用户名: 密码: 验证码:
HSD-34(TRIM69)蛋白的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精子发生(spermatogenesis)是一个高度复杂而有序的过程,在这一分化过程中,细胞特异性和发育阶段特异性基因的转录和表达受到严格的时空调控。大量细胞特异性和发育阶段特异性蛋白质合成并被准确降解,以保证精子发生的顺利进行。研究表明,泛素系统在整个精子发生过程中都发挥着非常重要的作用,包括有丝分裂、减数分裂、染色质重塑、DNA损伤修复和细胞凋亡等过程。
     最近研究发现,泛素化除了蛋白酶体降解之外,还具有一些新的功能,如调节蛋白质活性和亚细胞定位等。研究表明,泛素系统通过非蛋白质降解的功能,参与细胞内蛋白质功能的调控,进而影响细胞发育、凋亡、衰老等生命过程。
     本室梁刚博士利用激光捕获显微切割(Laser Capture Microdissection,LCM)技术结合抑制性消减杂交(Suppressive Subtractive Hybridization,SSH)方法构建了人圆形精子细胞消减初级精母细胞cDNA文库。根据人初级精母细胞特异EST,设计引物,以人睾丸cDNA文库为模板进行PCR扩增,得到人睾丸组织中表达的新基因,其中一个命名为HSD-34,于2004年9月将序列提交GenBank,登录号为AY305385。
     HSD-34 cDNA序列全长1544bp,具有1503bp的开放阅读框,编码500个氨基酸,定位于人类15号染色体(Location:15q21.1),GeneID为140691。HSD-34与其小鼠同源物氨基酸序列的同源性高达91%,HSD-34小鼠同源物在小鼠睾丸、心脏、肝脏和脑组织中均有较高的表达。结构域分析提示,HSD-34蛋白N-末端41-82位氨基酸残基构成RING finger结构域,110-144位氨基酸残基构成B-box结构域,175-195位和226-253位氨基酸残基构成coiled-coil结构域,C-末端305-500位氨基酸残基构成B30.2结构域,即HSD-34具有RING finger-B-box-coiled-coil(RBCC)三个连续的结构域,因此,该蛋白质属于TRIM/RBCC蛋白质家族成员。2006年底,GenBank将HSD-34及其同源基因(RNF36,Trif)统一命名为TRIM69。
     RING finger结构域在介导泛素分子转移到特异底物和RING蛋白质自身的过程中发挥关键的作用。因此,RING结构域是很多泛素连接酶E3的特征性标志。而泛素连接酶E3具有自身泛素化的特性。我们将HSD-34的RING finger结构域中半胱氨酸残基(Cys)或组氨酸残基(His)进行突变,构建了一系列点突变体,进行体内(in vivo)泛素化实验。结果证明,HSD-34具有自身泛素化作用,是一个新的泛素连接酶E3;同时表明,RING finger结构域是其发挥催化功能的活性结构域;C61和C64是RING结构域的关键位点。
     构建了去除RING结构域(ARING),去除RING-B-box结构域(ARING-B),保留N-端RBCC结构域(RBCC)和C-端B30.2结构域(B30.2)的缺失体。进行体内泛素化实验,进一步证实RING结构域是HSD-34泛素连接酶E3的活性结构域。
     通过酵母双杂交实验,筛选HSD-34的相互作用蛋白质。为了防止HSD-34发生自激活,以N-端去除RING finger结构域(即1-246bp)的序列作为诱饵基因,进行酵母双杂交筛选,得到4个阳性克隆,分别是:细胞周期检验点Hus1蛋白(GenBank登录号为NM-004507);参与细胞骨架actin组装的RhoE蛋白(GenBank登录号为NM-005168);Bcl-2家族A1蛋白(Bcl-2A1)(GenBank登录号为NM-004049);以及白细胞介素2受体β蛋白(IL-2RB)(GenBank登录号为NM-000878)。
     文献报道,HSD-34小鼠同源基因可以诱导细胞发生凋亡。对四个阳性克隆的生物信息学分析表明,细胞周期检验点Hus1蛋白,在细胞内与另外两个细胞周期检验点蛋白Rad9和Rad1形成Rad9-Hus1-Rad1(9-1-1)复合物,作为细胞周期G2/M期检验点,参与细胞DNA损伤修复和细胞凋亡的调控,并且Hus1蛋白在人睾丸组织中高表达,因此,我们选择Hus1蛋白进行深入研究。
     通过免疫共沉淀方法证明了HSD-34蛋白与Hus1蛋白在细胞内存在相互作用;细胞免疫荧光结合激光共聚焦扫描结果显示:HSD-34蛋白与Hus1蛋白在HeLa细胞内共定位。进一步证实了二者的相互作用关系。
     HSD-34蛋白在细胞浆和细胞核中均有分布,细胞浆中主要定位于细胞核周围,呈环状聚集;在细胞核中呈散点状分布;ARING缺失体聚集于整个细胞膜周围;ARING-B缺失体在整个细胞膜上聚集的趋势更加显著,并在细胞膜上伸出丝状细小伪足;B30.2缺失体在细胞膜周围分布;RBCC缺失体部分恢复HSD-34在细胞浆中的聚集现象,但边界不清晰;C61A/C64A突变体弥漫分布于整个细胞中,完全失去了HSD-34蛋白的定位特点。以上结果提示,RING finger结构域对于HSD-34蛋白在细胞内的定位起重要作用。
     HSD-34对外源性和内源性Hus1蛋白的降解实验,表明HSD-34不参与Hus1蛋白的蛋白酶体降解。HSD-34转染HeLa细胞,引起内源性Hus1蛋白和磷酸化Hus1蛋白表达显著上调;同时激活caspase-3,导致细胞凋亡。提示,HSD-34对Hus1蛋白的功能具有特异的调节作用。
     应用Hoechst33258进行细胞核染色,观察到转染HSD-34后,细胞发生核浓缩,出现明显的细胞凋亡现象。荧光显微镜观察到GFP-HSD-34融合蛋白在胞浆呈花环状分布或在核周两极聚集成括号状;然后转入胞核内,引起细胞核浓缩、碎裂。推测:HSD-34蛋白在细胞质中合成,然后穿梭进入细胞核,最终在细胞核内发挥促进细胞凋亡的作用。
     转染HSD-34后,检测不同时间点细胞在分子水平上的改变。发现1)转染后12h,检测到HSD-34蛋白的表达,并呈现表达增加的趋势;同时,检测到活化的caspase-9和caspase-3的表达,且二者在该时间点表达量最高,随后逐渐降低;2)实验组12h检测到磷酸化的Hus1蛋白的表达,随着时间的延长,表达量显著增加,且与HSD-34表达趋势一致;3)实验组和对照组中,p53蛋白的表达没有发生显著变化。
     应用PathDetect(?)顺式报告系统,检测HSD-34对NF-κB,NFAT,CRE,AP1,STAT1细胞信号转导通路的影响。结果显示:HSD-34可以激活CRE细胞信号转导通路。
     综上结果,我们推测,HSD-34蛋白通过线粒体介导的细胞凋亡通路,活化caspase-9,caspase-3;同时在细胞核内,激活CRE信号通路,使Hus1蛋白表达上调,由于HSD-34与Hus1蛋白存在相互作用,催化Hus1蛋白发生磷酸化修饰,磷酸化的Hus1蛋白进一步活化细胞凋亡通路,最终导致凋亡的发生,而这一过程不依赖于p53蛋白的活化。
