF)/human thioredoxin (Trx) gene. Nucleic Acids Res. 1996,15;24(14):2746-2752.
    20. Hori K, Katayama M, Sato N, et al. Neuroprotection by glial cells through adult T cell leukemia-derived factor/human thioredoxin (ADF/TRX). Brain Res. 1994,1;652(2):304-310.
    21. Sachi Y, Hirota K, Masutani H, et al.Induction of ADF/TRX by oxidative stress in keratinocytes and lymphoid cells. Immunol Lett.1995,44(2-3):189-193.
    22. Das KC, Guo XL, White CW.Induction of thioredoxin and thioredoxin reductase gene expression in lungs of newborn primates by oxygen. Am J Physiol.1999.276(3 Pt 1):L530-539.
    23. Chae HZ, Chung SJ, Rhee SG. Thioredoxin-dependent peroxide reductase from yeast. J Biol Chem.1994 Nov 4;269(44):27670-2767
    24. Yegorova S Yegorov O, Lou MF. Thioredoxin induced antioxidant gene expressions in human lens epithelial cells. Exp Eye Res,2006,83(4):783-792.
    1. Frank L, Massaro D. Oxygen toxicity. Am J Med 1980;69:117-126.
    2. Piedboeuf B, Frenette J, Petrov P, Welty SE, Kazzaz JA, Horowitz S. In vivo expression of intercellular adhesion molecule 1 in type Ⅱ pneumocytes during hyperoxia. Am J Respir Cell Mol Biol 1996;15:71-77.
    3. Clark RH, Gerstmann DR, Jobe AH, Moffitt ST, Slutsky AS, Yoder BA. Lung injury in neonates:causes, strategies for prevention, and long-term consequences. J Pediatr 2001:139:478-486.
    4. Kapanci Y, Weibel ER, Kaplan HP, Robinson FR. Pathogenesis and reversibility of the pulmonary lesions of oxygen toxicity in monkeys. II. Ultrastructural and morphometric studies. Lab Invest 1969;20:101-118.
    5. Zhang X, Shan P, Sasidhar M, Chupp GL, Flavell RA, Choi AM, Lee PJ. Reactive oxygen species and extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase mediate hyperoxia-induced cell death in lung epithelium. Am J Respir Cell Mol Biol 2003,28:305-315.
    6. Truong SV, Monick MM, Yarovinsky TO, Powers LS, Nyunoya T, Hunninghake GW. Extracellular signal-regulated kinase activation delays hyperoxia-induced epithelial cell death in conditions of Akt downregulation. Am J Respir Cell Mol Biol 2004;31:611-618.
    7. Romashko J 3rd, Horowitz S, Franek WR, Palaia T, Miller EJ, Lin A, Birrer MJ, Scott W, Mantell LL. MAPK pathways mediate hyperoxia-induced oncotic cell death in lung epithelial cells. Free Radic Biol Med 2003;35:978-993.
    8. Davis RJ. The mitogen-activated protein kinase signal transduction pathway. J Biol Chem 1993;268:14553-14556.
    9. Li Y, Arita Y, Koo HC, Davis JM, Kazzaz JA. Inhibition of c-Jun N-terminal kinase pathway improves cell viability in response to oxidant injury. Am J Respir Cell Mol Biol 2003;29:779-783.
    10. Buckley S, Driscoll B, Barsky L, Weinberg K, Anderson K, Warburton D. ERK activation protects against DNA damage and apoptosis in hyperoxic rat AEC2. Am J Physiol 1999;277:L159-166.
    11. Papaiahgari S, Zhang Q, Kleeberger SR, Cho HY, Reddy SP. Hyperoxia stimulates an Nrf2-ARE transcriptional response via ROS-EGFR-PI3K-Akt/ERK MAP kinase signaling in pulmonary epithelial cells. Antioxid Redox Signal 2006;8:43-52.
    12. Wang X, Martindale JL, Holbrook NJ. Requirement for ERK activation in cisplatin-induced apoptosis. J Biol Chem 2000;275:39435-39443.
    13. Laurent TC, Moore EC, Reichard P. Enzymatic synthesis of deoxyribonucleotides. IV. Isolation and characterization of thioredoxin, the hydrogen donor from Escherichia coli B. J. Biol. Chem.1964,239:3436-3444.
