用户名: 密码: 验证码:
MiR-221在前列腺癌雄激素非依赖转变过程中作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     前列腺癌(Prostate cancer, PCa)在许多西方国家是男性最常见的恶性肿瘤之占男性癌症死因的第二位。在我国,近年来随着生活水平的提高及人均寿命的延长,前列腺癌发病率也呈现明显上升趋势。自1941年Huggins等采用雄激素剥夺疗法治疗晚期前列腺癌取得显著疗效后,激素治疗逐渐成为治疗前列腺癌的一项重要的方法。这种方法早期一般是有效的,此时称激素敏感型前列腺癌(androgen-dependent ostate cancer, ADPC),其有效率一般可达70%左右,然而,经过12~16个月病情缓解期后,几乎无一例外的会进展为激素非敏感的前列腺癌(androgen-independent prostate cancer, AIPC),此期患者病情不可遏制的急剧恶化,肿瘤迅速转移侵袭其它器官,最终因此导致患者死亡。治疗失败的原因是缺乏对于激素非依赖型前列腺癌的有效治疗方法,此外,也因为缺乏简便准确的早期前列腺肿瘤分期判定手段,医生只有在多次穿刺,结合ADT治疗行进过程中PSA观察,定夺治疗方案,这样不仅增加了患者痛苦,也容易导致患者错过最佳治疗时期。因此,探索敏感、特异、准确的前列腺癌分子标志物,实现肿瘤的早期诊断,以及寻找遏制前列腺癌进入激素非依赖期的药物,成为泌尿外科研究迫切需要解决的问题。
     以往利用基因芯片和蛋白组学等方法,科研工作者对AIPC机制已经开展大量研究,极大推动了对AIPC机制的了解。例如发现对前列腺癌具有代表性的分子除了PSA,还包括OC, PSMA, PAP, PSMA,这些分子都是治疗前列腺癌治疗潜在的靶标,但是深入研究表明,虽然这些分子联合PSA检测,提高了PCa的分期诊断,特异性和敏感性却始终不能突破PSA对Pca的意义,对于AIPC的诊治始终缺乏有力的突破。
     近年来microRNA(miRNA)在肿瘤发生发展及耐药性中发挥重要调控作用相应得以证实,部分miRNA在相应肿瘤中作用甚至申请国际专利保护,其对肿瘤的重要性迅速引起研究者兴趣。通过计算机分析,人类约30%的编码蛋白基因被miRNA所调控,已经发现的人类miRNA大部分(52%)都位于已知的肿瘤相关基因组区域内或已知的基因脆性位点,改变特异性miRNA的表达导致象肿瘤样疾病的触发和进展。逐渐明确的miRNA表达谱研究使其迅速成为新的临床辅助手段:1、miRNA表达谱为诊断工具。不明原发部位的转移性癌是癌症诊断中常见的一种情况。2、miRNA表达谱做为预后工具。值得关注是,miRNA表达的变化,尤其对低分化的肿瘤具有重要指导意义,而前列腺癌正属于低分化肿瘤的范畴,提示miRNA检测可能为前列腺癌AIPC研究提供了新的突破口。这引起了众多前列腺癌科研工作者的关注,miRNA针对PCa表达谱以及前列腺良性增生的表达谱近年累计有更新报道,虽然如此,针对PIN发展成癌变以及针对ASPC进展为AIPC其中具有重要调控作用的miRNA,实验性研究才刚刚起步。
     本研究获得AIPC 5例标本,和ADPC 5例标本一同送往通过国际认证的miRNA芯片公司,在原位组织筛选获得珍贵的miRNA差异信息。并后期Nothern验证,确证miRNA-221表达差异显著。而我们的结果提示,miR-221可能在晚期前列腺癌的雄激素治疗非依赖化进程中发挥重要调控作用,其具体作用机制和表达量可能跟前列腺癌细胞命运甚至疾病进程密切相关,为了进一步明确miR-221对AIPC发生发展的生物学意义,进行细胞学功能学检测。以求寻找理想的诊治晚期前列腺癌的有效靶标。
     研究目的
     针对激素治疗敏感和失效的病例标本,进行miRNA芯片筛选,建立前列腺癌雄激素阻断治疗后,两个重要阶段的miRNA表达谱数据库。通过细胞模型,明确miR-221主要参与调控细胞哪些生物学功能。寻找miR-221作用的靶蛋白,探索miR-221作用机制。探测分析miR-221及其调控的靶蛋白与雄激素非依赖前列腺癌产生及进展的关系。
     本研究利用激素依赖的LNCaP前列腺癌细胞系在体外诱导下建立激素非依赖LNCaP前列腺癌细胞亚系,模拟前列腺癌在激素剥夺治疗后由激素依赖性向非依赖性转变的过程,对其发生机制进行初步探讨,并为进一步深入研究激素非依赖前列腺癌的发生机理,提供一个可靠的平台。通过对比LNCaP-AIi(雄激素非依赖细胞)与LNCaP细胞中microRNA的变化,进一步阐述非雄转化的机制。
     研究方法
     1、针对ADPC和AIPC的病人组织标本各5例,筛选差异miRNA,鉴定miRNA表达差异通过Northen和RT-PCR方法,鉴定组织样本中miRNA芯片筛选的miRNA表达存在差异并探测差异大小,明确后续工作有研究价值。
     2、建立雄激素非依赖细胞模型,根据组织学筛选的miRNA表达谱,鉴定并比较差异miRNA在LNCaP/AI-LNCaP细胞模型和ASPC/AIPC组织表达是否平行,明确细胞模型可以用于生物学功能研究,选取表达差异大的miRNA(miR-221)进行生物学功能探索。
     3、建立前列腺癌细胞侵袭模型,使用细胞转染探测分析雄激素对miR-221细胞定位及细胞生物学功能的影响,深入探讨miR-221在激素非依赖化转变中的作用机制。
     4、通过生物信息学和miRNA数据库,筛选miR-221作用的靶蛋白基因,确定靶基因确切结合区域或位点,经过western blot和RT-PCR实验,进一步明确miR-221及其调控的靶基因与疾病的关系。
     结果
     1、利用Northern及RT-PCR方法检测,ADPC及AIPC患者标本中差异表达的microRNA,其中表达下调的有miR-15a和miR-101,上调有:miR-221, miR-222 miR-21,miR-205和miR-125b,其中miR-221上调明显。
     2、利用RT-PCR检测LNCaP-AI, LNCaP细胞系中miR-221的表达明显升高,达10倍左右。证明miR-221在前列腺癌的雄激素非依赖转化过程中发挥作用。