Spermatogenesis is a complex process,in which undifferentiated spermatogonia divide and differentiate into mature spermatozoa.During the process,many genes are transcribed and translated under precise temporal and spatial regulation.A large number of cell-specific and developmental stage-specific proteins were accurately degraded.Therefore,the ubiquitin-proteasome pathway plays a key role in spermatogenesis.
     Research had found that the ubiquitin-proteasome system had some new functions,such as the regulation of protein activity and their subcellular localization.Recent studies have found that depend on its non-degradation function,the ubiquitin system was also involved in the regulation of cell growth,apoptosis,and aging.
     The method of laser capture microdissection(LCM) combined with suppressive subtractive hybridization(SSH) was used to isolate the differentially expressed genes during germ cell differentiation.A new gene designated as HSD34 was obtained and characterized.
     HSD-34 cDNA is 1544bp.Its open reading frame consists of 1506bp,which is encoding a 500 amino acids protein.The GenBank Accession No.of HSD-34 is AY305385 and localizes in human chromosome 15(Location:15q21.1).HSD34,containing a RING finger domain,a B-box,and a coiled-coil motif in the N-terminal region,belongs to the TRIM (Tripartite motif) or RBCC(RING,B-Box,coiled-coil) family.The identity of HSD-34 and its mouse homolog is about 91%.The mouse homolog of HSD-34 is observed with higher expression in mouse testis,heart,liver and brain tissue.
     RING finger domain plays a key role in transferring the ubiquitin to specific substrate and RING protein itself.Therefore,the RING domain is a character of ubiquitin ligase E3. Ubiquitin ligase E3 can ubiquitinate itself.We construct a series of point mutants within the RING finger domain and some truncates.With the in vivo ubiquitination assay,we found that HSD-34 could ubiquitinate itself,which showed that HSD-34 was a new ubiquitin ligase E3. Meanwhile,RING finger domain is the active domain of HSD-34;C61 and C64 sites are the key sites of this domain.
     Using a yeast two-hybrid assay,we had screened the interaction proteins of HSD-34.We use a truncate,which had been removed of the N-terminal RING finger domain(246bp),as the bait gene.Four positive clones were found,namely,the cell cycle checkpoint protein Hus1 (GenBank Accession No.NM-004507);RhoE(GenBank Accession No.NM-00516 8); Bcl-2A1(GenBank Accession No.NM-00404 9);and IL-2RB(GenBank Accession No. NM-0008 78).
     We had chosen the checkpoint protein Hus1 for further study because checkpoint protein Hus1 interacts with two other checkpoint protein Rad9 and Rad1,which could form a G2/M cell cycle checkpoint complex,Rad9-Hus1-Rad1(9-1-1) complex.Rad9-Hus1 -Rad1 complex is confirmed to be involved in DNA repair and apoptosis.
     Using the co-immunoprecipitation method,we had proved HSD-34 could interact with Hus1.Immunofluorescence and confocal laser scanning showed that HSD-34 co-localized with Hus1 in HeLa cells,which also confirmed the interaction between these two proteins.
