用户名: 密码: 验证码:
大肠癌细胞系SW620的肿瘤干细胞研究及原代大肠肿瘤的靶向性促凋亡基因治疗研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分摘要:研究表明,CD133在许多肿瘤(包括大肠癌肿瘤)中都被证实为肿瘤干细胞的标记,O'Brien和Ricci等人通过原代大肠癌的肿瘤研究证实大肠癌的肿瘤起始细胞为CD133阳性标记群体,CD133阳性细胞最终决定了肿瘤的生长、复发、转移及耐药。然而,通过使用LacZ基因敲除小鼠模型,Shmelkov等人对这种被日益接受的观点提出了质疑。Shmelkov等人主要提出两个不同观点:首先,他们认为CD133广泛表达于人或老鼠的大肠癌细胞群体内,而非仅限于一小部分所谓的干细胞群体内。第二,CD133阴性肿瘤细胞也能在裸鼠体内诱发肿瘤,并且其具有更加强大的远处转移能力。基于以上两个相互背离的观点,我们认为,CD133在肿瘤细胞内的表达与干细胞特性之间可能存在定量关系而非绝对单一的定性关系。定量分析CD133在肿瘤细胞内的表达也许会更好的揭示CD133与肿瘤干细胞之间的关系。为了证实这种关系的存在,我们选择大肠癌细胞系SW620进行培养并用免疫磁珠分选的技术方法将其分为CD133高表达(CD133Hi),CD133中表达(CD133Mid)及CD133低表达(CD133Low)三组并进行体内接种及体外培养研究。研究结果显示CD133高表达组的肿瘤细胞在体内外的生长活性更加强大旺盛,证实肿瘤干细胞(肿瘤起始细胞)与CD133的表达强度存在正相关关系。CD133的高表达也许可以作为筛选肿瘤干细胞的指标之一
     第二部分摘要:肿瘤坏死因子相关凋亡诱导配体(TRAIL)是肿瘤坏死因子(tumor necrosis factor,TNF)家族成员,很多研究发现体外实验及静脉注射重组TRAIL蛋白能够诱导肿瘤细胞凋亡,抑制肿瘤增殖,提高荷瘤动物的生存率而不引起毒性反应。同时,其对体内正常组织却不产生或仅产生微弱的毒副作用。之后很多研究者以腺病毒作为载体,将TRAIL基因直接转染到肿瘤细胞中,发现这种基因治疗方法同样可以诱导肿瘤细胞凋亡,抑制肿瘤的生长。目前认为TRAIL诱导凋亡机制主要是与死亡受体DR4或DR5结合并活化死亡受体,激活Caspase-8引发和传导凋亡信号,再进一步激活Caspase-3蛋白酶级联反应诱发TRAIL诱导的凋亡。但已有文献报导,一些细胞系对单独TRAIL的治疗已经产生抗药性,而与化疗药联合应用可以一定程度地降低耐药性的发生。为了观察靶向基因药物TRAIL与化疗药联合应用提高肿瘤细胞敏感性,降低耐药性的的可行性,本研究探讨了重组腺病毒载体介导的TRAIL基因制剂Ad/gTRAIL)与化疗药物Taxol、5-Fu等联合应用对原代大肠癌细胞的作用,同时还探讨了该种治疗模式在原代大肠癌裸鼠荷瘤模型中的联合治疗效应。通过检测不同处理组内肿瘤细胞TRAIL, DR4,Caspase-3,Caspase-8及凋亡发生率来验证可能的TRAIL抑制肿瘤细胞生长的机制。本研究的结果显示,经Ad/TRAIL药物治疗后单药组及联合用药组肿瘤细胞内TRAIL蛋白相对于其他对照组表达增高从而发挥抗肿瘤作用。组化结果显示各处理组肿瘤组织中处于TRAIL凋亡通路最下游的Caspase-3均有表达,而以含TRAIL药物组癌组织中Caspase-3表达明显增高,反映出在相应药物处理作用下,癌细胞Caspase凋亡通路受到激活,促凋亡产物得以明显提升。凋亡染色结果说明,通过瘤内注射Ad/TRAIL时,致使Ad/TRAIL接触到的肿瘤腺体发生Ad/TRAIL感染及旁观者效应导致肿瘤腺体的彻底崩解,使肿瘤得到有效杀伤。通过裸鼠体内瘤体接种实验及生存率曲线分析显示,药物处理组的裸鼠平均瘤体生长较慢,裸鼠生存率较长,从体外实验角度支持TRAIL药物的抗肿瘤活性。各实验组裸鼠重要脏器均未见明显异常,显示TRAIL的药物毒性并不明显。本研究的结果阐明了由hTERT启动子驱动的TRAIL基因产物对直接取自肿瘤患者的原代培养肿瘤细胞的药理学和毒性作用,更加完善了Ad/hTERT-gTRAIL作为新型基因治疗药物在直接应用于患者身体前的适用性的理论体系,为临床应用TRAIL基因治疗肿瘤提供了模拟临床的抗肿瘤理论和科学依据。
Part 1:CD133 is regarded as one marker of tumor initiating cells in many tumors including colorectal cancer. O'Brien and Ricci et al. have proved in primary colorectal tumors that there being colorectal tumor stem cells (initiating cells) which are marked by CD 133 antigen, and the tumor initiating cells are responsible for tumor proliferation, recurrence, metastasis and drug resistance. Using a genetic knockin lacZ reporter mouse model, Shmelkov et al. challenged this increasingly influential viewpoint and drew two important conclusions oppugning the former opinions. First, CD133 is widely distributed throughout the full range of tumor epithelial cells in colon other than limited in a few cells. Second, CD 133 negative cells of colon tumors are also tumorigenic and are more inclined to metastasize. Based on the two distinct opinions, we assume that the expression of CD133 is different among the tumor cells and the quantitative but not qualitative analyses of CD 133 abundance are necessary to determine the relationship between CD133 expression and tumor stem cell characteristics. To verify this hypothesis, colorectal cancer cell line SW620 was cultured and sorted into CD133Hi, CD133Mid and CD133Low subgroups using magnetic microbeads to compare their xenograft biological characteristics. The results showed that the CD133Hi subgroup of SW620 is more close to the tumor initiating cells in biological characteristics than CD133Mid and CD133low subgroups, but the CD133low subgroup still keep the ability of tumorigenicity. It supported that tumor initiating cells are more correlated to the abundance of CD 133.