     3、CCK-8方法检测转染了miR-221的LNCaP及LNCaP-AI细胞能够在无激素的环境下迅速增殖,并且转染了anti-miR-221的LNCaP及LNCaP-AI细胞生长则明显受到抑制。通过流式细胞学检测发现转染了miR-221的LNCaP及LNCaP-AI细胞的S期细胞明显升高,证明miR-221有可能促进前列腺癌细胞的分裂生长。
     4、通过转染miR-221至LNCaP细胞发现转染3天后LNCaP细胞出现神经内分泌型表现,RT-PCR检测转染了miR-221的LNCaP细胞中NSE的水平较对照组明显升高,Western在蛋白水平检测NSE蛋白也明显高表达。提示miR-221促进前列腺癌细胞的神经内分泌转化。
     5、划痕实验检测转染了miR-221的LNCaP-AI细胞迁移至空白区的细胞数量较对照组明显增加,证实其迁移能力明显增强。
     6、Transwell侵袭实验发现转染了anti-miR-221的LNCaP-AI细胞穿过基质胶的细胞数量较对照组明显升高,提示miR-221提高了LNCaP-AI细胞的侵袭能力。
     7、通过检索microrna. sanger. ac. uk针对miR-221寻找相关调控的靶基因DVL2,提示miR-221通过调控DVL2从而影响前列腺癌细胞的侵袭能力。qRT-PCR方法对比LNCaP-AI与LNCaP细胞中DVL2明显上调。通过Western检测发现转染了miR-221的LNCaP-AI细胞中DVL2相对于对照组明显升高。提示miR-221通过调节DVL2从而改变LNCaP-AI的侵袭能力。
     8、通过收集ADPC及AIPC期患者的全血,利用RT-PCR检测miR-221的水平,发现AIPC患者中miR-221的水平明显低于ADPC患者。可以用来进行作为前列腺癌患者进展的指标。
     结论
     1、本研究通过对于miR-221在不同前列腺癌细胞系中的功能的研究,发现miR-221通过增加S期细胞的数量,从而促进LNCaP及LNCaP-AI细胞的增殖。因此miR-221会在前列腺癌的生长及进展期发挥作用。同时我们也证实miR-221通过增加NSE的表达促进LNCaP细胞的神经内分泌化的转变。而NE的转变则被认为是前列腺癌雄激素非依赖性转变的重要原因。
     2、通过对于LNCaP及LNCaP-AI细胞转染不同miR-221模拟物进行检测,发现miR-221可以明显提升LNCaP-AI细胞的迁移和侵袭能力。这也在一定程度上证明miR-221可以促进晚期前列腺癌的扩散。并且通过对于其靶基因的寻找发现DVL2可能是改变LNCaP-AI细胞侵袭能力的重要通路。然而miR-221往往作用于多个通路因此,作用机制仍然需要进一步的研究。
     3、通过对于AIPC和ADPC患者血液中miR-221的检测发现AIPC患者血中miR-221的含量明显低于ADPC患者,并且其差异明显,因此其结果有希望可以做为将来研究前列腺癌进展阶段的重要靶标。并为寻找控制晚期前列腺癌的进展提供治疗的新途径。
Background
     Prostate cancer is the most common cancer in man and the second leading cause of death in European counties. Prostate cancer (CaP) is becoming the increasing malignant tumor in China when the quality of Chinese people lives and the number of the people increase greatly. Since androgen ablation is administrated to treat advanced prostate cancer (Pca) and gains significant therapeutic efficacy by Huggins in 1941, hormone therapy has been an important therapy for PCa. In this stage called androgen-dependent prostate cancer (ADPC) the treatment is effective, and the valid rate is up to 70%. After androgen ablation therapy for 12-16 months, androgen- dependent cancer cells inevitably progress to an androgen-independent status (AIPC).And the cancer cells spread into other organs rapidly, and lead to death finally. But no effective treatment has been developed. The treatments of CaP are decided after punatura examation of PSA, which greatly raise the patients'pains. Thus specific, sensitive marker focused on diagnosis and treatments of CaP are expected. So it is become a main task to find an effective medicine to prevent CaP from becoming AIPC.
     Many studies have been done on the roles of AIPC by microarray and proteomics.Some molecules such as OC, PSAM, PAP, PSMA are the targets in order to treating prostate cancer. But the lower specificity and sensitivity compared with PSA confine them to a small scope, and it is difficult to improve their function.