     HSD-34 protein was distributed in cytoplasm and nucleus.In cytoplasm,HSD-34 was mainly surrounding the nucleus as a ring;while in nucleus,it was in a speckled pattern.The deletions of different domain could result in different localization of this protein,for example, RING deletions mutant was surrounded the membrane;RING-B deletions mutant was gathered the membrane more apparently,and stretched out small feet from the membrane; B30.2 deletions was also surrounded the membrane;RBCC deletions was aggregated within the cytoplasm just as HSD-34,but the border was not clear;C61A/C64A mutant was diffused throughout the cell,completely lost the distribution pattern of HSD-34 protein.
     The degradation experiment showed that HSD-34 did not participate in the degradation of Hus1 through the proteasome pathway.The transfection of HSD-34 plasmid into HeLa cells could cause the increased expression of Hus1 protein,which the level of phosphorylated Hus1 protein was also significantly increased.At the same time,HSD-34 could also active caspase-3 pathway,which could lead to apoptosis.These results suggested that HSD-34 can regulate the function of Hus1 protein in apoptosis.
     Morphology analysis found that HSD-34 can promote cell apoptosis.Fluorescence microscopy found that GFP-HSD-34 fusion protein was first distributed as a ring in the cytoplasm;then was transferred to the nucleus,where it could cause the condensation and fragmentation of the nucleus.Then we had speculated that,HSD-34 protein was synthesized in the cytoplasm,and shuttled into the nucleus,from where it exerted its important role in apoptosis.
     After the transfection of HSD-34 into HeLa cells,we detected different protein levels at different time points.We found that the expression of active caspase-9,active caspase-3,Hus1 and phosphorylation Hus1 were elevated upon the induction of HSD-34 within those test cells. However,the expression of p53 did not change between the test group and the control group.
     The pathDetect(?) cis-reporting system was used to detect if HSD-34 could affect the cellular signal transduction pathways,such as NF-κB,NFAT,CRE,AP1,STAT1 pathway.The results showed that HSD-34 can activate CRE cellular signal transduction pathway.
     These results suggested that HSD-34 may induce apoptosis through caspase-9,caspase-3 pathway;at the same time,HSD-34 could activate the CRE signaling pathway within the nucleus.After that,the expression of Hus1 could be up-regulated and phosphorylated.The phosphorylated Hus1 could activate the apoptosis pathway and lead the cells to apoptosis. This process is a p53-independent pathway.
引文
1.Sutovsky P.Ubiquitin-dependent proteolysis in mammalian spermatogenesis,fertilization,and sperm quality control:killing three birds with one stone.Microsc Res Tech.2003;61(1):88-102
    2.Baarends WM,Roest HP,Grootegoed JA.The ubiquitin system in gametogenesis.Mol Cell.Endocrinol.1999;151:5-16.
    3.Baarends WM,van der Laan R.Grootegoed JA.Specific aspects of the ubiquitin system in spermatogenesis.J.Endocrinol.Invest.2000;23:597-604.
    4.Reed SI.The ubiquitin-proteasome pathway in cell cycle control.Results Probl Cell Differ.2006;42:147-81.
    5.Hochstrasser M.Ubiquitin-dependent protein degradation.Annu Rev Genet.1996;30:405-39.1996.
    6.Hershko A,Ciechanover A.The ubiquitin system.Annu Rev Biochem.1998;67:425-79.
    7.Pickart,CM,Fushman,D.Polyubiquitin chains:polymeric protein signals.Curr Opin Chem Biol.2004;8:610-616
    8.Haglund K,Di Fiore PP,Dikic I.Distinct monoubiquitin signals in receptor endocytosis.Trends Biochem Sci.2003 Nov;28(11):598-603.
    9.Sigismund S,Polo S,Di Fiore PP.Signaling through monoubiquitination.Curr Top Microbiol Immunol.2004;286:149-85.
    10.Hicke L.Protein regulation by monoubiquitin.Nat Rev Mol Cell Biol.2001 Mar;2(3):195-201.
    11.Cecile M.Pickart.Mechanisms underlying ubiquitination.Annu Rev Biochem.2001;70:503-33.
    12.Hatakeyama S,Nakayam KI.Ubiquitylation as a quality control system for intracellular proteins.J.Biochem.2003;134:1-8.
    13.Joazeiro CAP,Weissman A.RING finger proteins:mediators of ubiquitin ligase activity. Cell.2000;102:549-552.
    14.Hicke L,Schubert HL,Hill CP.Ubiquitin-bingding domains.Nat Rev Mol Cell Biol.2005;6:610-621.
    15.Qiu XB,Goldberg AL.Nrdp1/FLRF is a ubiquitin ligase promoting ubiquitination and degradation of the epidermal growth factor receptor family member,ErbB3.Proc Natl Acad Sci USA.2002;99:14843-14848.
    16.Hicke L,Dunn R.Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins.Annu Rev Cell Dev Biol.2003;19:141-172.
    17.Di Fiore PP,Polo S,Hofmann K.When ubiquitin meets ubiquitin receptors:a signalling connection.Nat Rev Mol Cell Biol.2003;4:491-497.
    18.Conaway RC,Brower CS,Conaway JW.Emerging roles of ubiquitin in transcription regulation.Science.2002;296:1254-1258.
    19.Huey-Wen Shyu,a,b Shih-Hsien Hsu,b Hsiu-Mei Hsieh-Li,c and Hung Lia.Forced expression of RNF36 induces cell apoptosis Experimental Cell Research.2003;287:301-313.