     Part 2:Tumour necrosis factor-related apoptosis-inducing ligand or Apo2 ligand (TRAIL/Apo2L) is a member of the tumour necrosis factor (TNF) superfamily of cytokines that induces apoptosis upon binding to its death domain-containing transmembrane receptors, death receptors 4 and 5 (DR4, DR5), and then activate caspase-8 by death domain to induce apoptosis in tumor cells. In the meantime, TRAIL preferentially induces apoptosis in cancer cells while exhibiting little or no toxicity in normal cells. Many researches demonstrated that TRAIL delivered by adenovirus can induce apoptosis and suppress growth in a wide range of tumor cell lines in in vivo and in vitro circumstances. But recent findings report TRAIL resistance in some cell lines requiring combined treatments with sensitizing agents as standard chemotherapeutics can enhance tumor cells sensitivity to TRAIL. To assess whether combination of targeted gene agent TRAIL with chemo agent (5-Fu and TAXOL) can enhance the sensitivity of tumor cells to TRAIL as well as decrease TRAIL resistance, we detect the treatment of recombinant adenoviral vector expressing the TRAIL protein(Ad/TRAIL) in combination with chemotherapeutic drug 5-Fu or TAXOL to primary colorectal cancer tumors ex vivo an in vivo, and the Synergetic effects in nude mice tumor xenograft model. By detecting the expression of TRAIL, DR4, caspase-3, caspase-8 and tumor apoptosis rate, we can realize the possible anti-cancer mechanism of TRAIL. The immunohistochemical results show high expression of TRAIL protein and high expression of caspase-3 in the end pathway of TRAIL induced apoptosis in subgroups containing Ad/TRAIL. It reflects that caspase related apoptosis pathway is activated by TRAIL which led to increase of apoptosis product. The TUNUL staining show us that tumor cells infected with Ad/TRAIL collapse or fall in apoptosis by direct infection or by bystander effect. The in vivo experiments indicate that tumor grows slowly in treatment groups than in control groups and the tumor-bearing mice in treatment groups suvive longer than in control groups. The combination of Ad/TRAIL and chemotherapeutics will significantly increased survival rate compared to the control mice or mice receiving Ad-/TRAIL alone. All the results abovementioned support the anti-tumor characters of Ad/TRAIL agent. No obvious side effects were found showing mild damage to normal cells of the body. Our findings demonstrate that Ad/TRAIL gene products activated by promoter hTERT exert effective therapeutic and toxic effects to primary colorectal tumor cells and will exhibit robust tumoricidal activity against human primary tumors in clinical practice with minimal toxic side effects.
引文
1. Trosko J.E. and Chang C.C. Stem cell theory of carcinogenesis. Toxicol Lett.1989, 49(2-3):p.283-95.
    2. Neuzil J., Stantic M., Zobalova R., Chladova J., Wang X., Prochazka L., Dong L., Andera L., and Ralph S.J. Tumour-initiating cells vs. cancer 'stem' cells and CD133: what's in the name? Biochem Biophys Res Commun.2007,355(4):p.855-9.
    3. Donnenberg V.S., Landreneau R.J. and Donnenberg A.D. Tumorigenic stem and progenitor cells:Implications for the therapeutic index of anti-cancer agents. J Control Release.2007,122(3):p.385-91.
    4. Clarke M.F. and Fuller M. Stem Cells and Cancer:Two Faces of Eve. Cell.2006, 124(6):p.1111-1115.
    5. Huff C.A., Matsui W.H., Douglas Smith B. and Jones R.J. Strategies to eliminate cancer stem cells:Clinical implications. European Journal of Cancer.2006,42(9): p.1293-1297.