     The reason for the occurrence and progression of CaP remain largely unknown. Recent studies suggest that microRNAs (miRNAs) are involved in human tumori genesis. Some aberrantly- expressed miRNAs have been discovered in CaP cell lines and clinical tissues and these CaP-related miRNAs may play critical roles in the pathogenesis
     Currently, the studies of microRNA focus on the tumour development, progression and drug resistance. Some microRNAs studies have applied for patients, and the importance of microRNA attract many researchers attentions. Up to 30% of all gene coding proteins are negatively regulated by miRNAs in human cells. It is now evident that 52% of miRNAs located in the fragile site of genes associated with cancers.The regulations of miRNAs expressions can lead to the cancers development and progression.MicroRNAs are coming to be the new clinical assistant methods.1、MicroRNAs are diagnosis tools. The diagnosis of metastatic carcinoma is the main purpose.2、MicroRNAs are prognosis tools. It attracted more attention that poorly differentiated tumours are suitable for the application of microRNAs.And prostate cancers belong to poorly differentiated cancers. And more reports on miRNA differential expression in the CaP and BPH. Thus the study aimed on the transition of PIN into CaP is in the early stage.And the miRNA that works in the progression of ADPC into AIPC need to be deeply studied.
     In this study we collected 5 ADPC specimens and 5 AIPC specimens,and in gene chip company the differential expression of microRNAs were got by ISH. The results were confirmed through Northern blotting, and the expression of miR-221was the most different one. In our study we conclud that miR-221 plays an important role in the progression of androgen-independence.The function and expression of miR-221 is closely related with the fate of prostate cancer cells.In order to identifying the function of miR-221,we detect the contribution of miR-221 in prostate cancer cell lines. We can find some significant objectives in the treatment of the advanced prostate cancer.
     Objective
     Gene screening was operated through miRNA chip on the basis of 5 ADPC specimen and 5 AIPC specimen.And miRNA expression database was constructed. The regulation mechanism of miR-221 was identified through prostate cancer cell lines. Seeking the target proteins that were regulated by miR-221, and elucidating the relationship with the AIPC progression.
     Methods
     1.MiRNAs screening were operated on the basis of 5 ADPC specimen and 5 AIPC specimen,and the different expression of miRNAs were confirmed through Northern and
     RT-PCR.
     2.Constructing AIPC cell lines and verifying the differential expression of miRNA in LNCaP cell lines and LNCaP-AI cell lines. Confirming the prostate cancer cell lines used in study of the biological function. And selecting miR-221 to be studied.
     3. Constructing the prostate cancer cells invasive model and confirming the effect of androgen on miR-221 and the biological function of miR-221.Studying the roles of miR-221 in the AIPC progression of prostate cancer.
     4. Indentifying accurate binding site of miR-221 target protein in the gene through bioinformatics and miRNA datebase.Verifying the relationship of the disease with the target gene by Western blot and RT-PCR.
     Results
     1. It was found in our study that most AIPC LNCaP-AI lines increased miRNA expression compared with ADPC line, and that five miRNAs (miR-221, miR-222 miR-21, miR-205 and miR-125b) were up-regulated, while two miRNAs (miR-15a and miR-101) were down-regulated in AI LNCaP-AI cell lines compared with their parental AD LNCaP line, by Northern and RT-PCR.And miR-221 was upregulated significantly.
     2. qRT-PCR was performed to evaluate miR-221 expression in LNCaP, LNCaP-AI and PC3 cell lines. It was found that miR-221 expression was up-regulated in LNCaP-AI independently derived AIPC cell lines and down-regulated in LNCaP dependently derived ADPC cell lines, suggesting that these differentially expressed miRNAs might contribute to the progression of CaP cells.
     3. Cell growth was assessed by using the CCK-8 cell proliferation assay. Treatment with miR-221 significantly stimulated the growth of LNCaP cells and LNCaP-AI cells, while the miRNA negative control (miR-NC) without treatment failed to affect cell growth. The influence of miR-221m on the S-phase fraction was also upregulated by flow cytometry.
     4. NE differentiation was studied in LNCaP cells stimulated with increased miR-221 levels.NSE mRNA levels increased rapidly on day.We examined the level of NSE protein in miR-221-and miR-NC-treated LNCaP cells by Western blot. Transfection with miR-221 led to remarkable up-regulation of NSE in LNCaP cell lines on day 3,
     5. LNCaP cells transiently transfected with miR-221 or miR-NC were grown until confluence in a wound healing assay. Migration of LNCaP-AI cells transfected with anti-miR-221 migrated into the open area was significantly increased.and the ability of migration was upregulated.
     6. A Matrigel invasion assay was also performed to obtain a measure of the migration of these transfected cells. The results clearly revealed a significant increase in migration and invasiveness in anti-miR-221-treated LNCaP-AI cells. It was concluded that miR-221 was an important determinant of motility and invasiveness of CaP.
     7. Analyses of the migration relative genes were performed using the Sanger miRNA database target search program.RT-PCR analysis of RNA extracted from anti-miR-221-treated LNCaP-AI cells showed that there was a significant increase in the expression of DVL2. Treatment of LNCaP-AI cells with anti-miR-221 caused a great increase in DVL2 protein in LNCaP-AI cells by Western blot. And DVL2 may play a role in the invasive ability of LNCaP-AI cells.
     8. We next analyzed the level of miR-221 in the plasma samples from ADPC and AIPC patients by TaqMan qRT-PCR.MiR-221 expression was upregulated in ADPC patients compared with AIPC patients.MiR-221 could be decided as a new tumor-derived marker.
     Conclusions
     1. In our study miR-221 promotes the growth of LNCaP and LNCaP-AI cells. Consistently, ectopic introduction of miR-221 in low expressers of LNCaP cells strongly increased their growth potential by inducing a G1-S shift in the cell cycle. In this study, we showed that miR-221 could promote neuroendocrine differentiation of LNCaP cells in an androgen deprived environment. Thus miR-221 plays an important role in the progression of androgen independence.
     2. Down-regulation of miR-221 in LNCaP-AI cells greatly increased the number of cells migrating through the transwell lambers. We therefore conclude that miR-221 might not affect the ability of migration of LNCaP cells significantly; Rather, a poor invasive CaP cell line and miR-221 level might inversely correlate with the invasiveness in androgen independence CaP. We have demonstrated the importance of miR-221 in the migration on LNCaP-AI cells that are strongly invasive and androgen-independent in nature. In the present study, we chose one target mRNA DVL2 that was correlated with the migration. As expected, the expression of DVL2 was up-regulated in LNCaP-AI cells transfected with anti-miR-221.And the reason for it need to be investigated deeply.