    20.Germana Meroni,Graciana Diez-Roux.TRIM/RBCC,a novel class of‘single protein RING finger’E3 ubiquitin ligases BioEssays.2005;27:1147-1157.
    21.Reymond A,Meroni G,Fantozzi A,Merla G,Cairo S,et al.The tripartite motif family identifies cell compartments.Embo J.2001;20:2140-2151.
    22.Horn EJ,Albor A,Liu Y,E1-Hizawi S,Vanderbeek GE,et al.RING protein Trim32 associated with skin carcinogenesis has anti-apoptotic and E3-ubiquitin ligase properties.Carcinogenesis.2004;25:157-167.
    23.Salomoni P,Pandolfi PP.The role of PML in tumor suppression.Cell.2002;108:165-170.
    24.Stremlau M,Owens CM,Perron MJ,Kiessling M,Autissier P,et al.The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys.Nature.2004;427:848-853.
    25.Wang Y,Li Y,Qi X,Yuan W,Ai J,et al.TRIM45,a novel human RBCC/TRIM protein, inhibits transcriptional activities of E1K-1 and AP-1.Biochem Biophys Res Commun.2004;323:9-16.
    26.Urano T,Saito T,Tsukui T,Fujita M,Hosoi T,et al.Efp targets 14-3-3 sigma for proteolysis and promotes breast tumour growth.Nature.2002;417:871-875.
    27.Glickman MH,Ciechanover A.The ubiquitin-proteasome proteolytic pathway:destruction for the sake of construction.Physiol Rev.2002;82:373-428.
    28.Torok M,Etkin LD.Two B or not two B? Overview of the rapidly expanding B-box family of proteins.Differentiation.2001;67:63-71.
    29.Feki A,Jefford CE,Durand P,Harb J,Lukas H,Krause KH,Irminger-Finger I.BARD1 expression During Spermatogenesis is associated with apoptosis and Hormonally Regulated.Biol.Reprod.2004;71:1614-1624.
    30.Yan W,Hirvonen-santti SJ,Palvimo JJ,Toppari J,Janne OA.Expression of the nuclear RING finger protein SNURF/RNF4 during rat testis development suggests a role in spermatid maturation.Mech.Dev.2002;118:247-253.
    31.Van Baren MJ,van der Linde HC,Breedveld GJ,Baarends WM,Rizzu P,de Graaff E,Oostra BA,Heutink P.A double RING-H2 domain in RNF32,a gene expressed during sperm formation.Biochem Biophys Res Commun.2002;292(1):58-65.
    32.Van der Laan R,Roest HP,Hoogerbrugge JW,Smit EM,Slater R,Baarends WM,Hoeijmakers JH,Grootegoed JA.Characterization of mRAD18Sc,a mouse homolog of the yeast postreplication repair gene RAD18.Genomics.2000;69:86-94.
    33.Huey-Wen Shyu,Shih-Hsien Hsu,Hsiu-Mei Hsieh-Lic,Hung Lia.A novel member of the RBCC family,Trif,expressed specifically in the spermatids of mouse testis.Mechanisms of Development.2001;108:213-216.
    34.Jukka Kallija¨rvi,Ulla lahtinen,Riikka Hamalainen,Marita Lipsanen-Nyman,Jorma J.Palvimo,Anna-Elina Lehesjoki.TRIM37 defective in mulibrey nanism is a novel RING finger ubiquitin E3 ligase.Experimental Cell Research.2005;308:146-155.
    35.Nrdpl-mediated degradation of the gigantic IAP,BRUCE,is a novel pathway for triggering apoptosis Xiao-Bo Qiu,Shirley L Markantl,Junying Yuanl and Alfred L Goldbergl.The EMBO Journal.2004;23,800-810.
    36.Frangioni JV,Neel BG.Solubilization and purification of enzymatically active glutathione S-transferase(pGEX) fusion protein.Anal Biochem,1993;210(1):179-187.
    37.Abdu U,Klovstad M,Butin-Israeli V,Bakhrat A,Schupbach T.An essential role for Drosophila husl in somatic and meiotic DNA damage responses.J Cell Sci.2007;120:1042-9.
    38.Helt CE,Wang W,Keng PC,Bambara RA.Evidence that DNA damage detection machinery participates in DNA repair.Cell Cycle.2005;4(4):529-32.
    39.Hang H,Lieberman HB.HUS1p,RAD1p,and RAD9p,and implications for the regulation of cell cycle progression.Genomics.2000;65(1):24-33.
    40.Volkmer E,Karnitz LM.Human homologs of Schizosaccharomyces pombe radl,husl,and rad9 form a DNA damage-responsive protein complex.J Biol Chem.1999;274(2):567-70.
    41.Kinzel B,Hall J,Natt F,Weiler J,Cohen D.Downregulation of Husl by antisense oligonucleotides enhances the sensitivity of human lung carcinoma cells to cisplatin.Cancer.2002;94(6):1808-14.
    42.Helt CE,Wang W,Keng PC,Bambara RA.Evidence that DNA damage detection machinery participates in DNA repair.Cell Cycle.2005;4(4):529-32.
    43.Nyberg,K.A.,Michelson,R.J.,Putnam,C.W.,and Weinert,T.A.Toward maintaining the genome:DNA damage and replication checkpoints.Annu Rev Genet.2002;36,617-656.