    6. Singh S.K., Clarke I.D., Terasaki M., Bonn V.E., Hawkins C., Squire J., and Dirks P.B. Identification of a cancer stem cell in human brain tumors. Cancer Res.2003, 63(18):p.5821-8.
    7. Nelson R. Brain-cancer stem cells may drive tumour formation. The Lancet Neurology.2005,4(1):p.17-329.
    8. Ross R.A. and Spengler B.A. Human neuroblastoma stem cells. Seminars in Cancer Biology.2007,17(3):p.241-247.
    9. Song L.L. and Miele L. Cancer stem cells--an old idea that's new again: implications for the diagnosis and treatment of breast cancer. Expert Opin Biol Ther.2007,7(4):p.431-8.
    10. Collins A.T., Berry P.A., Hyde C., Stower M.J. and Maitland N.J. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res.2005,65(23): p.10946-51.
    11. Berns A. Stem Cells for Lung Cancer? Cell.2005,121(6):p.811-813.
    12. Kim C.F.B., Jackson E.L., Woolfenden A.E., Lawrence S., Babar I., Vogel S., Crowley D., Bronson R.T., and Jacks T. Identification of Bronchioalveolar Stem Cells in Normal Lung and Lung Cancer. Cell.2005,121(6):p.823-835.
    13. Chiba T., Zheng Y.-W., Kita K., Yokosuka O., Saisho H., Onodera M., Miyoshi H., Nakano M., Zen Y, Nakanuma Y, Nakauchi H., Iwama A., and Taniguchi H. Enhanced Self-Renewal Capability in Hepatic Stem/Progenitor Cells Drives Cancer Initiation. Gastroenterology.2007,133(3):p.937-950.
    14. Ma S., Chan K.-W., Hu L., Lee T.K.-W., Wo J.Y.-H., Ng I.O.-L., Zheng B.-J., and Guan X.-Y. Identification and Characterization of Tumorigenic Liver Cancer Stem/Progenitor Cells. Gastroenterology.2007,132(7):p.2542-2556.
    15. Hermann P.C., Huber S.L., Herrler T., Aicher A., Ellwart J.W., Guba M., Bruns C.J., and Heeschen C. Distinct Populations of Cancer Stem Cells Determine Tumor Growth and Metastatic Activity in Human Pancreatic Cancer. Cell Stem Cell.2007, 1(3):p.313-323.
    16. Heidt D.G., Li C., Mollenberg N., Clarke M.F. and Simeone D. Identification of pancreatic cancer stem cells. Journal of Surgical Research.2006,130(2):p. 194-195.
    17. O'Brien C.A., Pollett A., Gallinger S. and Dick J.E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature.2007, 445(7123):p.106-10.
    18. Ricci-Vitiani L., Lombardi D.G., Pilozzi E., Biffoni M., Todaro M., Peschle C., and De Maria R. Identification and expansion of human colon-cancer-initiating cells. Nature.2007,445(7123):p.111-5.
    19. Shmelkov S.V., Butler J.M., Hooper A.T., Hormigo A., Kushner J., Milde T., St Clair R., Baljevic M., White I., Jin D.K., Chadburn A., Murphy A.J., Valenzuela D.M., Gale N.W., Thurston G, Yancopoulos G.D., D'Angelica M., Kemeny N., Lyden D., and Rafii S. CD133 expression is not restricted to stem cells, and both CD133+and CD133-metastatic colon cancer cells initiate tumors. J Clin Invest. 2008,118(6):p.2111-20.
    20. Clement V., Dutoit V., Marino D., Dietrich P.Y. and Radovanovic I. Limits of CD133 as a marker of glioma self-renewing cells. Int J Cancer.2009,125(1):p. 244-8.
    21. Sun Y, KONG W and SMITH A. CD 133 (Prominin) negative human neural stem cells are clonogenic and tripotent. PLoS ONE.2009,4(5):p. e5498.
    22. Hemmoranta H., Satomaa T., Blomqvist M., Heiskanen A., Aitio O., Saarinen J., Natunen J., Partanen J., Laine J., and Jaatinen T. N-glycan structures and associated gene expression reflect the characteristic N-glycosylation pattern of human hematopoietic stem and progenitor cells. Experimental Hematology.2007, 35(8):p.1279-1292.
    23. Florek M., Haase M., Marzesco A.M., Freund D., Ehninger G, Huttner W.B., and Corbeil D. Prominin-1/CD 133, a neural and hematopoietic stem cell marker, is expressed in adult human differentiated cells and certain types of kidney cancer. Cell Tissue Res.2005,319(1):p.15-26.
    24. Joo K.M., Kim S.Y., Jin X., Song S.Y., Kong D.S., Lee J.I., Jeon J.W., Kim M.H., Kang B.G, Jung Y, Jin J., Hong S.C., Park W.Y., Lee D.S., Kim H., and Nam D.H. Clinical and biological implications of CD133-positive and CD133-negative cells in glioblastomas. Lab Invest.2008,88(8):p.808-15.