     3. We analyzed the level of miR-221 in the plasma samples from ADPC and AIPC patients by TaqMan qRT-PCR.MiR-221 expression was upregulated in ADPC patients compared with AIPC patients. These results suggest that tumor-derived miR-221 in plasma would be a blood-based miRNA biomarker candidates for CaP.
引文
[1]Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics[J]. Cancer J Clin,2007,57:43-66.
    [2]孙颖浩.前列腺癌诊断与治疗现状[J]。中华泌尿外科杂志,2004,25:77-80。
    [3]Feldman BJ, Feldman D. The development of androgen-independent prostate cancer[J]. Nat Rev Cancer,2001,1:34-45.
    [4]Wu W, Sun M, Zou GM, Chen J. MicroRNA and cancer:current status and prospective[J]. Int J Cancer,2007,120:953-60.
    [5]Calin GA, Croce CM. MicroRNA signatures in human cancers[J]. Nat Rev Cancer, 2006,6:857-66.
    [6]Cowland JB, Hother C, Gronbaek K. MicroRNAs and cancer[J]. Apmis.2007; 115:1090-106.
    [7]Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, et al. Combinatorial microRNA target predictions[J]. Nat Genet,2005,37:495-500.
    [8]Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, et al. A microRNA expression signature of human solid tumors defines cancer gene targets[J]. Proc Natl Acad Sci,2006,103:2257-61.
    [9]Croce CM. Oncogenes and cancer[J]. N Engl J Med,2008,358:502-11.
    [10]Sassen S, Miska EA, Caldas C. MicroRNA-implications for cancer[J]. Virchows Arch,2008,452:1-10.
    [11]Zhang B, Pan X, Cobb GP, Anderson TA. microRNAs as oncogenes and tumor suppressors[J]. Dev Biol,2007,302:1-12.
    [12]Jiang J, Lee EJ, Gusev Y, Schmittgen TD. Real-time expression profiling of microRNA precursors in human cancer cell lines[J]. Nucleic Acids Res, 2005,33:5394-403.
    [13]Lee YS, Kim HK, Chung S, Kim KS, Dutta A. Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation [J]. J Biol Chem,2005,280:16635-41.
    [14]Lin SL, Chiang A, Chang D, Ying SY. Loss of miR--146a function in hormone-refractory prostate cancer[J]. RNA,2008,14:417-24.
    [15]Shi XB, Xue L, Yang J, Ma AH, Zhao J, Xu M, Tepper CG, Evans CP, Kung HJ, deVere White RW. An androgen-regulated miRNA suppresses Bakl expression and induces androgen-independent growth of prostate cancer cells[J]. Proc Natl Acad Sci,2007,104:19983-8.
    [16]Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM, et al. Widespread microRNA repression by Myc contributes to tumorigenesis[J]. Nat Genet, 2008,40:43-50.
    [17]Musiyenko A, Bitko V, Barik S. Ectopic expression of miR-126*, an intronic product of the vascular endothelial EGF-like 7 gene, regulates prostein translation and invasiveness of prostate cancer LNCaP cells[J]. J Mol Med, 2008,86:313-22.
    [18]Desiree Bonci, Valeria Coppola, Maria Musumeci, Antonio Addario, Raffaella Giuffrida, Lorenzo Memeo, et al.The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities [J]. Nature Medicine,2008,14:1271-1277
    [19]Oskar W, Rokhlin, Vladimir S, Scheinker, Agshin F, Taghiyev, David Bumcrot, et al. Glover and Michael B. Cohen. MicroRNA-34 mediates AR-dependent p53-induced apoptosis in prostate cancer[J]. Cancer Biology & Therapy August 2008,7:1288-1296;
    [20]Gandellini P, Folini M, Longoni N, Pennati M, Binda M, Colecchia M, et al. miR-205 Exerts tumor-suppressive functions in human prostate through down-regulation of protein kinase Cepsilon[J]. Cancer Research.2009 Mar 15,69(6):2287-95.
    [21]Kui Yang, Alina M, Handorean, Kenneth A, Iczkowski. MicroRNAs 373 and 520c Are Downregulated in Prostate Cancer, Suppress CD44 Translation and Enhance Invasion of Prostate Cancer Cells in vitro [J]. Int J Clin Exp Pathol. 2009,2(4):361-369
    [22]Kuhn DE, Martin MM, Feldman DS, Terry AV Jr, Nuovo GJ, Elton TS. Experimental validation of miRNA targets[J]. Methods,2008,44:47-54.
    [23]Gramantieri L, Ferracin M, Fornari F, Veronese A, Sabbioni S, Liu CG, et al. Cyclin G1 is a target of miR--122a, a microRNA frequently down-regulated in human hepatocellular carcinoma[J]. Cancer Res,2007,67: 6092-9.
    [24]Gaur A, Jewell DA, Liang Y, Ridzon D, Moore JH, Chen C, et al. Characterization of microRNA expression levels and their biological correlates in human cancer cell lines[J]. Cancer Res,2007,67:2456-68.
    [25]Zhu S, Si ML, Wu H, Mo YY. MicroRNA- 21 targets the tumor suppressor gene tropomyosin 1(TPM1) [J]. J Biol Chem,2007,282:14328-36.
    [26]Martin MM, Lee EJ, Buckenberger JA, Schmittgen TD, Elton TS. MicroRNA-155 regulates human angiotensin Ⅱ type 1 receptor expression in fibroblasts[J]. J Biol Chem,2006,281:18277-84.