    44.Norbury CJ,Zhivotovsky B.DNA damage-induced apoptosis.Oncogene.2004 12;23(16):2797-808.
    45.Aziz Sancar,Laura A.Lindsey-Boltz,Keziban Unsal-Kacmaz,and Stuart Linn.Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoint Annu.Rev.Biochem.2004;73:39-85.
    46.R.Kaur,C.F.Kostrub,T.Enoch,Structure-function analysis of fission yeast Hus1-Rad1-Rad9 checkpoint complex,Mol.Biol.Cell.2001;12:3744-3758.
    47.J.D.Griffith,L.A.Lindsey-Boltz,A.Sancar,Structures of the human Rad17-replication factor C and checkpoint Rad9-1-1 complexes visualized by glycerol spray/low voltage microscopy,J.Biol.Chem.2002;277:5233-15236.
    48.Y.Shiomi,A.Shinozaki,D.Nakada,K.Sugimoto,J.Usukura,C.Obuse,T.Tsurimoto,Clamp and clamp loader structures of the human checkpoint protein complexes,Rad9-1-1 and Radl7-RFC,Genes Cells.2002;7:861-868.
    49.S.P.Bell,A.Dutta,DNA replication in eukaryotic cells,Annu.Rev.Biochem.2002;71:333-374.
    50.Edgardo R.Parrilla-Castellar a,Sonnet J.H.Arlander b,Larry Karnitz.Dial 9-1-1 for DNA damage:the Rad9-Husl-Radl(9-1-1) clamp complex.DNA Repair.2004;3:1009-1014.
    51.Toueille M,El-Andaloussi N,Frouin I,Freire R,Funk D,Shevelev I,Friedrich-Heineken E,Villani G,Hottiger MO,Hubscher U.The human Rad9/Radl/Husl damage sensor clamp interacts with DNA polymerase beta and increases its DNA substrate utilisation efficiency:implications for DNA repair.Nucleic Acids Res.2004;32(11):3316-24.
    52.Roos-Mattjus P,Vroman BT,Burtelow MA,Rauen M,Eapen AK,Karnitz LM.Genotoxin-induced Rad9-Husl-Radl(9-1-1) chromatin association is an early checkpoint signaling event.J Biol Chem.2002;277(46):43809-12.
    53.Horvitz,H.R.Genetic control of programmed cell death in the nematode Caenorhabditis elegans.Cancer Res.1999;59(7 Suppl):1701s-1706s.
    54.Igney,F.H.and P.H.Krammer.Death and anti-death:tumour resistance to apoptosis.Nat Rev Cancer,2002;2(4):277-88.
    55.Ashkenazi,A.Targeting death and decoy receptors of the tumour-necrosis factor superfamily.Nat Rev Cancer.2002;2(6):420-30.
    56.Sprick,M.R.,et al.FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2.Immunity.2000;12(6):599-609.
    57.Krammer,P.H.CD95's deadly mission in the immune system.Nature.2000;407:789-95.
    58.Zou,H.,et al.An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9.J Biol Chem.1999;274(17):11549-56.
    59.Rodriguez,J.and Y.Lazebnik.Caspase-9 and APAF-1 form an active holoenzyme.Genes Dev.1999;13(24):3179-84.
    1.Schedi MP,Goldstein G,Boyce EA.Differentiation of T cells in nude mice.Science.1975;90(4220):1211-3.
    2.Hershko A,Ciechanover A.The ubiquitin system.Annu Rev Biochem.1998;67:425-79.
    3.Hochstrasser M.Ubiquitin-dependent protein degradation.Annu Rev Genet.1996;30:405-39.1996
    4.Hicke L,Schubert HL,Hill CP.Ubiquitin-bingding domains.Nat Rev Mol Cell Biol.2005;6:610-621.
    5.Kaisa Haglund,Pier Paolo Di Fiore,Ivan Dikic.Distinct monoubiquitin signals in receptor endocytosis.TRENDS in Biochemical Sciences.2003;28:598-603.
    6.Pickart,CM,Fushman,D.Polyubiquitin chains:polymeric protein signals.Curr Opin Chem Biol.2004;8:610-616.
    7.Sigismund S,Polo S,Di Fiore PP.Signaling through monoubiquitination.Curr Top Microbiol Immunol.2004;286:149-85.
    8.Baarends WM,van der Laan,R.Grootegoed JA.Specific aspects of the ubiquitin system in spermatogenesis.J.Endocrinol.Invest.2000;23:597-604.
    9.Hatakeyama S,Nakayam KI.Ubiquitylation as a quality control system for intracellular proteins.J.Biochem.2003;134:1-8.
    10.Alessandro Vichi,D.Michael Payne,Gustavo Pacheco-Rodriguez,Joel Moss,Martha Vaughan.E3 ubiquitin ligase activity of the trifunctional ARD1(ADP-ribosylation factor domain protein 1).Proc Natl Acad Sci USA.2005;102:1945-50.
    11.Pickart CM.Mechanisms underlying ubiquitination.Annu Rev Biochem.2001;70:503-533.
    12.Suzumori N,Burns K,Yan W,Matzuk,M.RFPL4 interacts with oocyte proteins of the ubiquitin-proteasome degradation pathway.Proc Natl Acad Sci USA.2003;100:550-555
    13.Donald S Kirkpatrick,Carilee Denison,Steven P Gygi.Weighing in on ubiquitin:the expanding role of mass-spectrometry-based proteomics.Nat Cell Biol.2005;7:750-760.