    1. Jalving M., de Jong S., Koornstra J.J., Boersma-van Ek W., Zwart N., Wesseling J., de Vries E.G., and Kleibeuker J.H. TRAIL induces apoptosis in human colorectal adenoma cell lines and human colorectal adenomas. Clin Cancer Res.2006,12(14 Pt 1):p.4350-6.
    2. Griffith T.S. Induction of tumor cell apoptosis by TRAIL gene therapy. Methods Mol Biol.2009,542:p.315-34.
    3. Mahmood Z. and Shukla Y. Death receptors:targets for cancer therapy. Exp Cell Res.316(6):p.887-99.
    4. Cappello P., Novelli F., Forni G. and Giovarelli M. Death receptor ligands in tumors. J Immunother.2002,25(1):p.1-15.
    5. Wajant H., Pfizenmaier K. and Scheurich P. TNF-related apoptosis inducing ligand (TRAIL) and its receptors in tumor surveillance and cancer therapy. Apoptosis. 2002,7(5):p.449-59.
    6. Almasan A. and Ashkenazi A. Apo2L/TRAIL:apoptosis signaling, biology, and potential for cancer therapy. Cytokine Growth Factor Rev.2003,14(3-4):p. 337-48.
    7. Bellail A.C., Qi L., Mulligan P., Chhabra V. and Hao C. TRAIL agonists on clinical trials for cancer therapy:the promises and the challenges. Rev Recent Clin Trials.2009,4(1):p.34-41.
    8. Vogler M., Durr K., Jovanovic M., Debatin K.M. and Fulda S. Regulation of TRAIL-induced apoptosis by XIAP in pancreatic carcinoma cells. Oncogene.2007, 26(2):p.248-57.
    9. Rahman M., Pumphrey J.G. and Lipkowitz S. The TRAIL to targeted therapy of breast cancer. Adv Cancer Res.2009,103:p.43-73.
    10. Routes J.M., Ryan S., Clase A., Miura T., Kuhl A., Potter T.A., and Cook J.L. Adeno virus E1A oncogene expression in tumor cells enhances killing by TNF-related apoptosis-inducing ligand (TRAIL). J Immunol.2000,165(8):p. 4522-7.
    11. Griffith T.S., Anderson R.D., Davidson B.L., Williams R.D. and Ratliff T.L. Adenoviral-mediated transfer of the TNF-related apoptosis-inducing ligand/Apo-2 ligand gene induces tumor cell apoptosis. J Immunol.2000,165(5):p.2886-94.
    12. Griffith T.S. and Broghammer E.L. Suppression of tumor growth following intralesional therapy with TRAIL recombinant adenovirus. Mol Ther.2001,4(3):p. 257-66.
    13. Andrzejewski T., Deeb D., Gao X., Danyluk A., Arbab A.S., Dulchavsky S.A., and Gautam S.C. Therapeutic efficacy of curcumin/TRAIL combination regimen for hormone-refractory prostate cancer. Oncol Res.2008,17(6):p.257-67.
    14. Basu A. and Haldar S. Combinatorial effect of epigallocatechin-3-gallate and TRAIL on pancreatic cancer cell death. Int J Oncol.2009,34(1):p.281-6.
    15. De Toni E.N., Thieme S.E., Herbst A., Behrens A., Stieber P., Jung A., Blum H., Goke B., and Kolligs F.T. OPG is regulated by beta-catenin and mediates resistance to TRAIL-induced apoptosis in colon cancer. Clin Cancer Res.2008, 14(15):p.4713-8.
    16. Frese S., Brunner T., Gugger M., Uduehi A. and Schmid R.A. Enhancement of Apo2L/TRAIL (tumor necrosis factor-related apoptosis-inducing ligand)-induced apoptosis in non-small cell lung cancer cell lines by chemotherapeutic agents without correlation to the expression level of cellular protease caspase-8 inhibitory protein. J Thorac Cardiovasc Surg.2002,123(1):p.168-74.
    17. Shi J., Zheng D., Man K., Fan S.T. and Xu R. TRAIL:a potential agent for cancer therapy. Curr Mol Med.2003,3(8):p.727-36.
    18. de Jong S., Timmer T., Heijenbrok F.J. and de Vries E.G. Death receptor ligands, in particular TRAIL, to overcome drug resistance. Cancer Metastasis Rev.2001, 20(1-2):p.51-6.
    19. de Lima M., McMannis J., Gee A., Komanduri K., Couriel D., Andersson B.S., Hosing C., Khouri I., Jones R., Champlin R., Karandish S., Sadeghi T., Peled T., Grynspan F., Daniely Y., Nagler A., and Shpall E..J. Transplantation of ex vivo expanded cord blood cells using the copper chelator tetraethylenepentamine:a phase Ⅰ/Ⅱ clinical trial. Bone Marrow Transplant.2008,41(9):p.771-8.