    [27]Wang X, Deng H, Basu I, Zhu L. Induction of androgen receptor-dependent apoptosis in prostate cancer cells by the retinoblastoma protein[J]. Cancer Res,2004,64:1377-85.
    [28]Xiao D, Lew KL, Kim YA, Zeng Y, Hahm ER, Dhir R, et al. Diallyl trisulfide suppresses growth of PC-3 human prostate cancer xenograft in vivo in association with Bax and Bak induction[J]. Clin Cancer Res,2006,12: 6836-43.
    [29]Bracarda S, de Cobelli 0, Greco C, Prayer-Galetti T, Valdagni R, Gatta G, et al. Cancer of the prostate[J]. Crit Rev Oncol Hematol,2005,56: 379-96.
    [30]Kalos M, Askaa J, Hylander BL, Repasky EA, Cai F, Vedvick T, et al. Prostein expression is highly restricted to normal and malignant prostate tissues[J]. Prostate,2004,60:246-56.
    [31]Xu J, Kalos M, Stolk JA, Zasloff EJ, Zhang X, Houghton RL, et al. Identification and characterization of prostein, a novel prostate-specific protein[J]. Cancer Res,2001,61:1563-8.
    [32]Lin SL, Chang D, Ying SY. Hyaluronan stimulates transformation of androgenindependent prostate cancer. Carcinogenesis[J].2007,28: 310-20.
    [33]Bourguignon LY, Singleton PA, Zhu H, Diedrich F. Hyaluronan-mediated CD44 interaction with RhoGEF and Rho kinase promotes Grb2-associated binder-1 phosphorylation and phosphatidylinositol 3-kinase signaling leading to cytokine (macrophage-colony stimulating factor) production and breast tumor progression [J]. J Biol Chem,2003,278:29420-34.
    [34]De Benedetti A, Graff JR. eIF-4E expression and its role in malignancies and metastases[J]. Oncogene,2004,23:3189-99.
    [35]Bandhuvula P, Saba JD. Sphingosine-1- phosphate lyase in immunity and cancer:silencing the siren[J]. Trends Mol Med,2007,13:210-7.
    [36]Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA, et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells[J]. Cancer Cell,2006,9:435-43.
    [37]Thomson JM, Newman M, Parker JS, Morin-Kensicki EM, Wright T, Hammond SM. Extensive post-transcriptional regulation of microRNAs and its implications for cancer[J]. Genes Dev,2006,20:2202-7.
    [38]Chiosea S, Jelezcova E, Chandran U, Acquafondata M, McHale T, Sobol RW,
    et al. Up-regulation of dicer, a component of the MicroRNA machinery, in prostate adenocarcinoma[J]. Am J Pathol,2006,169:1812-20.
    [39]Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, et al. Transcriptional activation of miR--34a contributes to p53-mediated apoptosis[J]. Mol Cell,2007,26:731-43.
    [40]Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, et al. Transactivation of miR--34a by p53 broadly influences gene expression and promotes apoptosis[J]. Mol Cell,2007,26:745-52.
    [41]Wang Q, Li W, Liu XS, Carroll JS, Janne OA, Keeton EK, et al. A hierarchical network of transcription factors governs androgen receptor- dependent prostate cancer growth[J]. Mol Cell,2007,27:380-92.
    [42]Carroll JS, Liu XS, Brodsky AS, Li W, Meyer CA, Szary AJ, et al. Chromosomewide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxAl[J]. Cell,2005,122: 33-43.
    [43]Dehm SM, Tindall DJ. Molecular regulation of androgen action in prostate cancer [J]. J Cell Biochem,2006,99:333-44.
    [44]Kaarbo M, Klokk TI, Saatcioglu F. Androgen signaling and its interactions with other signaling pathways in prostate cancer[J]. Bioessays,2007,29: 1227-38.
    [45]Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TL, Visakorpi T. MicroRNA expression profiling in prostate cancer[J]. Cancer Res,2007, 67:6130-5.
    [46]Patrick S, Mitchell, Rachael K, Parkin, Evan M, Kroh, et al. Circulating microRNAs as stable blood-based markers for cancer detection[J]. PNAS July 29,2008,105(30):10513-10518
    [47]Martin MM, Lee EJ, Buckenberger JA, Schmittgen TD, Elton TS. MicroRNA-155 regulates human angiotensin Ⅱ type 1 receptor expression in fibroblasts[J]. J Biol Chem,2006,281:18277-84.
    [48]Sajni Josson, Shian-Ying Sung, Kaiqin Lao, Leland W. K. Chung, Peter A. S. Johnstone. Radiation Modulation of MicroRNA in Prostate Cancer Cell Lines[J]. The Prostate,2008,68:1599-1606
    [49]Zhang B, Farwell MA. microRNAs:a new emerging class of players for disease diagnostics and gene therapy[J]. J Cell Mol Med,2008,12:3-21.
    [50]Shin KJ, Wall EA, Zavzavadjian JR, Santat LA, Liu J, Hwang JI, et al. A single lentiviral vector platform for microRNA-based conditional RNA interference and coordinated transgene expression [J]. Proc Natl Acad Sci 2006,103:13759-64
    [1]Sobel RE, Sadar MD.cell lines used in prostate cancer research:a compendium of old and new lines-part1.J Urol,2005 Feb;173(2):342-59.
    [2]Sonnenschein C,Olea N,Pasanen E,et al.Negative controls of cell proliferation:human prostate cancer cells and androgen.Cancer Res, 1989;49:3473-3481.
    [3]Yeung F,Li X,Ellett J,et al.Regions of prostate-specific antigen(PSA) promoter confer androgen-independent expression of PSA in prostate cancer cells.J Biol Chem, 2000;275:40846-40855.
    [4]Cinar B,Koeneman KS,Edlund M,et al.Androgen receptor mediates the reduced tumor growth, enhanced androgen responsiveness, and selected target gene transactivation in a human prostate cancer cell line.Cancer Res,2001;61:7310-7317.