    14.Joazeiro CAP,Weissman A.RING finger proteins:mediators of ubiquitin ligase activity.Cell.2000;102:549-552.
    15.Baarends WM,Roest HP,Grootegoed JA.The ubiquitin system in gametogenesis.Mol Cell.Endocrinol.1999;151:5-16.
    16.Baarends WM,van der Laan R.Grootegoed JA.Specific aspects of the ubiquitin system in spermatogenesis.J.Endocrinol.Invest.2000;23:597-604.
    17.Nigg EA.Cyclin-dependent protein kinases:key regulators of the eukaryotic cell cycle.Bioessays.1995;17,471-480.
    18.Evans T,Rosenthal ET,Youngblom J,Distel D,Hunt T.Cyclin:a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division.Cell.1983;33:389-396.
    19.Glotzer M,Murray AW,Kirschner MW.Cyclin is degraded by the ubiquitin pathway.Nature.1991;349:132-138.
    20.Hershko A,Ganoth D,Pehrson J,Palazzo RE,Cohen LH.Methylated ubiquitin inhibits cyclin degradation in clam embryo extracts.J Biol Chem.1991;266(25):16376-9.
    21.Hendriksen PJM,Hoogerbrugge JW,Themmen APN,Koken MHM,Hoeijmakers JHJ,Oostra BA,Van der Lende T,Grootegoed JA.Postmeiotic transcription of X and Y chromosomal genes during spermatogenesis in the mouse.Dev Biol.1995;170:730-733.
    22.Odorisio T,Mahadevaiah SK,McCarrey JR,Burgoyne.PS.Transcriptional analysis of the candidate spermatogenesis gene Ubely and of the closely related Ubelx shows that they are coregulated in spermatogenic cells.Dev Biol.1996;180:336-343.
    23.Lawrence C.The RAD6 DNA repair pathway in Saccharomyces cerevisiae:what does it do,and how does it do it? Bioessays.1994;16(4):253-258
    24.Roest HP,van Klaveren J,de Wit J,van Gurp CG,Koken MHM,Vermey M,van Roijen JH,Hoogerbrugge JW.Inactivation of the HR6B ubiquitin-conjugating DNA repair enzyme in mice causes male sterility associated with chromatin modification.Cell.1996;86:799-810.
    25.Pero R,Lembo F,Chieffi P,Del Pozzo G,Fedele M,Fusco A,Bruni CB,Chiariotti L.Translational regulation of a novel testis-specific RNF4 transcript.Mol Reprod Dev.2003;66(l):1-7.
    26.Yan W,Hirvonen-santti SJ,Palvimo JJ,Toppari J,Janne OA.Expression of the nuclear RING finger protein SNURF/RNF4 during rat testis development suggests a role in spermatid maturation.Mech.Dev.2002;118:247-253.
    27.Van Baren MJ,van der Linde HC,Breedveld GJ,Baarends WM,Rizzu P,de Graaff E,Oostra BA,Heutink P.A double RING-H2 domain in RNF32,a gene expressed during sperm formation.Biochem Biophys Res Commun.2002;292(l):58-65.
    28.Rajapurohitam V,Morales CR,El-Alfy M,Lefrancois S,Beadard N,Wing SS.Activation of a UBC4-dependent pathway of ubiquitin conjugation during postnatal development of the rat testis.Dev Biol.1999;212:217-228.
    29.Shoji M,Chuma S,Yoshida K,Morita T,Nakatsuji N.RNA interference during spermatogenesis in mice.Dev Biol.2005;282(2):524-34.
    30.Tipler CP,Hutchon SP,Hendil K,Tanaka K,Fishel S,Mayer RJ.Purification and characterization of 26S proteasomes from human and mouse spermatozoa.Mol Hum Reprod.1997;3:1053-1060.
    31.Agell N,Chiva M,Mezquita C.Changes in nuclear,content of protein conjugate histone H2A-ubiquitin during,rooster spermatogenesis.FEBS Lett.1983;155:209-212.
    32.Nickel BE,Roth SY,Cook RG,Allis CD,Davie JR.Changes in the histone H2A variant H2A.Z and polyubiquitinated histone species in developing trout testis.Biochemistry. 1987;26(14):4417-4421.
    33.Baarends WM,Hoogerbrugge JW,Roest HP,Ooms M,Vreeburg J,Hoeijmakers JH,Grootegoed JA.Histone ubiquitination and chromatin,remodeling in mouse spermatogenesis.Dev Biol.1999;207(2):322-333.
    34.Lewis JD,Abbott DW,Ausio J.A haploid affair:core histone transitions during spermatogenesis.Biochem Cell Biol.2003;81(3):131-40.
    35.Roald van der Laan,Willy M Baarends,Evelyne Wassenaar,Henk P Roest,Jan HJ Hoeijmakers,J Anton Grootegoed.Expression and possible functions of DNA lesion bypass proteins in spermatogenesis.International Journal of Andrology.2005;28:1-15.
    36.Van der Laan R,Roest HP,Hoogerbrugge JW,Smit EM,Slater R,Baarends WM,Hoeijmakers JH,Grootegoed JA.Characterization of mRAD18Sc,a mouse homolog of the yeast postreplication repair gene RAD18.Genomics.2000;69:86-94.