    20. Ozoren N. and El-Deiry W.S. Defining characteristics of Types Ⅰ and Ⅱ apoptotic cells in response to TRAIL. Neoplasia.2002,4(6):p.551-7.
    21. Thorburn A. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) pathway signaling. J Thorac Oncol.2007,2(6):p.461-5.
    22. Humphreys R.C. and Halpern W. Trail receptors:targets for cancer therapy. Adv Exp Med Biol.2008,615:p.127-58.
    23. Sheikh M.S., Huang Y., Fernandez-Salas E.A., El-Deiry W.S., Friess H., Amundson S., Yin J., Meltzer S.J., Holbrook N.J., and Fornace A.J., Jr. The antiapoptotic decoy receptor TRID/TRAIL-R3 is a p53-regulated DNA damage-inducible gene that is overexpressed in primary tumors of the gastrointestinal tract. Oncogene.1999,18(28):p.4153-9.
    24. Meng R.D., McDonald E.R.,3rd, Sheikh M.S., Fornace A.J., Jr. and El-Deiry W.S. The TRAIL decoy receptor TRUNDD (DcR2, TRAIL-R4) is induced by adenovirus-p53 overexpression and can delay TRAIL-, p53-, and KILLER/DR5-dependent colon cancer apoptosis. Mol Ther.2000,1(2):p.130-44.
    25. Bouralexis S., Findlay D.M. and Evdokiou A. Death to the bad guys:targeting cancer via Apo2L/TRAIL. Apoptosis.2005,10(1):p.35-51.
    26. Takeda K., Stagg J., Yagita H., Okumura K. and Smyth M.J. Targeting death-inducing receptors in cancer therapy. Oncogene.2007,26(25):p.3745-57.
    27. Finnberg N. and El-Deiry W.S. TRAIL death receptors as tumor suppressors and drug targets. Cell Cycle.2008,7(11):p.1525-8.
    28. Ashkenazi A. Targeting the extrinsic apoptosis pathway in cancer. Cytokine Growth Factor Rev.2008,19(3-4):p.325-31.
    29. Li C.M., Peng Z.L. and Yang K.X. [The expression of TRAIL, TRAIL-R (DR4, DcR1) and Fas-L in patients with ovarian cancer]. Sichuan Da Xue Xue Bao Yi Xue Ban.2005,36(3):p.341-3.
    30. Grotzer M.A., Eggert A., Zuzak T.J., Janss A.J., Marwaha S., Wiewrodt B.R., Ikegaki N., Brodeur G.M., and Phillips P.C. Resistance to TRAIL-induced apoptosis in primitive neuroectodermal brain tumor cells correlates with a loss of caspase-8 expression. Oncogene.2000,19(40):p.4604-10.
    31. Mitsiades C.S., Treon S.P., Mitsiades N., Shima Y., Richardson P., Schlossman R., Hideshima T., and Anderson K.C. TRAIL/Apo2L ligand selectively induces apoptosis and overcomes drug resistance in multiple myeloma:therapeutic applications. Blood.2001,98(3):p.795-804.
    32. Hu B., Zhu H., Qiu S., Su Y., Ling W., Xiao W., and Qi Y. Enhanced TRAIL sensitivity by E1A expression in human cancer and normal cell lines:inhibition by adenovirus E1B19K and E3 proteins. Biochem Biophys Res Commun.2004, 325(4):p.1153-62.
    33. Zhu H., Zhang L., Huang X., Davis J.J., Jacob D.A., Teraishi F., Chiao P., and Fang B. Overcoming acquired resistance to TRAIL by chemotherapeutic agents and calpain inhibitor I through distinct mechanisms. Mol Ther.2004,9(5):p. 666-73.
    34. Robinson S.N., Ng J., Niu T., Yang H., McMannis J.D., Karandish S., Kaur I., Fu P., Del Angel M., Messinger R., Flagge F., de Lima M., Decker W., Xing D., Champlin R., and Shpall E.J. Superior ex vivo cord blood expansion following co-culture with bone marrow-derived mesenchymal stem cells. Bone Marrow Transplant.2006,37(4):p.359-66.
    35. He S., Chen Y., Chen X., Zhao Y., Wang H., Zhang W., and Wang S. Antitumor effects of soluble TRAIL in human hepatocellular carcinoma. J Huazhong Univ Sci Technolog Med Sci.2005,25(1):p.51-4.
    36. Tanaka S., Sugimachi K., Shirabe K., Shimada M. and Wands J.R. Expression and antitumor effects of TRAIL in human cholangiocarcinoma. Hepatology.2000, 32(3):p.523-7.
    37. White-Gilbertson S., Rubinchik S. and Voelkel-Johnson C. Transformation, translation and TRAIL:an unexpected intersection. Cytokine Growth Factor Rev. 2008,19(2):p.167-72.