    [5]Gleave M,Hsieh JT,Gao C,et al.Acceleration of human prostate cancer growth in vivo by factors produced by prostate and bone fibroblasts. Cancer Res,1991;51: 3753-3761.
    [6]Israeli RS,Powell CT,Corr JG,et al.Expression of the prostate-specfic membrane antigen.Cancer Res,1994;54:1807-1811.
    [7]Horoszewicz JS,Leong SS,Chu TM,Wajsman ZL, et al.The LNCaP cell line:a new model for studies on human prostatic carcinoma.Prog Clin Biol Res 1980;37:115-132.
    [8]Nora MN,Christophe JL,Andrew CE.Model systems of prostate cancer:uses and limitations.Cancer and metastasts reviews,1999;17:362-371.
    [9]Berchem GJ,Bosseler M,Sugars LY,et al.Androgens induce resistance to bcl-2 mediated apoptosis in LNCaP prostate cancer cells. Cancer Res,1995;55:735-738.
    [10]Lin SL, Chang D & Ying SY 2007 Hyaluronan stimulates transformation of androgen-independent prostate cancer. Carcinogenesis 28 310-320.
    [11]Liu Q, Fu H, Sun F, Zhang H, Tie Y, Zhu J, Xing R, Sun Z & Zheng X 2008 miR-16 familyinduces cell cycle arrest by regulating multiple cell cycle genes. Nucleic Acids Res 36 5391-5404.
    [12]Li T, Li D, Sha J, Sun P & Huang Y 2009 MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem Biophys Res Commun 383 280-285.
    [13]Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S & Allgayer H 2008 MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27 2128-2136.
    [14]Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A & Lund AH 2008 Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem 283 1026-1033.
    [15]Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST & Patel T 2007 MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133 647-658.
    [16]Zhu S, Si ML, Wu H & Mo YY 2007 MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 282 14328-14336. Page 35 of 38
    [17]Sayed D, Rane S, Lypowy J, He M, Chen IY, Vashistha H, Yan L, Malhotra A, Vatner D & Abdellatif M 2008 MicroRNA-21 targets Sprouty2 and promotes cellular outgrowths. Mol Biol Cell 19 3272-3282.
    [18]Gabriely G, Wurdinger T, Kesari S, Esau CC, Burchard J, Linsley PS & Krichevsky AM 2008 MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol 28 5369-5380.
    [19]Ozen M, Creighton CJ, Ozdemir M & Ittmann M 2008 Widespread deregulation of microRNA expression in human prostate cancer. Oncogene 27 1788-1793.
    [20]Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TL & Visakorpi T 2007 MicroRNA expression profiling in prostate cancer. Cancer Res 67 6130-6135.
    [21]Tong AW, Fulgham P, Jay C, Chen P, Khalil I, Liu S, Senzer N, Eklund AC, Han J & Nemunaitis J 2009 MicroRNA profile analysis of human prostate cancers. Cancer Gene Ther 16 206-216.
    [1]Tsuchiyal S,Okuno Y,Tsujimoto G.MicroRNA:Biogenetic and Functional Mechanisms and Involvements in Cell Differentiation and Cancer.Journal of Pharmacological Sciences,2006;101:267-270.
    [2]Lu J, Getz G, Miska EA, et al.MicroRNA expression profiles classify human cancers. Nature 2005;435:834-838.
    [3]Ouellet DL, Perron MP, Gobeil LA,et al.MicroRNAs in Gene Regulation:When the Smallest Governs It All.Journal of Biomedicine and Biotechnology 2006(4):Article ID 69616,pages 1-20
    [4]William CS Cho. OncomiRs:the discovery and progress of microRNAs in cancers.Molecular Cancer 2007;6:60 pages 1-7.
    [5]Calin GA, Cimmino A, Fabbri M,et al. MiR-15a and miR-16-1 cluster functions in human leukemia. PNAS,2008;105(13):5166-5171
    [6]Porkka KP, Pfeiffer MJ, Waltering KK, et al. MicroRNA expression profiling in prostate cancer. Cancer Res.2007;Jul 1;67(13):6130-6135.
    [7]Ozen M, Creighton CJ, Ozdemir M, Ittmann M. Widespread deregulation of microRNA expression in human prostate cancer.Oncogene.2008;Mar 13;27(12):1788-93.
    [8]Shi XB,Xue L,Yang J,et al.An androgen-regulated miRNA suppresses Bakl expression and induces androgen-independent growth of prostate cancer cells.PNAS December 11,2007;104(50):19983-19988
    [9]Holzbeierlein J, Lal P, LaTulippe E, Smith A,et al. Gene expression analysis of human prostate carcinoma during hormonal therapy identifies androgen-responsive genes and mechanisms of therapy resistance. American Journal of Pathology. 2004;164(1):217-227.
    [10]Chen Q, Watson JT, Marengo SR, Decker KS,et al. Gene expression in the LNCaP human prostate cancer progression model:progression associated expression in vitro corresponds to expression changes associated with prostate cancer progression in vivo. Cancer Letters.2006;244 (2):274-288
    [11]Stanbrough M, Bubley GJ, Ross K, Golub TR et al. Increased expression of genes converting adrenal androgens to testosterone in androgen- independent prostate cancer.Cancer Res.2006;66(5):2815-2825.
    [12]Sassen S, Miska EA, Caldas C. MicroRNA:implications for cancer. Virchows Arch. 2008 Jan;452(1):1-10
    [13]Lin SL, Chiang A, Chang D, Ying SY. Loss of mir-146a function in hormone-refractory prostate cancer.RNA.2008 Mar;14(3):417-24.
    [14]Mattie MD, Benz CC, Bowers J, et al.Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Molecular Cancer 2006; 5:24 doi:10.1186/1476-4598-5-24.