    37.Parisi S,McKay MJ,Molnar M,Thompson MA,van der Spek PJ,van Drunen-Schoenmaker E,Kanaar R,Lehmann E,Hoeijmakers JH,Kohli J.Rec8p,a meiotic recombination and sister chromatid cohesion phosphoprotein of the Rad21p family conserved from fission yeast to humans.Mol Cell Biol.1999;19(5):3515-28.
    38.Mimnaugh EG,Kayastha G,McGovern NB,Hwang SG,Marcu MG,Trepel J,Cai SY,Marchesi VT,and Neckers L.Caspase-dependent deubiquitination of monoubiquitinated nucleosomal histone H2A induced by diverse apoptogenic stimuli.Cell Death Differ.2001;8:1182-1196.
    39.Lee JC,Schickling O,Stegh AH,Oshima RG,Dinsdale D,Cohen GM,Peter ME.DEDD regulates degradation of intermediate filaments during apoptosis.J Cell Biol.2002;58:1051-66.
    40.Bradbury EM.Reversible histone modifications and the chromosome cell cycle.Bioessays.1992;14(1):9-16.
    41.Huang H,Joazeiro CA,Bonfoco E,Kamada S,Leverson JD,Hunter T.The inhibitor of.apoptosis cIAP2,functions as a ubiquitin-protein ligase and promotes in vitro,monoubiquitination of Caspase 3 and 7.J Biol Chem.2000;275:26661-26664.
    42.Feki A,Jefford CE,Durand P,Harb J,Lukas H,Krause KH,Irminger-Finger I.BARD1 expression During Spermatogenesis is associated with apoptosis and Hormonally Regulated.Biol.Reprod.2004;71:1614-1624.
    43.Shyu HW,Hsu SH,Hsieh-Li HM,Li H.A novel member of the RBCC family,Trif,expressed specifically in the spermatids of mouse testis.Mech.Dev.2001;108,213-216.
    44.Shyu HW,Hsu SH,Hsieh-Li HM,Li H.Forced expression of RNF36.induces cell apoptosis.Experimental Cell Research.2003;287,301-313.
    45.Qiu W,Zhang S,Xiao C,Xu W,Ma Y,Liu Y,Wu Q.Molecular cloning and characterization of a mouse spermatogenesis-related ring finger gene znf230.Biochem Biophys Res Commun.2003;306(2):347-353.
    46.Khetchoumian K,Teletin M.,Mark M.,Lerouge T,Cervino M.,Oulad-Abdelghani M,Chambon P,Losson R.TIF1delta,a novel HP1-interacting member of the transcriptional intermediary factor 1(TIF1) family expressed by elongating spermatids.J Biol Chem.2004;279(46):48329-41.
    47.Cao T,Borden KL,Freemont PS,Etkin LD.Involvement of the rfp tripartite motif in protein-protein interactions and subcellular distribution.J Cell Sci.1997;110:1563-1571.
    48.Fujii T,Tamura K,Copeland NG,Gilbert DJ,Jenkins NA,Yomogida K,Tanaka H,Nishimune Y,Nojima H,Abiko Y.Sperizin is a murine RING zinc-finger protein specifically expressed in haploid germ cells.Genomics.1999;57:94-101.
    49.Zarsky HA,Tarnasky HA,Cheng M,van der Hoorn FA.Novel RING finger protein OIP1 binds to conserved amino acid repeats in sperm tail protein ODF1.Biol Reprod.2003;68(2):543-52.
    50.Ma YX,Zhang SZ,Hou YP.Identification of a novel human zinc finger protein gene ZNF313.Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao(Shanghai).2003;35(3):230-7.
    1.Nyberg,K.A.,Michelson,R.J.,Putnam,C.W.,and Weinert,T.A.Toward maintaining the genome:DNA damage and replication checkpoints.Annu Rev Genet.2002;36,617-656.
    2.汪堃仁,薛绍白,柳惠图.细胞生物学(第二版).2002;442-456.
    3.Aziz Sancar,Laura A.Lindsey-Boltz,Keziban Unsal-Kacmaz,and Stuart Linn.Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoint Annu.Rev.Biochem.2004;73:39-85.
    4.Abraham RT.Cell cycle checkpoint signaling through the ATM and ATR kinases.Genes Dev.2001;15:2177-2196.
    5.Durocher D,Jackson SP.DNA-PK,ATM and ATR as sensors of DNA damage:variations on a theme? Curr Opin Cell Biol.2001;13:225-231.
    6.Melo J,Toczyski D.A unified view of the DNA-damage checkpoint.Curr Opin Cell Biol 2002;14:237-45.
    7.Shiloh Y.Ataxia-telangiectasia and the Nijmegen breakage syndrome:related disorders but genes apart.Annu.Rev.Genet.1997;31:635-662.
    8.Perry J,Kleckner N.The ATRs,ATMs,and TORs are giant HEAT repeat proteins.Cell.2003;112:151-155.
    9.Bakkenist CJ,Kastan MB.DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation.Nature.2003;421:499-506.
    10.Banin S,Moyal L,Shieh S,Taya Y,Anderson CW,Chessa L,.Smorodinsky NI,Prives C,Reiss Y,Shiloh Y,Ziv Y Enhanced phosphorylation of p53 by ATM in response to.DNA damage.Science.1998;281:1674-1677.