    14. Holmgren A. Thioredoxin and glutaredoxin systems. J Biol Chem 1989;264:13963-13966.
    15. Nakamura H, Nakamura K, Yodoi J. Redox regulation of cellular activation. Annu Rev Immunol 1997;15:351-369.
    16. Oslund KL, Miller LA, Usachenko JL, Tyler NK, Wu R, Hyde DM. Oxidant-injured airway epithelial cells upregulate thioredoxin but do not produce interleukin-8. Am J Respir Cell Mol Biol 2004;30:597-604.
    17. Das KC, Lewis-Molock Y, White CW. Elevation of manganese superoxide dismutase gene expression by thioredoxin. Am J Respir Cell Mol Biol 1997;17:713-726.
    18. Andoh T, Chock PB, Chiueh CC. The roles of thioredoxin in protection against oxidative stress-induced apoptosis in SH-SY5Y cells. J Biol Chem 2002;277:9655-9660.
    19. Yegorova S, Yegorov 0, Lou MF.Thioredoxin induced antioxidant gene expressions in human lens epithelial cells. Exp Eye Res 2006;83:783-792.
    20. Tao L, Gao E, Hu A, C Coletti, Wang Y, Christopher TA, Lopez BL, Koch W, Ma XL. Thioredoxin reduces post-ischemic myocardial apoptosis by reducing oxidative/nitrative stress. Br J Pharmacol 2006;149:311-318.
    21. Cohen JI, Roychowdhury S, DiBello PM, Jacobsen DW, Nagy LE. Exogenous thioredoxin prevents ethanol-induced oxidative damage and apoptosis in mouse liver. Hepatology 2009;49:1709-1717.
    22. Hattori I, Takagi Y, Nakamura H, Nozaki K, Bai J, Kondo N, Sugino T, Nishimura M, Hashimoto N, Yodoi J. Intravenous administration of thioredoxin decreases brain damage following transient focal cerebral ischemia in mice. Antioxid Redox Signal 2004;6:81-87.
    23. Post M, Smith BT. Histochemical and immunocytochemical identification of alveolar type II epithelial cells isolated from fetal rat lung. Am Rev Respir Dis 1988;137:525-530.
    24. Zhu H, Chang L, Li W, Liu H. Effect of amygdalin on the proliferation of hyperoxia-exposed type II alveolar epithelial cells isolated from premature rat. J Huazhong Univ Sci Technolog Med Sci 2004;24:223-225.
    25. Freeman BA, Crapo JD. Hyperoxia increases oxygen radical production in rat lungs and lung mitochondria. J Bio. Chem 1981,256:10986-10992.
    26. CAI Cheng, CHANG Liwen, LI Wenbin, LIU Wei, CHEN Yan, SHAN Ruiyan. Effects of RNA interference on mRNA expression of thioredoxin-2 in A549 cells exposed to hyperoxia. CHINESE JOURNAL OF PERINATAL MEDICINE 2008; 11:407-411. Chinese.
    27. Zhou F, Gomi M, Fujimoto M, Hayase M, Marumo T, Masutani H, Yodoi J,
    Hashimoto N, Nozaki K, Takagi Y. Attenuation of neuronal degeneration in thioredoxin-1 overexpressing mice after mild focal ischemia. Brain Res 2009; 1272:62-70.
    28. Watson WH, Yang X, Choi YE, Jones DP, Kehrer JP. Thioredoxin and Its Role in Toxicology. Toxicol Sci 2004;78:3-14.
    29. Matsui M, Oshima M, Oshima H, Takaku K, Maruyama T, Yodoi J, Taketa MM. Early embryonic lethality caused by targeted disruption of the mouse thioredoxin gene. Dev Biol 1996; 178:179-185.
    30. Nonn L, Williams RR, Erickson RP, Powis G. The absence of mitochondrial thioredoxin 2 causes massive apoptosis, exencephaly, and early embryonic lethality in homozygous mice. Mol Cell Biol 2003;23:916-922.
    31. Yamada T, Iwasaki Y, Nagata K, Fushiki S, Nakamura H, Marunaka Y, Yodoi J. Thioredoxin-1 protects against hyperoxia-induced apoptosis in cells of the alveolar walls. Pulm Pharmacol Ther 2007;20:650-659.
    32. Das KC, Guo XL, White CW. Induction of thioredoxin and thioredoxin reductase gene expression in lungs of newborn primates by oxygen. Am J Physiol 1999;276:L530-9.