    [15]Sobel RE, Sadar MD.cell lines used in prostate cancer research:a compendium of old and new lines-part1.J Urol,2005 Feb;173(2):342-359
    [16]Mizuno Y,Yagi K,Tokuzawa Y,et al.miR-125b inhibits osteoblastic differentiation by down-regulation of cell proliferation.Biochem Biophys Res Commun.2008 Apr 4;368(2):267-72.
    [17]Brookman-Amissah N,Nariculam J,Freeman A,et al.Allelic imbalance at 13q14.2 approximately q14.3 in localized prostate cancer is associated with early biochemical relapse.Cancer Genet Cytogenet.2007; 179(2):118-126
    [18]Cimmino A, Caling A, Fabbr IM, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA,2005;102(39):13944-13949.
    [19]Lu S,Tsai SY,Tsai MJ.Molecular mechanisms of androgen independent growth of human prostate cancer LNCaP-AI cells.Endocrinology,1999; 140:5054-5059.
    [20]Catz SD,Johnson JL.Transcriptional regulation of bcl-2 by nuclear factor kappaB and its significance in prostate cancer. Oncogene,2001,20:7342-7351.
    [21]Gleave M, Tolcher A, Miyake H, et al. Progression to androgen independence is delayed by adjuvant treatment with antisense Bcl-2 oligodeoxynucleotides after castration in the LNCaP prostate tumor model. Clin Cancer Res,1999;5:2891-2898.
    [22]Raffo AJ, Perlman H, Chen MW, et al. Overexpression of bcl-2 protects prostate cancer cells from apoptosis in vitro and confers resistance to androgen depletion in vivo. Cancer Res.1995;55:4438-4445.
    [23]Heinlein CA, Chang C. Androgen Receptor in Prostate Cancer. Endocrine Reviews.April 2004;25(2):276-308
    [24]Daniel GIOELI. Signal transduction in prostate cancer progression. Clinical Science.2005;108:293-308
    [1]Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, et al.2006 A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103 2257-2261.
    [2]Ambs S, Prueitt RL, Yi M, Hudson RS, Howe TM, Petrocca F, Wallace TA, Liu CG, Volinia S, Calin GA, et al.2008 Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res 68 6162-6170.
    [3]Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TL & Visakorpi T 2007 MicroRNA expression profiling in prostate cancer. Cancer Res 67 6130-6135.
    [4]Saramaki OR, Porkka KP, Vessella RL & Visakorpi T 2006 Genetic aberrations in prostate cancer by microarray analysis. Int J Cancer 119 1322-1329
    [5]Ozen M, Creighton CJ, Ozdemir M & Ittmann M 2008 Widespread deregulation of microRNA expression in human prostate cancer. Oncogene 27 1788-1793.
    [6]Tong AW, Fulgham P, Jay C, Chen P, Khalil I, Liu S, Senzer N, Eklund AC, Han J & Nemunaitis J 2009 MicroRNA profile analysis of human prostate cancers. Cancer Gene Ther 16 206-216.
    [7]Kulshreshtha R, Ferracin M, Wojcik SE, Garzon R, Alder H, Agosto-Perez FJ, Davuluri R, Liu CG, Croce CM, Negrini M, et al.2007 A microRNA signature of hypoxia. Mol Cell Biol 27 1859-1867.
    [8]Josson S, Sung SY, Lao K, Chung LW & Johnstone PA 2008 Radiation modulation of microRNA in prostate cancer cell lines. Prostate 68 1599-1606.
    [9]Shin S, Cha HJ, Lee EM, Jung JH, Lee SJ, Park IC, Jin YW & An S 2009 MicroRNAs are significantly influenced by p53 and radiation in HCT116 human colon carcinoma cells. Int J Oncol 34 1645-1652.11111
    [10]Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M,
    Rattan S, Bullrich F, Negrini M, et al.2004 Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 1012999-3004.
    [11]Nupponen NN, Hyytinen ER, Kallioniemi AH & Visakorpi T 1998a Genetic alterations in prostate cancer cell lines detected by comparative genomic hybridization. Cancer Genet Cytogenet 101 53-57.
    [12]Nupponen NN, Kakkola L, Koivisto P & Visakorpi T 1998b Genetic alterations in hormonerefractory recurrent prostate carcinomas. Am J Pathol 153 141-148.
    [13]Porkka KP & Visakorpi T 2004 Molecular mechanisms of prostate cancer. Eur Urol 45683-691.
    [14]Saramaki OR, Porkka KP, Vessella RL & Visakorpi T 2006 Genetic aberrations in prostate cancer by microarray analysis. Int J Cancer 119 1322-1329.
    [15]Visakorpi T, Kallioniemi AH, Syvanen AC, Hyytinen ER, Karhu R, Tammela T, Isola JJ & Kallioniemi OP 1995 Genetic changes in primary and recurrent prostate cancer by comparative genomic hybridization. Cancer Res 55 342-347.
    [16]Latil A, Bieche I, Pesche S, Volant A, Valeri A, Fournier G, Cussenot O & Lidereau R 1999 Loss of heterozygosity at chromosome arm 13q and RBI status in human prostate cancer. Hum Pathol 30 809-815.
    [17]Latil A, Morant P, Fournier G, Mangin P, Berthon P & Cussenot O 2002 CHC1-L, a candidate gene for prostate carcinogenesis at 13q14.2, is frequently affected by loss of heterozygosity and underexpressed in human prostate cancer. Int J Cancer 99 689-696.
    [18]Chen C, Frierson HF, Jr., Haggerty PF, Theodorescu D, Gregory CW & Dong JT 2001 An 800-kb region of deletion at 13q14 in human prostate and other carcinomas. Genomics 77 135-144. Chen K & Rajewsky N 2007 The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 8 93-103.