    38. Kruyt F.A. TRAIL and cancer therapy. Cancer Lett.2008,263(1):p.14-25.
    39. Kim C.Y., Jeong M., Mushiake H., Kim B.M., Kim W.B., Ko J.P., Kim M.H., Kim M., Kim T.H., Robbins P.D., Billiar T.R., and Seol D.W. Cancer gene therapy using a novel secretable trimeric TRAIL. Gene Ther.2006,13(4):p.330-8.
    40. Klose R., Kemter E., Bedke T., Bittmann I., Kelsser B., Endres R., Pfeffer K., Schwinzer R., and Wolf E. Expression of biologically active human TRAIL in transgenic pigs. Transplantation.2005,80(2):p.222-30.
    41. Lu X., Arbiser J.L., West J., Hoedt-Miller M., Sheridan A., Govindarajan B., Harral J.W., Rodman D.M., and Fouty B. Tumor necrosis factor-related apoptosis-inducing ligand can induce apoptosis in subsets of premalignant cells. Am J Pathol.2004,165(5):p.1613-20.
    42. Burroughs K.D., Kayda D.B., Sakhuja K., Hudson Y., Jakubczak J., Bristol J.A., Ennist D., Hallenbeck P., Kaleko M., and Connelly S. Potentiation of oncolytic adenoviral vector efficacy with gutless vectors encoding GMCSF or TRAIL. Cancer Gene Ther.2004,11(2):p.92-102.
    43. Soeda A., Park M., Lee D., Mintz A., Androutsellis-Theotokis A., McKay R.D., Engh J., Iwama T., Kunisada T., Kassam A.B., Pollack I.F., and Park D.M. Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-lalpha. Oncogene.2009,28(45):p.3949-59.
    44. Zeppernick F., Ahmadi R., Campos B., Dictus C., Helmke B.M., Becker N., Lichter P., Unterberg A., Radlwimmer B., and Herold-Mende C.C. Stem cell marker CD 133 affects clinical outcome in glioma patients. Clin Cancer Res.2008, 14(1):p.123-9.
    45. Roth W., Isenmann S., Naumann U., Kugler S., Bahr M., Dichgans J., Ashkenazi A., and Weller M. Locoregional Apo2L/TRAIL eradicates intracranial human malignant glioma xenografts in athymic mice in the absence of neurotoxicity. Biochem Biophys Res Commun.1999,265(2):p.479-83.
    46. Sallman D.A., Chen X., Zhong B., Gilvary D.L., Zhou J., Wei S., and Djeu J.Y. Clusterin mediates TRAIL resistance in prostate tumor cells. Mol Cancer Ther. 2007,6(11):p.2938-47.
    47. Kim S.H., Ricci M.S. and El-Deiry W.S. Mcl-1:a gateway to TRAIL sensitization. Cancer Res.2008,68(7):p.2062-4.
    48. Merino D., Lalaoui N., Morizot A., Solary E. and Micheau O. TRAIL in cancer therapy:present and future challenges. Expert Opin Ther Targets.2007,11(10):p. 1299-314.
    1. Chien C.C., Chen S.H., Liu C.C., Lee C.L., Yang R.N., Yang S.H., and Huang C.J. Correlation of K-ras codon 12 mutations in human feces and ages of patients with colorectal cancer (CRC). Transl Res.2007,149(2):p.96-102.
    2. Aslam M.I., Taylor K., Pringle J.H. and Jameson J.S. MicroRNAs are novel biomarkers of colorectal cancer. Br J Surg.2009,96(7):p.702-10.
    3. Nomura T., Huang W.C., Seo S., Zhau H.E., Mimata H. and Chung L.W. Targeting beta2-microglobulin mediated signaling as a novel therapeutic approach for human renal cell carcinoma. J Urol.2007,178(1):p.292-300.
    4. Rychahou P.G., Murillo C.A. and Evers B.M. Targeted RNA interference of PI3K pathway components sensitizes colon cancer cells to TNF-related apoptosis-inducing ligand (TRAIL). Surgery.2005,138(2):p.391-7.
    5. Tu S.P., Cui J.T., Liston P., Huajiang X., Xu R., Lin M.C., Zhu Y.B., Zou B., Ng S.S., Jiang S.H., Xia H.H., Wong W.M., Chan A.O., Yuen M.F., Lam S.K., Kung H.F., and Wong B.C. Gene therapy for colon cancer by adeno-associated viral vector-mediated transfer of survivin Cys84Ala mutant. Gastroenterology.2005, 128(2):p.361-75.
    6. 汤钊酋,等.肿瘤学(第二版).复旦大学出版社出版.1999年.
    7. Kolb M., Martin G, Medina M., Ask K. and Gauldie J. Gene therapy for pulmonary diseases. Chest.2006,130(3):p.879-84.
    8. Butterfield L.H. Immunotherapeutic strategies for hepatocellular carcinoma. Gastroenterology.2004,127(5 Suppl 1):p. S232-41.