    33. Nakamura T, Nakamura H, Hoshino T, Ueda S, Wada H, Yodoi J. Redox regulation of lung inflammation by thioredoxin. Antioxid Redox Signal 2005;7:60-71.
    34. Fehrenbach H. Alveolar epithelial type II cell:defender of the alveolus revisited. Respir Res 2001;2:33-46.
    35. Sasada T, Iwata S, Sato N, Kitaoka Y, Hirota K, Nakamura K, Nishiyama A, Taniguchi Y, Takabayashi A, Yodoi J. Redox control of resistance to cis-diamminedichloroplatinum (II) (CDDP):protective effect of human thioredoxin against CDDP-induced cytotoxicity. J Clin Invest 1996;97:2268-2276.
    36. Fukuse T, Hirata T, Yokomise H, Hasegawa S, Inui K, Mitsui A, Hirakawa T, Hitomi S, Yodoi J, Wada H. Attenuation of ischaemia reperfusion injury by human thioredoxin. Thorax 1995;50:387-391.
    37. Liu Y, Min W. Thioredoxin promotes ASK1 ubiquitination and degradation to inhibit ASK1-mediated apoptosis in a redox activity-independent manner. Circ. Res 2002;90:1259-1266.
    38. Xu D, Guthrie JR, Mabry S, Sack TM, Truog WE. Mitochondrial aldehyde dehydrogenase attenuates hyperoxia-induced cell death through activation of ERK/MAPK and PI3K-Akt pathways in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2006;291:L966-975.
    39. Kolliputi N, Waxman AB. IL-6 Cytoprotection In Hyperoxic Acute Lung Injury Occurs Via Pi3 Kinase/Akt-Mediated Bax Phosphorylation. Am J Physiol Lung Cell Mol Physiol 2009;297:L6-16.
    40. Asikainen TM, Huang TT, Taskinen E, Levonen AL, Carlson E, Lapatto R, Epstein CJ, Raivio KO. Increased sensitivity of homozygous Sod2 mutant mice to oxygen toxicity. Free Radic Biol Med 2002;32:175-186.
    41. Joseph A, Li Y, Koo HC, Davis JM, Pollack S, Kazzaz JA. Superoxide dismutase attenuates hyperoxia-induced interleukin-8 induction via AP-1. Free Radic Biol Med 2008;45:1143-1149.
    42. Koo HC, Davis JM, Li Y, Hatzis D, Opsimos H, Pollack S, Strayer MS, Ballard PL, Kazzaz JA. Effects of transgene expression of superoxide dismutase and glutathione peroxidase on pulmonary epithelial cell growth in hyperoxia. Am J Physiol Lung Cell Mol Physiol 2005;288:L718-726.
    43. Gomez-Cabrera MC, Borras C, Pallardo FV, Sastre J, Ji LL, Vina J. Decreasing xanthine oxidase-mediated oxidative stress prevents useful cellular adaptations to exercise in rats. J Physiol 2005;567:113-120.
    44. Maehara K, Oh-Hashi K, Isobe KI. Early growth-responsive-1-dependent manganese superoxide dismutase gene transcription mediated by platelet-derived growth factor. FASEB J 2001; 15:2025-2026.
    45. Ting CM, Lee YM, Wong CK, Wong AS, Lung HL, Lung ML, Lo KW, Wong RN, Mak NK.2-Methoxyestradiol induces endoreduplication through the induction of mitochondrial oxidative stress and the activation of MAPK signaling pathways. Biochen Pharmacol 2010;79:825-841.
    46. Zhao Y, Kiningham KK, Lin SM, St Clair DK. Overexpression of MnSOD protects murine fibrosarcoma cells (FSa-II) from apoptosis and promotes a differentiation program upon treatment with 5-azacytidine:involvement of MAPK and NFkappaB pathways. Antioxid Redox Signal 2001;3:375-386.
    1. Haddad JJ, Land SC. Redox/ROS regulation of lipopolysaccharide-induced mitogen-activated protein kinase (MAPK) activation and MAPK-mediated TNF-alpha biosynthesis. Br J Pharmacol,2002,135 (2):520-536.
    2. Lee PJ, Zhang X, Shan P, et al. ERK1/2 mitogen-activated protein kinase selectively mediates IL-13-induced lung inflammation and remodeling in vivo. J Clin Invest,2006, 116(1):163-173.