    [19]Ueda T, Emi M, Suzuki H, Komiya A, Akakura K, Ichikawa T, Watanabe M, Shiraishi T, Masai M, Igarashi T, et al.1999 Identification of a I-cM region of common deletion on 13q14 associated with human prostate cancer. Genes Chromosomes Cancer 24 183-190
    [20]Yin Z, Spitz MR, Babaian RJ, Strom SS, Troncoso P & Kagan J 1999 Limiting the location of a putative human prostate cancer tumor suppressor gene at chromosome 13q14.3. Oncogene 18 7576-7583.
    [21]Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, et al.2002 Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99 15524-15529.
    [22]Colombel M, Symmans F, Gil S, O'Toole KM, Chopin D, Benson M, Olsson CA, Korsmeyer S & Buttyan R 1993 Detection of the apoptosis-suppressing oncoprotein bcl-2 in hormone-refractory human prostate cancers. Am J Pathol 143 390-400.
    [23]McDonnell TJ, Troncoso P, Brisbay SM, Logothetis C, Chung LW, Hsieh JT, Tu SM & Campbell ML 1992 Expression of the protooncogene bcl-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res 52 6940-6944.
    [24]Linsley PS, Schelter J, Burchard J, Kibukawa M, Martin MM, Bartz SR, Johnson JM, Cummins JM, Raymond CK, Dai H, et al.2007 Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol Cell Biol 27 2240-2252
    [25]Liu Q, Fu H, Sun F, Zhang H, Tie Y, Zhu J, Xing R, Sun Z & Zheng X 2008 miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes. Nucleic Acids Res 36 5391-5404.
    [26]Almeida M, Han L, Bellido T, Manolagas SC & Kousteni S 2005 Wnt proteins prevent apoptosis of both uncommitted osteoblast progenitors and differentiated osteoblasts by beta-catenin-dependent and -independent signaling cascades involving Src/ERK and phosphatidylinositol 3-kinase/AKT. J Biol Chem 280 41342-41351.
    [27]Schweizer L, Rizzo CA, Spires TE, Platero JS, Wu Q, Lin TA, Gottardis MM & Attar RM 2008 The androgen receptor can signal through Wnt/beta-Catenin in prostate cancer cells as an adaptation mechanism to castration levels of androgens. BMC Cell Biol 9 4.
    [28]Graff JR, Konicek BW, McNulty AM, Wang Z, Houck K, Allen S, Paul JD, Hbaiu A, Goode RG, Sandusky GE, et al.2000 Increased AKT activity contributes to prostate cancer progression by dramatically accelerating prostate tumor growth and diminishing p27Kipl expression. J Biol Chem 275 24500-24505.
    [29]Yeh S, Lin HK, Kang HY, Thin TH, Lin MF & Chang C 1999 From HER2/Neu signal cascade to androgen receptor and its coactivators:a novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells. Proc Natl Acad Sci U S A 96 5458-5463.
    [30]Karaa ZS, Iacovoni JS, Bastide A, Lacazette E, Touriol C & Prats H 2009 The VEGF IRESes are differentially susceptible to translation inhibition by miR-16. Rna 15 249-254.
    [31]Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B, Laxman B, Cao X, Jing X, Ramnarayanan K, et al.2008 Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322 1695-1699.
    [32]Noonan EJ, Place RF, Pookot D, Basak S, Whitson JM, Hirata H, Giardina C & Dahiya R 2009 miR-449a targets HDAC-1 and induces growth arrest in prostate cancer. Oncogene 281714-1724.
    [33]Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE, Zhai Y, Giordano TJ, Qin ZS, Moore BB, et al.2007 p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17 1298-1307.
    [34]He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, et al.2007 A microRNA component of the p53 tumour suppressor network. Nature 447 1130-1134.
    [35]Li F, Wang Y, Zeller KI, Potter JJ, Wonsey DR, O'Donnell KA, Kim JW, Yustein JT, Lee LA & Dang CV 2005 Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol Cell Biol 25 6225-6234.
    [36]Li J, Smyth P, Flavin R, Cahill S, Denning K, Aherne S, Guenther SM, O'Leary JJ & Sheils O 2007 Comparison of miRNA expression patterns using total RNA extracted from matched samples of formalin-fixed paraffin-embedded(FFPE) cells and snap frozen cells. BMC Biotechnol 7 36.
    [37]Akashi T, Koizumi K, Tsuneyama K, Saiki I, Takano Y & Fuse H 2008 Chemokine receptor CXCR4 expression and prognosis in patients with metastatic prostate cancer. Cancer Sci 99 539-542.
    [38]Gandellini P, Folini M, Longoni N, Pennati M, Binda M, Colecchia M, Salvioni R, Supino R, Moretti R, Limonta P, et al.2009 miR-205 Exerts tumor-suppressive functions in human prostate through down-regulation of protein kinase Cepsilon. Cancer Res 69 2287-2295.
    [39]Li T, Li D, Sha J, Sun P & Huang Y 2009 MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem Biophys Res Commun 383 280-285.
    [40]Shi XB, Xue L, Yang J, Ma AH, Zhao J, Xu M, Tepper CG, Evans CP, Kung HJ & deVere White RW 2007 An androgen-regulated miRNA suppresses Bakl expression and induces androgenindependent growth of prostate cancer cells. Proc Natl Acad Sci U S A 104 19983-19988.
    [41]Ambs S, Prueitt RL, Yi M, Hudson RS, Howe TM, Petrocca F, Wallace TA, Liu CG, Volinia S, Calin GA, et al.2008 Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res 68 6162-6170.
    [42]Adhikary S & Eilers M 2005 Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol 6 635-645.
    [43]Meyer N & Penn LZ 2008 Reflecting on 25 years with MYC. Nat Rev Cancer 8 976-990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700