    9. Cowen R.L., Garside E.J., Fitzpatrick B., Papadopoulou M.V. and Williams K.J. Gene therapy approaches to enhance bioreductive drug treatment. Br J Radiol. 2008,81 Spec No 1:p. S45-56.
    10. Li Z., Liu Y, Tuve S., Xun Y, Fan X., Min L., Feng Q., Kiviat N., Kiem H.P., Disis M.L., and Lieber A. Toward a stem cell gene therapy for breast cancer. Blood. 2009,113(22):p.5423-33.
    11. Scully S.P. Gene therapy:clinical considerations. Clin Orthop Relat Res.2000(379 Suppl):p. S55-8.
    12. Kouraklis G. Gene therapy for cancer:from the laboratory to the patient. Dig Dis Sci.2000,45(6):p.1045-52.
    13. Roth JA C.R. Gene therapy for cancer:what have we done and where are we going? J Nat Cancer Inst.1997,89:p.21-39.
    14. Weber E A.W., Kasahara N. Recent advances in retrovirus vector-mediated gene therapy:teaching an old vector new tricks. Curr Opin Mol Ther.2001,3:p. 439-453.
    15. Lasic DD V.J., Working PK. Sterically stabilized liposomes in cancer therapy and gene delivery. Curr Opin Mol Ther.1999,1:p.177-185.
    16. Manthorpe M C.-J.F., Hartikka J, Felgner J, Rundell A, Margalith M, Dwarki V. Gene therapy by intrmuscular injection of plasmid DNA:studies on firefly luciferase gene expression in mice. Human Gene Therapy.1993,4:p.419-431.
    17.何超梁.胡劳.TRAIL基因修饰联合阿霉素对大肠癌细胞株RKO作用的研究.中国肿瘤生物治疗杂志.2004 Jun,11(2):p.119-123.
    18. Chawla-Sarkar M., Leaman D.W., Jacobs B.S. and Borden E.C. IFN-beta pretreatment sensitizes human melanoma cells to TRAIL/Apo2 ligand-induced apoptosis. J Immunol.2002,169(2):p.847-55.
    19. Lambright E.S., Force S.D., Lanuti M.E., Wasfi D.S., Amin K.M., Albelda S.M., and Kaiser L.R. Efficacy of repeated adenoviral suicide gene therapy in a localized murine tumor model. Ann Thorac Surg.2000,70(6):p.1865-70; discussion 1870-1.
    20. Waku T., Fujiwara T., Shao J., Itoshima T., Murakami T., Kataoka M., Gomi S., Roth J.A., and Tanaka N. Contribution of CD95 ligand-induced neutrophil infiltration to the bystander effect in p53 gene therapy for human cancer. J Immunol.2000,165(10):p.5884-90.
    21. Bondanza A., Valtolina V., Magnani Z., Ponzoni M., Fleischhauer K., Bonyhadi M., Traversari C., Sanvito F., Toma S., Radrizzani M., La Seta-Catamancio S., Ciceri F., Bordignon C., and Bonini C. Suicide gene therapy of graft-versus-host disease induced by central memory human T lymphocytes. Blood.2006,107(5):p. 1828-36.
    22. Pantuck A.J., Berger F., Zisman A., Nguyen D., Tso C.L., Matherly J., Gambhir S.S., and Belldegrun A.S. CL1-SR39:A noninvasive molecular imaging model of prostate cancer suicide gene therapy using positron emission tomography. J Urol. 2002,168(3):p.1193-8.
    23. Wu DH L.L., Chen LH. Antitumor effects and radiosensitization of cytosine deaminase and thymidine kinase fusion suicide gene on colorectal carcinoma cells. World J Gastroenterol.2005 May 28,11(2):p.3051-5.
    24. Rettig M.P., Ritchey J.K., Prior J.L., Haug J.S., Piwnica-Worms D. and DiPersio J.F. Kinetics of in vivo elimination of suicide gene-expressing T cells affects engraftment, graft-versus-host disease, and graft-versus-leukemia after allogeneic bone marrow transplantation. J Immunol.2004,173(6):p.3620-30.
    25. Cristofanilli M., Krishnamurthy S., Guerra L., Broglio K., Arun B., Booser D.J., Menander K., Van Wart Hood J., Valero V., and Hortobagyi G.N. A nonreplicating adenoviral vector that contains the wild-type p53 transgene combined with chemotherapy for primary breast cancer:safety, efficacy, and biologic activity of a novel gene-therapy approach. Cancer.2006,107(5):p.935-44.
    26. Baek JH A.M., Tubbs RR, Vladisavljevic A, Tomita H, Bukowski RM, Milsom JW, Kim JM, Kwak JY. In vivo recombinant adenovirus-mediated p53 gene therapy in a syngeneic rat model for colorectal cancer. J Korean Med Sci.2004 Dec,19(6):p. 834-41.