    3. Kujime K, Hashimoto S, Gon Y, et al. p38 Mitogen-Activated Protein Kinase and c-Jun-NH2-Terminal Kinase Regulate RANTES Production by Influenza Virus-Infected Human Bronchial Epithelial Cells. J Immunol,2000,164(6):3222-3228.
    4. Kling DE, Lorenzo HK, Trbovich AM, et al. MEK-1/2 inhibition reduces branching morphogenesis and causes mesenchymal cell apoptosis in fetal rat lungs. Am J Physiol Lung Cell Mol Physiol,2002,282(3):L370-L378
    5. Nash SP, Heuertz RM. Blockade of p38 map kinase inhibits comp lement-induced acute lung injury in a murine model. Int Immunopharmacol,2005,5(13214):1870-1880.
    6. Kariko K, Ni H, Capodici J, et al. mRNA is an endogenous ligand for Toll-like receptor 3. J Biol Chem,2004,279(13):12542-12550.
    7. Ishii K J, Akira S. Innate immune recognition of nucleicacids:beyond toll-like receptors. Int J Cancer,2005,117(4):517-523.
    8. de Visser YP, Walther FJ, Laghmani el H, et al. Sildenafil attenuates pulmonary inflammation and fibrin deposition, mortality and right ventricular hypertrophy in neonatal hyperoxic lung injury. Respir Res.2009,10:30.
    9.李文斌,常立文,张谦慎,等.维甲酸通过MAPK途径减轻早产大鼠高氧肺损伤.基础医学与临床,2006,26(2):143-148.
    10. Ladha F, Bonnet S, Eaton F, et al. Sildenafil improves alveolar growth and pulmonary hypertension in hyperoxia-induced lung injury.Am J Respir Crit Care Med. 2005,172(6):750-756.
    11.Ferrara N, HenzelWJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun,1989, 161 (2):851-858.
    12. Yancopoulos, GD, S. Davis, et al. Vascular-specific growth factors and blood vessel formation. Nature,2000,407(6801):242-248.
    13. Voelkel NF, Vandivier RW, Tuder RM. Vascular endothelial growth factor in the lung. Am J Physiol Lung Cell Mol Physiol.2006,290:L209-L221.
    14. Voelkel NF, Cool C, Taraceviene-Stewart L, et al. Janus face of vascular endothelial growth factor:the obligatory survival factor for lung vascular endothelium controls precapillary artery remodeling in severe pulmonary hypertension. Crit Care Med 2002,30(suppl):251-256.
    15. Bhatt, A. J, G. S. Pryhuber, H. Huyck, et al. Disrupted pulmonary vasculature and decreased vascular endothelial growth factor, Flt-1, and TIE-2 in human infants dying with bronchopulmonary dysplasia. Am J Respir Crit Care Med,2001,164(10 Pt 1):1971-1980.
    16. Maniscalco, W. M., R. H. Watkins, et al. Hyperoxic injury decreases alveolar epithelial cell expression of vascular endothelial growth factor (VEGF) in neonatal rabbit lung. Am J Respir Cell Mol Biol,1997,16(5):557-567.
    17. Jakkula, M, T. D. Le Cras, S. Gebb, et al. Inhibition of angiogenesis decreases alveolarization in the developing rat lung. Am J Physiol Lung Cell Mol Physiol,2000, 279(3):L600-607.
    18. Galambos, C., Y. S. Ng, A. Ali, et al. Defective pulmonary development in the absence of heparin-binding vascular endothelial growth factor isoforms. Am J Respir Cell Mol Biol,2002,27(2):194-203.
    19. Kunig AM, Balasubramaniam V, Markham NE, et al. Recombinant human VEGF treatment enhances alveolarization after hyperoxic lung injury in neonatal rats. Am J
    Physiol Lung Cell Mol Physiol,2005,289:L529-L535.
    20.侯伟,刘海燕,李丹,等.新生大鼠高氧肺损伤血管内皮生长因子蛋白及其mRNA表达变化研究.中国当代儿科杂志,2008,10(2):207-210.
    21. Goodman RB, Pugin J, Lee JS, Matthay MA. Cytokine-mediated inflammation in acute lung injury. Cytokine Growth Factor Rev,2003,14:523-535
    22. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell, 2006; 124:783-801.
    23.涂献坤,杨卫忠.Toll样受体与脑缺血.中国免疫学杂志,2009,25:190-193.