    11.Smith GC,Cary RB,Lakin ND,Hann BC,Teo SH,et al.Purification and DNA binding properties of the ataxia-telangiectasia gene product ATM.Proc.Natl.Acad.Sci.USA.1999;96:11134-11139.
    12.Canman CE,Lim DS,Cimprich KA,Taya Y,Tamai K,et al.Activation of the ATM kinase by ionising radiation and phosphorylation of p53.Science.1998;281:1677-1679.
    13.Lim DS,Kim ST,Xu B,Maser RS,Lin J,et al.ATM phosphorylates p95/nbsl in an S-phase checkpoint pathway.Nature.2000;404:613-17.
    14.Cortez D,Wang Y,Qin J,Elledge SJ.Requirement of ATM-dependent phosphorylation of brcal in the DNA damage response to double-strand breaks.Science.1999;286,1162-1166.
    15.Cimprich,K.A.,Shin,T.B.,Keith,C.T.& Schreiber,S.L.cDNA cloning and gene mapping of a candidate human cell cycle checkpoint protein.Proc.Natl.Acad.Sci.USA.1996;93:2850-2855.
    16.Brown EJ,Baltimore D.ATR disruption leads to chromosomal fragmentation and early embryonic lethality.Genes Dev.2000;14:397-402.
    17.O'Driscoll M,Ruiz-Perez VL,Woods CG,Jeggo PA,Goodship JA.A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein(ATR) results in Seckel syndrome.Nat Genet.2003;33:497-501.
    18.Unsal-Kacmaz K,Makhov AM,Griffith JD,Sancar A.Preferential binding of ATR protein to UV-damaged DNA.Proc Natl Acad Sci USA.2002;99:6673-6678.
    19.Hall-Jackson,C.A.,Cross,DA.,Morrice,N.and Smythe,C.ATR is a caffeine-sensitive,DNA-activated protein kinase with a substrate specificity distinct from DNA-PK.Oncogene.1999;18:6707-6713.
    20.Zou LZ,Elledge SJ.Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes Science.2003;300:1542-1548.153.
    21.Griffith,J.D.,Lindsey-Boltz,L.A.& Sancar,A.Structures of the human Rad17-RFC and checkpoint Rad 9-1-1 complexes visualized by glycerol-spray/low voltage microscopy.J.Biol.Chem.2002;277:15233-15236.
    22.Venclovas C,Thelen MP.Structure-Based Predictions of Radl,Rad9,Husl and Rad17 Participation in Sliding Clamp and Clamp Loading Com.Nucleic Acids Res.2000;28:2481-2493.
    23.R.Kaur,C.F.Kostrub,T.Enoch,Structure-function analysis of fission yeast Husl-Radl-Rad9 checkpoint complex,Mol.Biol.Cell.2001;12:3744-3758.
    24.Yuzhakov A,Kelman Z,Hurwitz J,0'Donnell M.Multiple.Competition reactions for RPA order the assembly of the DNA polymerase delta holoenzyme.EMBO J.1999;18:6189-6199.
    25.Paulovich AG,Armour CD,Hartwell LH.The Saccharomyces cerevisiae RAD9,RAD 17,RAD24 and MEC3 genes are required for tolerating irreparable,ultraviolet-induced DNA damage.Genetics.1998;150:75-93.
    26.Lindsey-Boltz,L.A.,Bermudez,V.P.,Hurwitz,J.,Sancar,A.Puri-.fication and characterization of human DNA damage checkpoint.Rad complexes.Proc.Natl.Acad.Sci.USA.2001;98:11236-11241.
    27.Edgardo R.Parrilla-Castellar a,Sonnet J.H.Arlander b,Larry Karnitz.Dial 9-1-1 for DNA damage:the Rad9-Husl-Radl(9-1-1) clamp complex.DNA Repair.2004;3:1009-1014.
    28.Vialard JE,Gilbert CS,Green CM and Lowndes NF.The budding yeast Rad9 checkpoint protein is subjected to Mecl/Tell-dependent hyperphosphorylation and interacts with Rad53 after DNA damage.EMBO J.1998;17:5679-5688.
    29.McGowan CH.A checkpoint kinase and tumor suppressor.BioEssays.2002;24:502-511.
    30.Takai H,Tominaga K,Motoyama N,Minamishima YA,Nagahama H,et al.Aberrant cell cycle checkpoint function and early embryonic death in Chk1-/-mice.Genes & Dev.2000;14:1439-1447.
    31.Jack MT,Woo RA,Hirao A,Cheung A,Mak TW,Lee PW.Chk2 is dispensable for p53-mediated G1 arrest but is required for a latent p53-mediated apoptotic response.Proc.Natl.Acad.Sci.USA.2002;99:9825-9829.
    32.Bartek J,Lukas J.Mammalian Gl-and S-phase checkpoints in response to DNA damage.Curr Opin Cell Biol.2001;13:738-747.
    33.Zhao H,Piwnica-Worms H.ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chkl.Mol.Cell.Biol.2001;21:4129-4139.
    34.Q.Liu,S.Guntuku,X.S.Cui,S.Matsuoka,D.Cortez,K.Tamai,G.Luo,S.Carattini-Rivera,F.DeMayo,A.Bradley,L.A.Donehower,S.J.Elledge,Chkl is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint,Genes Dev.2000;14:1448-1459.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700