    27. Adjei AA. Blocking oncogenic Ras signaling for cancer therapy. J Natl Cancer Inst. 2001 Jul 18,93(14):p.1062-74.
    28. Jae J Song H.L., Eunhee Kim,et al. Transduction effect of antisense K-ras on malignant phenotypesin gastric cancer cells. Cancer Letters.2000 Jul,157(1):p.1.
    29. Lledo S A.R., Alino SF. Antisense gene therapy using anti-k-ras and antitelomerase oligonucleotides in colorectal cancer. Rev Esp Enferm Dig.2005 Jul,97(7):p. 472-80.
    30. Ren J, Dong L, Xu CB e.a. he role of KDR in the interactions between human gastric carcinoma cell and vascular endothelial cell. World J Gastroenterol.2002, 8(4):p.596.
    31. Bang C.I., Paik S.Y., Sun D.I., Joo Y.H. and Kim M.S. Cell growth inhibition and down-regulation of survivin by silibinin in a laryngeal squamous cell carcinoma cell line. Ann Otol Rhinol Laryngol.2008,117(10):p.781-5.
    32.朱晓东;林庚金;朱藤芳.Survivin反义核酸协同紫杉醇的体外及大鼠体内抗肿瘤作用.复旦学报(医学版).(2005年05期).
    33. Mesri M., Wall N.R., Li J., Kim R.W. and Altieri D.C. Cancer gene therapy using a survivin mutant adenovirus. J Clin Invest.2001,108(7):p.981-90.
    34. Mulkeen A.L., Silva T., Yoo P.S., Schmitz J.C., Uchio E., Chu E., and Cha C. Short interfering RNA-mediated gene silencing of vascular endothelial growth factor: effects on cellular proliferation in colon cancer cells. Arch Surg.2006,141(4):p. 367-74; discussion 374.
    35. Giatromanolaki A., Sivridis E., Brekken R., Thorpe P.E., Anastasiadis P., Gatter K.C., Harris A.L., and Koukourakis M.I. The angiogenic "vascular endothelial growth factor/flk-1(KDR) receptor" pathway in patients with endometrial carcinoma:prognostic and therapeutic implications. Cancer.2001,92(10):p. 2569-77.
    36. Schmitz V K.M., Hilbert T, Dzienisowicz C, Raskopf E, Rabe C, Sauerbruch T, Qian C, Caselmann WH. Treatment of metastatic colorectal carcinomas by systemic inhibition of vascular endothelial growth factor signaling in mice.2005 Jul 28,28(11):p.4332-6.
    37. Schmitz V W.L., Barajas M, Gomar C, Prieto J, Qian C. Treatment of colorectal and hepatocellular carcinomas by adenoviral mediated gene transfer of endostatin and angiostatin-like molecule in mice. Gut.2004 Apr,53(4):p.561-7.
    38. Thorpe P.E. Vascular Targeting Agents as Cancer Therapeutics Clin Cancer Res. 2004 Jan 15,10(2):p. pp.415-27.
    39. Barzon L., Bonaguro R., Castagliuolo I., Chilosi M., Gnatta E., Parolin C., Boscaro M., and Palu G. Transcriptionally targeted retroviral vector for combined suicide and immunomodulating gene therapy of thyroid cancer. J Clin Endocrinol Metab. 2002,87(11):p.5304-11.
    40. Gao J Z.P., Chen XH, Li M, Long JQ, Gu AM, Wu XL, Cao GW, Qi ZT. Establishment of a SCID mouse model for synergistic anti-tumor effect of human IL-12 and B7-1. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai). 2003 Jun,35(6):p.529-35.
    41. Ullenhag GJ F.J., Mosolits S, Kiaii S, Hassan M, Bonnet MC, Moingeon P, Mellstedt H, Rabbani H. Immunization of colorectal carcinoma patients with a recombinant canarypox virus expressing the tumor antigen Ep-CAM/KSA (ALVAC-KSA) and granulocyte macrophage colony-stimulating factor induced a tumor-specific cellular immune response. Clin Cancer Res.2003 Jul,9(7):p. 2447-56.
    42. E M. Clinicial research. Gene therapy a suspect in leukemia-like disease. Science. 2002,298:p.34-35.
    43. PRABHA S ZHOU W P.J., et al. Size-dependency of nanoparticle-,medicated gene transfection studies with fractionated nanoparticles. Int J Pham.2002,244:p.105.
    44. Palmer DH C.M., Kerr DJ. Taking Gene Therapy into the Clinic. J Biomed Biotechnol.2003,2003(1):p.71-77.
    45. Ralph R. Weichselbaum D.W.K., Sunil J. Advani and Bernard Roizman Molecular Targeting of Gene Therapy and radiotherapy. Acta Oncologica.2001,40(6):p. 735-738.
    46. Choi EA L.H., Maron DJ, Mick R, Barsoum J, Yu QC, Fraker DL, Wilson JM, Spitz FR. Combined 5-fluorouracil/systemic interferon-beta gene therapy results in long-term survival in mice with established colorectal liver metastases. Clin Cancer Res.2004 Feb 15,10(4):p.1535-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700