    24. Shimamoto A, Pohlman TH, Shomura S, et al. Toll-like receptor 4 mediates lung ischemia-reperfusion injury. Ann Thorac Surg 2006; 82:2017-23.
    25. Takeuchi O, Hoshino K, Kawai T, et al. Differential roles of TLR2 and TLR4 in recognition of gramnegative and gram-positive bacterial cell wall components. Immunity,1999,11:443-51.
    26. Zhang X, Shan P, Qureshi S, et al. Cutting edge:TLR4 defi ciency confers susceptibility to lethal oxidant lung injury. J Immunol,2005,175:4834-4838.
    27. Asehnoune, K, D. Strassheim, S. Mitra, et al.2004. Involvement of reactive oxygen species in Toll-like receptor 4-dependent activation of NF-kB. J. Immunol, 172:2522-2529.
    28. Gotoh Y, Nishida E. Activation mechanism and function of the MAPkinase cascade. Mol Rep rod Dev,1995,42:486-492.
    29. Meier R, Alessi DR, Cron P, et al. Mitogenic activation, phosphorylation, and nuclear translocation of p rotein kinase B. J Biol Chem,1997,272:30491-30497.
    30. Datta SR, Brunet A, GreenbergME. Cellular survival:a play in three Akts. GenesDev, 1999,13 (22):2905-2927.
    31. Kim AH, Khursigara G, Sun X, et al. AKT phosphorylates and negatively regulates apop tosis signal2regulating kinase 1. Mol Cell Biol,2001,21:893-901.
    32. Henning RS, Guy SS. Caspase:p reparation and characterization. Methods,1999; 17 (4):313-319.
    33. Faubel S, Edelstein CL. Caspases as drug targets in ischemic organ injury. Curr Drug Targets Immune Endocr Metabol Disord,2005,5 (3):269-287.
    34.刘伟,常立文,李文斌,等.早产大鼠高氧暴露下肺组织TNF-α Caspase-3表达时相研究.中国当代儿科杂志,2005,7(5):451-454.
    35.富建华,于凤英,薛辛东.caspase-3基因在高氧致早产鼠慢性肺疾病中的表达及其作用.中国医科大学学报,36(6):628-630.
    36. Tanaka T, Hosoi F, Yamaguchi-I wai, et al. Thioredoxin-2 (TRX-2) is an essential gene regulating mitochondria-dependent apoptosis. EMBO J.2002,21 (7):1695-703.
    1 Spyrou G, Enmark E, Miranda-Vizuete A, et al. Cloning and expression of a novel mammalian thioredoxin. J bio 1 Chem,1997,272(5):2936-2941.
    2 Bodenstein J, Follmann H. Characterization of two thioredoxins in pig heart, including a new mitochondrial protein. Z Naturforsch[C], 1991,46(3-4):270-279.
    3 Ejima K, Nanri H, Toki N, et al. Localization of thioredoxin reductase and thioredoxin in normal human placenta and their protective effect against oxidative stress. Placenta,1999,20(1):95-101.
    4 Rybnikova E, Damdimopoulos AE, Gustafsson JA, et al. Expression of novel antioxidant thioredoxin-2 in the rat brain. Eur J Neurosci,2000,12(5): 1669-1678.
    5 Jurado J, Prieto-Alamo MJ, Madrid-Risquez J, et al. Absolute gene expression patterns of thioredoxin and glutaredoxin redox systems in mouse. J Biol Chem.2003,278(46):45546-45554.
    6 Spyrou G, Enmark E, Miranda-Vizuete A, et al. Cloning and expression of a novel mammalian thioredoxin. J Biol Chem.1997,272(5):2936-2941.
    7 Collet JF, D'Souza JC, Jakob U, et al. Thioredoxin 2, an Oxidative Stress-induced Protein, Contains a High Affinity Zinc Binding Site. J Biol Chem,2003,278(46):45325-45332.
    8 Sarin R, Sharma YD. Thioredoxin system in obligate anaerobe Desulfovibrio desulfuricans:Identification and characterization of a novel thioredoxin 2. Gene,2006,376(1):107-115.
    9 Park J, Churchich JE. Interaction of thioredoxin with oxidized aminobutyrate aminotransferase. Evidence for the formation of a covalent intermediate. FEBS Lett,1992,310(1):1-4.
    10 Holmgren A, Bjornstedt M. Thioredoxin and thioredoxin reductase. Mehhods Enzymol,1995,252:199-208.
    11 Stewart EJ, Aslund F, Beckwith J. Disulfide bond formation in the Escherichia coli cytoplasm:an in vivo role reversal for the thioredoxins. EMBO J,1998,17(19):5543-5550.
    12 Ritz D, Patel H, Doan B, et al. Thioredoxin 2 is involved in the oxidative stress response in Escherichia coli. J Biol Chem,2000,275(4): 2505-2512.
    13 Stewart EJ, Aslund F, Beckwith J Disulfide bond formation in the Escherichia coli cytoplasm:an in vivo role reversal for the thioredoxins. EMBO J.1998,17(19):5543-5550.
    14 Pedrajas JR, Miranda-Vizuete A, Javanmardy N, et al. Mitochondria of Saccharomyces cerevisiae contain one conserved cysteine-type peroxiredoxin with thioredoxin peroxidase activity. J Biol Chem.2000, 275(21):16296-16301.
    15 Kroemer G, Reed JC. Mitochondrial control of cell death. Nat Med.2000, 6(5):513-519.
    16 Tanaka T, Hosoi F, Yamaguchi-Iwai Y, et al. Thioredoxin-2 (TRX-2) is an essential gene regulating mitochondria-dependent apoptosis. EMBO J. 2002,21(7):1695-1703.
    17 Chen Y, Cai J, Murphy TJ, et al. Overexpressed human mitochondrial thioredoxin confers resistance to oxidant-induced apoptosis in human osteosarcoma cells. J Biol Chem.2002,277(36):33242-33248.
    18 Damdimopoulos AE, Miranda-Vizuete A, Pelto-Huikko M et al. Human mitochondrial thioredoxin. Involvement in mitochondrial membrane potential and cell death. J Biol Chem.2002,277(36):33249-33257.
    19 Tanaka T, Hosoi F, Yamaguchi-Iwai Y, et al. Thioredoxin-2 (TRX-2) is an essential gene regulating mitochondria-dependent apoptosis. EMBO J. 2002,21(7):1695-1703.
    20 Zhang R, Al-Lamki R, Bai L, et al. Thioredoxin-2 inhibits mitochondria-located ASK1-mediated apoptosis in a JNK-independent manner. Circ Res.2004,94(11):1483-1491.
    21 Hansen JM, Zhang H, Jones DP. Mitochondrial thioredoxin-2 has a key role in determining tumor necrosis factor-alpha-induced reactive oxygen species generation, NF-kappaB activation, and apoptosis. Toxicol Sci. 2006,1(2):643-650.
    22 Muller EG. Thioredoxin deficiency in yeast prolongs S phase and shortens the G1 interval of the cell cycle. J Biol Chem.1991,266(14):9194-9202.
    23 Gabbita SP, Robinson KA, Stewart CA, et al. Redox regulatory mechanisms of cellular signal transduction. Arch Biochem Biophys.2000, 376(1):1-13.
    24 Jurado J, Prieto-Alamo MJ, Madrid-Risquez J, et al. Absolute gene expression patterns of thioredoxin and glutaredoxin redox systems in mouse. J Biol Chem.2003,278(46):45546-45554.
    25 Nonn L, Williams RR, Erickson RP, et al. The absence of mitochondrial thioredoxin 2 causes massive apoptosis, exencephaly, and early embryonic lethality in homozygous mice. Mol Cell Biol.2003,23(3): 916-922.
    26 Reddy PG, Bhuyan DK, Bhuyan KC. Lens-specific regulation of the thioredoxin-1 gene, but not thioredoxin-2, upon in vivo photochemical
    oxidative stress in the Emory mouse. Biochem Biophys Res Commun.1999, 265(2):345-349.
    27 Gauntt CD, Ohira A, Honda 0, et al. Mitochondrial induction of adult T-cell leukemia-derived factor (ADF/hTx) after oxidative stresses in retinal pigment epithelial cells. Invest Ophthalmol Vis Sci.1994,35(7): 2916-2923.
    28 Comtois SL, Gidley MD, Kelly DJ. Role of the thioredoxin system and the thiol-peroxidases Tpx and Bcp in mediating resistance to oxidative and nitrosative stress in Helicobacter pylori. Microbiology.2003,149(Pt 1):121-129.
    29 娄明武,滕妍,范义,等.人硫氧还蛋白在兔脑缺血再灌注损伤中的作用.中国医学影像技术,2004,20(11):1676-1679.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700